中考统计与概率知识点大全知识讲解
初中概率与统计知识点整理
![初中概率与统计知识点整理](https://img.taocdn.com/s3/m/32c38eb9f71fb7360b4c2e3f5727a5e9856a2700.png)
初中概率与统计知识点整理概率与统计是数学中的一个重要分支,主要研究随机现象的规律性和数量关系。
初中阶段的概率与统计主要包括概率的基本概念、概率的计算方法、抽样调查、数据的整理与分析等内容。
下面将对初中概率与统计的知识点进行整理。
一、概率的基本概念1.随机事件:不确定性的事件称为随机事件,用大写字母A、B、C等表示。
2.样本空间:随机试验的所有可能结果组成的集合称为样本空间,用Ω表示。
3.事件的概率:事件A发生的可能性大小称为事件A的概率,用P(A)表示,0≤P(A)≤14.必然事件和不可能事件:概率为1的事件称为必然事件,概率为0的事件称为不可能事件。
5.互斥事件和对立事件:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。
二、概率的计算方法1.古典概型:指每次试验结果只有有限种可能且各结果发生的概率相等的情况。
2.几何概率:指通过几何方法计算概率,如在长方形中随机取点计算概率。
3.组合方法:根据有放回或无放回以及是否考虑顺序进行组合的计算方法。
三、抽样调查1.抽样方法:包括简单随机抽样、系统抽样、分层抽样、整群抽样等。
3.抽样误差:由于采样方法、样本数量不足等导致的偏差称为抽样误差。
四、数据的整理与分析1.数据的度量:包括中心位置度量(如均值、中位数)、离散程度度量(如极差、方差)和分布形状度量(如偏度、峰度)等。
2.统计图表:包括直方图、饼图、折线图、箱线图等。
3.数据的描述性分析:通过数据的度量和统计图表,描述数据的特征和规律。
以上是初中概率与统计的主要知识点整理,希望对您的学习有所帮助。
在学习过程中,要注重理解概念,掌握计算方法,提高数据整理与分析的能力,培养科学思维和统计思维,不断强化应用能力,为今后的学习打下扎实的基础。
祝您学习进步!。
中考统计与概率知识点大全
![中考统计与概率知识点大全](https://img.taocdn.com/s3/m/b17f167611661ed9ad51f01dc281e53a580251c0.png)
统计与概率知识点归纳
考点一、全面调查与抽样调查
考点二、统计学中的几个基本概念
总体、个体、样本、样本容量、样本平均数、总体平均数 考点三、平均数(x 读作“X 拔”)、加权平均数、 众数、中位数
1、众数:
2、中位数:
考点四、方差 、标准差
1、方差的概念、通常用“2s ”表示,])()()[(1222212x x x x x x n
s n -++-+-= 2、标准差的概念、用“s ”表
])()()[(1222212x x x x x x n
s s n -++-+-== 考点五、几种常见的统计图
1、 条形统计图、折线统计图、扇形统计图
2、 频数分布直方图
① 极差: ②频数: ③频率:
考点六、确定事件和随机事件
1、确定事件:
2、随机事件:
考点七、概率的意义与表示方法
1、概率的意义:
2、事件的概率的表示方法:
考点八、列表法求概率
1、列表法
2、列表法的应用场合 (当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
)
考点九、树状图法求概率
1、树状图法
2、运用树状图法求概率的条件 (当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
)
考点十、用频率估计概率、 考点十一、概率的应用:主要用来评判某项活动是否“合算”,游戏是否“公平”等。
中考数学统计与概率基础知识
![中考数学统计与概率基础知识](https://img.taocdn.com/s3/m/74b69246f02d2af90242a8956bec0975f465a4c1.png)
中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
中考数学总复习概率与统计知识点梳理
![中考数学总复习概率与统计知识点梳理](https://img.taocdn.com/s3/m/924d8226cbaedd3383c4bb4cf7ec4afe05a1b15e.png)
中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
概率与统计中考知识点总结
![概率与统计中考知识点总结](https://img.taocdn.com/s3/m/e5a57a3626284b73f242336c1eb91a37f1113286.png)
概率与统计中考知识点总结一、概率1.1 随机试验与概率随机试验是指满足以下条件的试验:在一定条件下,试验的结果是不确定的,但是结果的可能性是可知的。
样本空间是随机试验的全部可能结果的集合,事件是样本空间的子集。
概率是指事件发生可能性的大小。
1.2 概率的性质(1)非负性:任何事件的概率都大于等于零。
(2)规范性:样本空间的概率是1。
(3)可列可加性:若事件A₁、A₂、A₃、…两两互不相容,则P(A₁∪A₂∪A₃∪…) = P(A₁) + P(A₂) + P(A₃) + …1.3 事件的概率(1)等可能事件的概率:对于n个等可能事件,它们的概率都是1/n。
(2)事件的概率计算:P(A) = n(A) / n(S),其中n(A)是事件A中元素的个数,n(S)是样本空间S中元素的个数。
(3)互斥事件的概率:对于互斥事件A和B,P(A∪B) = P(A) + P(B)。
1.4 条件概率(1)在事件B已发生条件下事件A发生的概率:P(A|B) = P(A∩B) / P(B)。
(2)条件概率的性质:- P(AB) = P(A)×P(B|A) = P(B)×P(A|B);- P(A₁A₂) = P(A₁)×P(A₂|A₁) = P(A₂)×P(A₁|A₂)。
1.5 独立事件若P(A₁A₂) = P(A₁)×P(A₂),则事件A₁和A₂是独立事件。
1.6 事件的相互关系事件A和B的关系可以用交、并、差、余等集合的运算来描述:(1)交集:事件A和B同时发生的事件记为A∩B。
(2)并集:事件A或B发生的事件记为A∪B。
(3)差集:事件A发生而B不发生的事件记为A-B。
(4)余集:事件A不发生的事件记为A¯。
1.7 重要公式(1)全概率公式:P(A) = P(A|B₁)×P(B₁) + P(A|B₂)×P(B₂) + … + P(A|Bₙ)×P(Bₙ)。
初中概率与统计的重点知识点整理
![初中概率与统计的重点知识点整理](https://img.taocdn.com/s3/m/351c180e777f5acfa1c7aa00b52acfc789eb9f1b.png)
初中概率与统计的重点知识点整理概率与统计是数学中的一门重要学科,旨在研究随机现象的规律性。
在初中阶段,学生需要掌握一些基本的概率与统计知识,以便能够理解和使用概率与统计的方法。
下面是初中概率与统计的重点知识点整理。
1. 随机事件与样本空间- 随机事件:概率论中的事件是指一个可能发生或不发生的结果。
例如,扔一次硬币,正面向上和反面向上都是可能的事件。
- 样本空间:样本空间是指一个随机试验中所有可能结果的集合。
例如,扔一次硬币,样本空间可以是{正面,反面}。
2. 概率的定义和性质- 概率:概率是指某一事件发生的可能性大小。
概率用一个介于0和1之间的数来表示,其中0表示不可能事件,1表示一定事件。
- 概率的性质:概率具有以下几个性质:- 非负性:概率不会是负数。
- 规范性:整个样本空间的概率为1。
- 加法规则:对于两个互不相容的事件A和B,它们的概率之和等于它们的并事件的概率。
- 互斥事件的加法规则:如果两个事件互斥,则它们的概率之和等于各自的概率之和。
3. 随机变量和概率分布- 随机变量:随机变量是指取决于随机试验结果的变量。
随机变量可以是离散的或连续的。
- 概率分布:概率分布是指随机变量在每个可能取值上的概率。
对于离散型随机变量,可以用概率分布函数或概率质量函数来描述。
对于连续型随机变量,可以用概率密度函数来描述。
4. 频率与概率- 频率:频率是指某一事件在一系列试验中出现的次数与总试验次数的比值。
当试验次数无限多时,频率趋近于概率。
- 概率与频率的关系:概率和频率都描述了事件发生的可能性,它们之间存在着一种近似关系。
当试验次数趋近于无穷大时,频率趋近于概率。
5. 统计描述- 统计描述:统计描述用于描述和总结数据的特征。
常见的统计描述方法包括平均数、中位数、众数和范围等。
- 平均数:平均数是指一组数据的总和除以数据个数。
平均数可以用于描述数据的集中趋势。
- 中位数:中位数是指将一组数据按照大小排序后,中间位置的数。
中考概率和统计知识点总结
![中考概率和统计知识点总结](https://img.taocdn.com/s3/m/fde4a895370cba1aa8114431b90d6c85ec3a8887.png)
中考概率和统计知识点总结一、概率的基本概念1.实验、随机现象和样本空间2.事件和事件的关系(包括互斥事件、对立事件等)3.概率的定义及其性质4.等可能概型二、概率的运算与应用1.概率的加法法则2.概率的乘法法则3.条件概率4.全概率公式和贝叶斯公式5.区间估计三、统计的基本概念1.数据的收集和整理2.数据的组织和展示(包括频数分布表、频数分布直方图等)3.平均数、中位数、众数等常用统计量的计算与应用4.极差、四分位数、标准差等常用离散程度的计算与应用四、统计的运算与应用1.抽样调查和总体推断2.关联图与线性回归线的绘制与分析3.相关系数与相关性分析4.统计问题的解决思路和方法五、典型例题解析通过分析和解答一些典型的例题,总结和归纳其中的解题思路和方法,帮助学生掌握应用概率和统计知识解决实际问题的能力。
其中,概率的基本概念是理解概率的基础。
实验、随机现象和样本空间是研究概率问题的起点,通过定义事件和事件的关系可以帮助学生理解事件的概率计算。
概率的定义及性质是概率题目的出发点,通过等可能概型的学习可以对概率有更深入的理解。
概率的运算与应用是概率题目的核心内容。
概率的加法法则和乘法法则是计算复杂概率事件的基本工具,条件概率是解决复杂概率问题的重要手段。
全概率公式和贝叶斯公式是处理复杂问题的常用公式。
区间估计是概率应用的重要方法,通过样本估计可以对总体进行推断。
统计的运算与应用主要包括抽样调查和总体推断、关联图与线性回归线的绘制与分析、相关系数与相关性分析等内容。
抽样调查和总体推断是通过样本对总体进行估计的方法,关联图和线性回归线可以帮助学生分析变量之间的关系,相关系数的计算和分析可以帮助学生评价相关性的强度和方向。
最后,通过解析典型例题可以帮助学生掌握概率和统计知识的解题思路和方法。
通过分析例题,可以发现一些常见的解题方法和技巧,帮助学生在考试中更好地应对各类概率和统计题目。
综上所述,中考概率和统计知识点主要包括概率的基本概念、概率的运算与应用、统计的基本概念、统计的运算与应用以及典型例题解析等内容。
中考统计与概率知识点大全
![中考统计与概率知识点大全](https://img.taocdn.com/s3/m/35eb47869fc3d5bbfd0a79563c1ec5da51e2d67e.png)
中考统计与概率知识点大全一、统计1.调查与数据收集-掌握调查的目的,懂得合理选取样本。
-掌握使用各种调查方法,如问卷调查、抽样调查等。
-熟练掌握数值资料和非数值资料的调查和收集方法。
2.数据整理与归纳-掌握清理数据的方法,如查漏补缺、整理排序等。
-能够使用表格、图表等工具整理数据。
-能够对数据进行分类、分组,运用逐次求和法进行观察和总结。
3.数据的表示与分析-掌握如何使用折线图、柱状图、饼图等不同形式的图表展示数据。
-能够根据图表进行数据分析,提取有效信息。
-能够通过数据分析,进行简单的预测和推测。
4.数据的描述统计-掌握数据的中心位置度量,如算术平均数、中位数等。
-掌握数据的离散程度度量,如极差、方差等。
-掌握数据的分布情况度量,如频率分布、频率分布直方图等。
5.数据的应用-能够运用所学知识解决实际问题,如调查数据的分析、市场需求的预测等。
-能够使用计算机软件辅助数据处理和分析。
二、概率1.随机事件与概率-掌握随机事件的概念,了解样本空间和事件的关系。
-掌握概率的定义和计算方法。
-能够根据随机现象的规律性求解概率。
2.集合与概率-掌握集合的基本概念和基本运算。
-掌握集合与概率的关系,能够根据集合的运算求解概率。
3.概率计算的方法-掌握事件的互斥与独立性质,能够根据互斥与独立求解概率。
-掌握事件的和、积和差、和事件的概率计算方法。
4.条件概率与事件的独立性-掌握条件概率的定义和计算方法。
-掌握事件的独立性概念和判定方法。
5.事件间的关系与扩展-掌握事件的包含与相等关系,能够根据事件的关系求解概率。
-了解事件的理论计算方法,如贝叶斯定理、全概率公式等。
-能够应用概率知识解决实际问题,如抽奖问题、生日问题等。
总结:。
中考复习初中数学概率与统计复习重点整理
![中考复习初中数学概率与统计复习重点整理](https://img.taocdn.com/s3/m/09e430fffc0a79563c1ec5da50e2524de518d03d.png)
中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
中考概率与统计总结知识点
![中考概率与统计总结知识点](https://img.taocdn.com/s3/m/1e6c898c6037ee06eff9aef8941ea76e58fa4aff.png)
中考概率与统计总结知识点概率与统计是数学的一个重要分支,也是生活中经常会用到的一种数学方法。
通过概率与统计的学习,我们可以更深入地了解生活中发生的事情,分析数据,做出合理的判断和预测。
在中考中,概率与统计是一个重要的考试内容,也是考查学生综合运用数学知识的重要环节。
下面我们来总结一下中考概率与统计的知识点。
一、概率1. 概率的基本概念概率是事件发生的可能性的大小。
常用P(A)表示事件A的概率。
概率的范围是[0,1],表示事件发生的可能性从不可能到一定发生。
事件的互斥与对立事件,互斥事件指的是两个事件不能同时发生,对立事件指的是两个事件至少有一个发生。
事件的和与积,事件的和指的是两个事件中至少有一个发生的概率,事件的积指的是两个事件同时发生的概率。
2. 概率的计算概率的计算公式:P(A) = 事件A发生的次数 / 总的可能性次数。
概率的计算方法:古典概率、几何概率、统计概率。
古典概率指的是在有限个元素的样本空间中,每个基本事件发生的可能性相等。
几何概率指的是利用几何图形来计算概率。
统计概率指的是利用统计方法来计算概率。
3. 概率的应用事件的独立性、相关性:当一个事件的发生不受另一个事件的影响时,两个事件是独立的,否则是相关的。
事件的概率运算:事件的交、并、差。
二、统计1. 统计的基本概念统计是一种数据的搜集、整理、分析和解释的方法。
通过统计可以了解数据的分布规律、发现数据的特点、进行数据的预测和判断。
常见的统计量:均值、中位数、众数、标准差等。
2. 统计分布离散型数据与连续型数据:离散型数据指的是数据的取值是一个个的分散的,连续型数据指的是数据的取值是一段范围内的。
频数分布表:将数据按照一定的间隔划分成若干组,然后统计每一组中数据的个数。
频率分布表:将频数除以数据的总个数得到频率,用来表示数据在每一组中出现的概率。
3. 统计图表直方图:用来表示数据的频数分布。
折线图:用来表示数据的趋势变化。
饼图:用来表示各部分所占的比例。
数学中考数学统计与概率知识点总结
![数学中考数学统计与概率知识点总结](https://img.taocdn.com/s3/m/253dc3ad80c758f5f61fb7360b4c2e3f56272561.png)
数学中考数学统计与概率知识点总结数学中的统计与概率是中考数学考试中重要的部分,涵盖了许多基础概念和计算方法。
在这篇文章中,我们将对中考数学统计与概率的知识点进行总结和归纳,以帮助同学们更好地复习和应对考试。
一、统计学基础统计学是一门研究数据收集、整理、分析和解释的学科。
在中考数学中,我们主要关注以下几个方面的内容。
1.数据的收集与整理数据可以通过调查、实验等方式进行收集,收集到的数据需要进行整理和归纳。
常见的数据形式有表格、图表等。
2.频数与频率频数是指某个数据在样本或总体中出现的次数,频率是指某个数据的频数与总数之比。
频数和频率可以帮助我们了解数据的分布情况。
3.平均数平均数是用来描述一组数据的集中趋势的指标。
常见的平均数有算术平均数、加权平均数等。
计算平均数时,需要将数据求和后除以数据的个数或权重之和。
4.中位数与众数中位数是指将一组数据按照大小排列后,处于中间位置的数值,如果数据个数为奇数,则中位数为中间的数;如果数据个数为偶数,则中位数为中间两个数的平均值。
众数是指一组数据中出现次数最多的数值,可能不止一个。
5.范围与极差范围是指一组数据中最大值与最小值之间的差值,而极差是指一组数据中最大值与最小值之间的差值的绝对值。
二、概率与事件概率是研究随机事件发生的可能性大小的学科。
在考试中,同学们需要掌握以下几个概念和计算方法。
1.概率的定义与计算概率是指某个事件发生的可能性大小。
概率的计算可以通过频率的方法进行估算,即某个事件发生的次数与试验总次数之比。
2.事件的互斥与对立互斥事件是指两个事件不可能同时发生,对立事件是指两个事件只能发生其中一个。
互斥事件的概率可以直接相加,对立事件的概率可以用1减去另一个事件的概率。
3.独立事件与非独立事件独立事件是指在前一个事件发生与不发生的情况下,后一个事件发生的概率保持不变。
非独立事件是指在前一个事件发生与不发生的情况下,后一个事件发生的概率会发生变化。
概率统计中考知识点总结
![概率统计中考知识点总结](https://img.taocdn.com/s3/m/ec066e9eb8f3f90f76c66137ee06eff9aef84900.png)
概率统计中考知识点总结1. 概率的基本概念概率是描述随机事件发生可能性大小的数值。
在概率统计中,我们通常用P(A)表示事件A发生的概率,该概率的取值范围是0≤P(A)≤1。
当P(A)=1时,表示事件A一定发生;当P(A)=0时,表示事件A一定不会发生;当0<P(A)<1时,表示事件A可能发生,但也可能不发生。
2. 概率的加法公式当事件A和事件B互斥时,它们的概率之和等于它们发生的并集的概率,即P(A∪B)=P(A)+P(B)。
当事件A和事件B不互斥,即存在交集时,加法公式可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
3. 概率的条件概率条件概率表示在已知事件B发生的条件下,事件A发生的概率。
它的计算公式为P(A|B)=P(A∩B)/P(B)。
条件概率的计算在很多实际问题中都有着重要的应用,比如医学诊断、金融风险管理等领域。
4. 概率的独立性两个事件A和B称为相互独立,如果它们的发生不会相互影响,即P(A|B)=P(A)或者P(B|A)=P(B)。
在概率统计中,独立事件的性质给予我们便利的计算条件,简化了问题的复杂性。
5. 随机变量和概率分布随机变量是取值不确定的变量,它可以是离散型的也可以是连续型的。
在概率统计中,我们通常用概率分布来描述随机变量的分布规律。
常见的概率分布包括二项分布、正态分布、泊松分布等,它们在实际问题中有着广泛的应用。
6. 统计推断统计推断是利用样本数据对总体特征进行推断和估计的过程。
在统计学中,我们通常使用点估计和区间估计来估计总体参数的值,同时利用假设检验来对统计推断进行检验。
7. 相关性和因果关系在概率统计中,我们也经常研究变量之间的相关性和因果关系。
相关性研究变量之间是如何随着变化而变化的规律,而因果关系则研究变量之间的因果关系。
这些研究成果在科学研究和实际问题中都有着重要的应用价值。
以上是概率统计中的一些重要知识点总结,概率统计在现代社会中有着广泛的应用,我们需要认真学习和掌握这些知识,以便更好地理解和应用在实际问题中。
初中数学统计与概率知识点大全
![初中数学统计与概率知识点大全](https://img.taocdn.com/s3/m/e7d5d557a88271fe910ef12d2af90242a995ab4e.png)
初中数学统计与概率知识点大全数学是一门具有广泛应用的学科,统计与概率是其中一个重要的分支。
在初中阶段,学生们开始接触和学习统计与概率的基本概念与知识点。
本文将为大家总结初中数学统计与概率的知识点大全,帮助大家更好地理解和掌握这门学科。
1. 统计学的基本概念与应用- 统计调查:通过对样本的调查来推断总体的特点和规律。
- 数据的收集与整理:通过收集样本数据,并进行整理和分类,以便进行统计分析。
- 统计图表:包括直方图、折线图、饼图等,用于展示数据分布和比较数据之间的关系。
- 平均数:用来表示一组数据的集中趋势,包括算术平均数、加权平均数等。
2. 简单事件与样本空间- 简单事件:指某个试验中的一个基本结果。
- 样本空间:指某个试验中所有可能结果的集合。
3. 随机事件与概率- 随机事件:指随机试验中某个特定结果的集合。
- 概率:用来描述随机事件发生可能性的大小,通常用实数表示,取值范围在0到1之间。
- 常用概率计算方法:包括样本点法、频率法、古典概型法等。
- 事件的关系:包括互斥事件、对立事件、独立事件等。
4. 计数原理与排列组合- 计数原理:包括加法原理和乘法原理,用于解决计数问题。
- 排列与组合:用来计算事件发生的可能性。
- 排列:指从给定的元素集合中选择并按照一定顺序排列的方法。
- 组合:指从给定的元素集合中选择若干个元素,不考虑顺序的方法。
5. 概率分布- 离散型随机变量的概率分布:包括列举法、列举与计算法等。
- 连续型随机变量的概率分布:包括密度函数和分布函数等。
- 期望值与方差:用来描述随机事件的平均值和变异程度。
6. 抽样调查与统计推断- 抽样调查:通过对样本的统计分析来推断总体的特点和规律。
- 抽样方法:包括随机抽样、系统抽样、整群抽样等。
- 统计推断:通过对样本数据的分析来推断总体的特征和参数。
7. 相关与回归分析- 相关分析:用来研究变量之间的相关性与相关强度。
- 回归分析:用来研究变量之间的因果关系与预测模型。
中考总复习:统计与概率--知识讲解.doc
![中考总复习:统计与概率--知识讲解.doc](https://img.taocdn.com/s3/m/37e0179c3169a4517623a373.png)
中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】【考点梳理】考点一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.考点二.数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
中考统计概率知识点总结
![中考统计概率知识点总结](https://img.taocdn.com/s3/m/b7326d8c09a1284ac850ad02de80d4d8d05a0160.png)
中考统计概率知识点总结一、基本概念1.1. 随机试验随机试验是指随机现象可重复的实验。
每次实验可获得不同结果的现象。
例如,掷硬币,掷骰子,抽签等都是随机试验。
1.2. 样本空间样本空间是指随机试验所有可能结果的集合。
用S表示。
1.3. 事件事件是指样本空间中的一个子集。
用A,B,C,…表示。
事件一般包括必然事件、不可能事件、复合事件等。
1.4. 数学模型数学模型是将实际问题用数字和符号来描述的一个有关数字和符号的系统。
1.5. 概率概率是指随机试验中某一事件发生的可能性大小。
用P(A)表示,其中A为某一事件。
1.6. 统计统计是指用数据去了解事物的发展和变化的规律性。
1.7. 抽样抽样是指从总体中抽取一部分个体的过程。
二、概率的计算2.1. 古典概率古典概率又称为经验概率或古典概型概率。
是指用总体中的个体数目去计算概率的方法。
例如,掷硬币时,正面朝上的概率为1/2。
2.2. 相对频率相对频率是指在大量的试验中,某一事件发生的次数与总试验次数之比。
用试验次数多于100次时。
例如,抛硬币,试验100次,正面朝上50次,则正面朝上的频率为0.5。
2.3. 独立事件独立事件是指事件A的发生与事件B的发生互不影响。
即P(AB)=P(A)P(B)。
例如,掷硬币与掷骰子是独立事件。
2.4. 互斥事件互斥事件是指事件A的发生与事件B的不可能同时发生的情况。
即P(AB)=0。
例如,掷硬币正反面是互斥事件。
2.5. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用P(A|B)表示。
例如,已知掷硬币正面朝上,抛掷骰子的号码为偶数的概率。
2.6. 贝叶斯公式贝叶斯公式是指通过已知后验概率,求先验概率的方法。
用P(A|B)=P(B|A)P(A)/P(B)表示。
三、概率的应用3.1. 排列组合排列是指将不同的元素按一定的次序排列起来。
用A(n,m)表示。
例如,从A、B、C中选取两个字母的排列方式有AB、BA、AC、...等。
初中统计与概率知识点总结
![初中统计与概率知识点总结](https://img.taocdn.com/s3/m/b7f5f34e03768e9951e79b89680203d8cf2f6a64.png)
初中统计与概率知识点总结统计与概率是初中数学中的一个重要部分,主要涉及数据的收集、整理、分析和概率的计算。
在这篇文章中,我将为您总结初中统计与概率的主要知识点。
一、统计学知识点1. 数据的收集与整理统计学的基础是数据的收集与整理。
在实际生活中,我们可以通过问卷调查、实地观察、实验等方式收集数据。
然后,我们需要用表格、图表等工具对数据进行整理和呈现,以便更好地进行后续的分析和推理。
2. 统计属性统计属性是一组描述数据特征的度量,包括平均数、中位数、众数、极差等。
平均数是指一组数据的总和除以数据个数,中位数是将一组数据按照大小排列,找出中间的数值,众数是一组数据中出现次数最多的数值,极差是一组数据中最大值与最小值之间的差距。
3. 图表与统计图图表与统计图是用来展示数据的重要工具。
常见的统计图包括条形图、折线图、饼图等。
条形图适用于比较不同类别的数据,折线图适用于表示数据随时间变化的趋势,饼图适用于显示不同类别数据在整体中的占比。
4. 概率统计概率统计是统计学的核心内容之一。
它研究事件发生的可能性大小。
概率可以用分数、小数或百分比表示,范围从0到1。
事件的概率越大,就越有可能发生。
二、概率学知识点1. 随机事件随机事件是指在一定条件下,不确定性和不可预测性的事件。
例如,掷硬币的结果、抽取扑克牌的花色等都属于随机事件。
为了描述事件的概率,我们可以使用等可能原则,即每个结果发生的可能性相等。
2. 事件的概率事件的概率是指事件发生的可能性大小。
概率的计算可以使用频率法、古典概率法、几何概率法等多种方法。
频率法是通过实验统计事件发生的次数,再除以总实验次数得到。
古典概率法是基于事件的样本空间中各个事件发生的可能性相等的假设。
几何概率法是通过几何形状计算事件发生的概率。
3. 事件的互斥与独立互斥事件是指两个事件不能同时发生的情况,即它们的交集为空。
独立事件是指两个事件之间没有相互影响的情况,即一个事件的发生与另一个事件的发生无关。
初中数学统计与概率知识点归纳
![初中数学统计与概率知识点归纳](https://img.taocdn.com/s3/m/8a50288709a1284ac850ad02de80d4d8d15a0199.png)
初中数学统计与概率知识点归纳统计与概率是数学中重要的分支之一,它们在我们日常生活中无处不在。
了解统计与概率的知识将帮助我们更好地理解和分析数据,并能够做出合理的预测和判断。
在初中数学中,统计与概率的知识点有着重要的地位。
本文将对初中数学中的统计与概率知识点进行归纳总结,以供大家参考。
一、统计知识点1. 数据的收集与整理在统计学中,首先要做的就是收集数据,并对数据进行整理。
数据可以通过调查、观察、实验等方式获得。
整理数据的方法包括制表、绘制图表等。
2. 频数与频率频数是指某个数据出现的次数,而频率是指某个数据出现的次数与总次数的比值。
频率可以用百分数或小数表示。
3. 统计图表统计图表是对数据进行可视化处理的工具。
常见的统计图表有条形图、折线图、饼图等。
通过统计图表,我们可以直观地看出数据的分布规律。
4. 平均数平均数是对一组数据代表性的度量。
常见的平均数有算术平均数、加权平均数等。
算术平均数是将一组数据相加后除以数据的个数,加权平均数是根据每个数据的权重计算平均值。
5. 中位数与众数中位数是将一组数据按从小到大的顺序排列后,处于中间位置的数。
当数据个数是奇数时,中位数是唯一的,当数据个数是偶数时,中位数是中间两个数的平均值。
众数指的是一组数据中出现次数最多的数。
6. 极差与四分位数极差是一组数据中最大值与最小值之间的差。
四分位数是将一组数据按从小到大的顺序排列后,分为四等份,分隔数据的点称为四分位数。
二、概率知识点1. 随机事件与样本空间随机事件指的是在相同的条件下可能产生多个不同结果的事件。
样本空间是指随机事件中可能出现的所有结果的全体。
2. 基本事件与复合事件基本事件是指样本空间中的单个结果,复合事件是指由一个或多个基本事件构成的事件。
复合事件可以通过逻辑运算符进行组合,如“与”、“或”、“非”等。
3. 概率的定义与性质概率是随机事件发生的可能性大小的度量。
概率的定义包括古典定义、频率定义和主观定义。
初中概率与统计知识点总结
![初中概率与统计知识点总结](https://img.taocdn.com/s3/m/1f949cfbdd88d0d233d46aea.png)
1 2 3 4 5 6 7 8 9 10-环78 9 10初中概率与统计知识点总结一、统计的基础知识1、统计调查的两种基本形式:调查方式 概念 适用范围 备注 全面调查(普查) 对调查对象的全体进行调查; 零错误、零失误或对象较少 抽样调查 对调查对象的部分进行调查; 调查具有破坏性或对象较多 保证随机性 2.各基础统计量总体:所有考察对象的全体叫做总体。
个体:总体中每一个考察对象叫做个体。
样本:从总体中所抽取的一部分个体叫做总体的一个样本。
样本容量:样本中个体的数目叫做样本容量。
样本平均数:样本中所有个体的平均数叫做样本平均数。
总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
(1)平均数的概念①平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++=叫做这n 个数的平均数,x 读作“x 拔”。
②加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(2)平均数的计算方法①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
中考统计与概率知识点大全
![中考统计与概率知识点大全](https://img.taocdn.com/s3/m/43ef9c6bcc7931b764ce1515.png)
概率初步知识点1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 确定事件和随机事件的概率之间的关系1、确定事件概率(1)当A 是必然发生的事件时,P (A )=1(2)当A 是不可能发生的事件时,P (A )=02、确定事件和随机事件的概率之间的关系事件发生的可能性越来越小0 1概率的值不可能发生 必然发生事件发生的可能性越来越大古典概型1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考统计与概率知识
点大全
第五章 统计初步与概率初步
考点一、平均数 (3分)
1、平均数的概念
(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,
)(121n x x x n
x +++= 叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为n
f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2、平均数的计算方法
(1)定义法
当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:
)(121n x x x n
x +++= (2)加权平均数法: 当所给数据重复出现时,一般选用加权平均数公式:n
f x f x f x x k k ++=2211,其中n f f f k =++ 21。
(3)新数据法:
当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',
a x x -=22',…,a x x n n -='。
)'''(1'21n x x x n
x +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
考点二、统计学中的几个基本概念 (4分)
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点三、众数、中位数 (3~5分)
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
考点四、方差 (3分)
1、方差的概念
在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即
])()()[(1222212x x x x x x n
s n -++-+-= 2、方差的计算
(1)基本公式:
])()()[(1222212x x x x x x n
s n -++-+-= (2)简化计算公式(Ⅰ):
])[(12222212x n x x x n
s n -+++= 也可写成2222212)][(1x x x x n
s n -+++= 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
]')'''[(12222212x n x x x n
s n -+++= 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',
a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x n
s n -+++= 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得,',,','21n x x x 的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s ”表示,即
])()()[(1222212x x x x x x n
s s n -++-+-== 考点五、频率分布 (6分)
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率。
考点六、确定事件和随机事件 (3分)
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
考点七、随机事件发生的可能性 (3分)
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
考点八、概率的意义与表示方法 (5~6分)
1、概率的意义
一般地,在大量重复试验中,如果事件A 发生的频率m
n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P
(A )=P
考点九、确定事件和随机事件的概率之间的关系 (3分)
1、确定事件概率
(1)当A 是必然发生的事件时,P (A )=1
(2)当A 是不可能发生的事件时,P (A )=0
2、确定事件和随机事件的概率之间的关系
事件发生的可能性越来越小
0 1概率的值
不可能发生必然发生
事件发生的可能性越来越大
考点十、古典概型(3分)
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
m
等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
n
考点十一、列表法求概率(10分)
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
考点十二、树状图法求概率(10分)
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点十三、利用频率估计概率(8分)
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。