绝对值教学设计 人教版〔优秀篇〕

合集下载

《绝对值》教案(优秀10篇)

《绝对值》教案(优秀10篇)

【《绝对值》的课标要求】《绝对值》教案(优秀10篇)绝对值教案篇一绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?①千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

绝对值(优质教案)人教版七年级上册

绝对值(优质教案)人教版七年级上册

1.2.4 绝对值(1)教案【教学目标】一、知识与技能1.借助数轴,初步理解绝对值的概念,会求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用.二、过程与方法1.使学生形成从一般到特殊的解题思想,养成严密的思维习惯.2.培养学生主动探索,敢于发现,合作交流的精神.三、情感态度与价值观1.通过对形式不同的问题的解答,激发学生学习的积极性和兴趣,使全体学生积极参与,体验成功的喜悦.2.对学生进行“实践——认识——实践”的辩证唯物主义教育.【教学重点、难点】1.重点:绝对值的概念,会求一个数的绝对值.2.难点:对绝对值概念的正确理解.【教学过程】一、情境引入:两辆汽车从同一处O出发,分别向东、西方向行驶10km ,到达A、B两处。

它们行驶路线相同吗?它们行驶路程相同吗?(1)如何用有理数表示它们的行驶情况?(2)这两个有理数有什么关系?-10与10在数轴上所表示的点到原点的距离是10个单位长度,它们的符号不同.我们把这个距离10叫做+10和-10的绝对值。

二、合作学习:1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值) .记作:|a|例如,在数轴上表示数―10与表示数10的点与原点的距离都是10,所以―10和10的绝对值都是10,记作|―10|=|10|=10同样可知:|―4| =4,|+1.7|=1.72.想一想:这里的数a 可以表示什么样的数?3.试一试: 由绝对值的意义,我们可以知道:︳7︳= , ︳-7︳= ;︳2.8︳= ,︳-4.5︳= ;︳0︳=4.议一议:从以上结果你有什么启示?你能用自已的话总结出绝对值的性质吗?5.归纳出数a 的绝对值的性质:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数.我们可以用a 来表示任意一个有理数,上述性质可以表示为:①若a >0,则|a |=a ;②若a =0,则|a |=0; 或写成: ③若a <0,则|a |=–a ; (4)绝对值的非负性 由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0三、典例导学: 【知识点 1】 求一个数的绝对值例1.写出下列各数的绝对值. 解:66=; 88-=; 3.9 3.9-=; 5522= ; 221111-= ;100100=; 00= 【总结提升】求一个数的绝对值的方法:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到结论.练习一:课本P11第 2,3题2.判断下列各式是否正确:(1)|5|=|-5| ( )(2)-|5|=|-5| ( )(3)-5=|-5| ( )3.判断下列说法是否正确:(1)符号相反的数互为相反数( )(2) 一个数的绝对值越大,表示它的点在数轴上越靠右( )(3)一个数的绝对值越大,表示它的点在数轴上离原点越远( )(4)当a ≠0时,|a|总是大于0 ( )想一想:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩526,8, 3.9,,,100,0211---1.绝对值是3的数有几个?各是什么?有没有绝对值是-4.5的数?2.绝对值小于2的整数有几个,把它们在数轴上表示出来.3.判断:如果一个数的绝对值是它本身,那么这个数是正数【知识点2】应用绝对值的性质解决问题在日常生活和生产中,我们借助绝对值的意义可以判断某些产品质量的好差,你能回答下列问题吗?例2. 正式排球比赛对所有排球的质量有严格的规定,下列5个质量检测结果:(用正数记超过质量的克数,用负数记不足质量的克数)+15,-10,+25,-20,-8请指出哪个排球的质量好一些.答:记为-8的排球质量好一些。

七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。

通过应用绝对值解决实际问题,体会绝对值的意义。

3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。

若规定向右为正,则A处记作­__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念­———绝对值。

二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。

绝对值教学设计 人教版〔优秀篇〕

绝对值教学设计 人教版〔优秀篇〕

第二章有理数及其运算3.绝对值一、学生起点分析学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

2.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3. 教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

三、教学过程设计本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。

第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动目的:提供几组数让学生进行比较,从而得出相反数的概念。

绝对值(第一课时)教案(共5篇)

绝对值(第一课时)教案(共5篇)

绝对值(第一课时)教案(共5篇)第一篇:绝对值(第一课时)教案绝对值(第一课时)教案1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点难点重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.(一)创设情境,导入新课活动请两同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗? ②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,•它们的__________不同,__________相同.总结例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案第二篇:《绝对值》教案[模版]课题:绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

互为相反数的两个数的绝对值相等。

试一试:若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=____;(2)当a是负数时,|a|=__;(3)当a=0时,|a|=___。

总结得出:⎧a(a>0)|a|=⎪⎨-a(a<0)⎪⎩0(a=0)结论:任何一个有理数的绝对值都是非负数。

人教版七年级数学上册《绝对值》教学设计

人教版七年级数学上册《绝对值》教学设计

《绝对值》教学设计一、学情分析二、教案它们行驶的路线相同吗?他们行驶的远近相同吗?(1)绝对值的概念 师:结合图片指出,一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作│a │.这里a 可以是正数、负数、0.然后结合图片让学生回答│10│=________,│-10│________.练习:根据绝对值的定义说出下列各数的绝对值:-5,3.2,0,100,-2,-23,12. 学生尝试解决.师进一步提出:以上各数中,①正数有哪几个,它们的绝对值和这个数有什么关系?-10 10 O B A当关注这一点.观察例题,师生共同归纳:异号两数相比较时,只需要考虑它们的________,同号两数相比较时,要考虑它们的________.三、练习与小结练习:教材13页练习.小结:1.说一说你对绝对值的概念的认识.2.谈一谈有理数大小的比较方法.四、布置作业习题1.2第5,6,8,10.6、习题1. 求下列各数的绝对值12、- 、-7.5、0 2. 绝对值等于.7的有理数有哪些?跟踪学习:(1)|+2|= ,15 = ,|+8.2|= ;(2)|0|= ;(3)|-3|= ,|-0.2|= ,|-8.2|= . 357、提高训练1、如果x <y <0, 那么︱x ︱︱y︱。

2、有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

3、︱x ︱<л,则整数x = 。

4、已知︱x︱-︱y︱=2,且y =-4,则 x= 。

5、已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

6、式子︱x +1 ︱的最小值是,这时,x值为。

三、学生信息反馈及处理由于引入耗时较长以及学生自主学习,兵教兵所用时间较多,故没有上完新课。

七年级数学上册第一章《绝对值》课案(教师用)新人教版[合集5篇]

七年级数学上册第一章《绝对值》课案(教师用)新人教版[合集5篇]

七年级数学上册第一章《绝对值》课案(教师用)新人教版[合集5篇]第一篇:七年级数学上册第一章《绝对值》课案(教师用) 新人教版(教师用)1.2.4绝对值(二)(新授课)【理论支持】根据赫尔巴特的“诱发学习兴趣原理”学说,与旧有知识相关的新事物会引起我们的注意.而我们全然未知的事物是不会引起我们的注意的.但是,尽管熟知的事物会引起我们的注意,但其注意不会持久的.可以引起我们最大的兴趣的事物是知与未知的混合物.本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法.⑴利用数轴比较大小;⑵利用绝对值比较大小.本节课的教学目标是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据常识,学生可以由低到高地排列这些温度,再让学生把这些数表示在数轴上,可以看到表示它们的各点是从左到右的顺序,由此引出利用数轴比较有理数大小的规定:“在数轴上,左边的数小于右边的数.”在这部分教学中,要让学生结合图形理解这些结论.在讲解利用绝对值比较大小时,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法.这节课的重点是利用绝对值比较两个负数的大小.难点是利用绝对值比较两个异分母负数大小;这是本节课较难的部分,为了解决难点,特别要让学生清楚地了解进行比较时的过程:⑴先求出两个负数的绝对值.⑵比较两个绝对值的大小(要通分,化为同分母分数).⑶根据绝对值大的负数反而小的结论判断这两个负分数的大小.【教学目标】知识与技能:1.会利用数轴比较两个有理数的大小.2.会利用绝对值比较两个负数的大小.数学思考:体验绝对值解决实际问题的过程,感受数学在生活中的应用价值.解决问题:利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.情感态度:敢于面对数学活动中的困难,有学好数学的自信心.【教学重难点】重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小【课时安排】一课时【教学设计】课前延伸一、基础知识及答案比较下列各组数的大小:(1)-3与-8 ;(2)-23与-; 34(3)4与-5,(4)0.9与1.1.【答案】(1)-3<-8;(2)-23(3)4>-5;(4)0.9<1.1.<-;34【设计说明】本题是为了分散利用绝对值比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的“∵,∴”的形式训练学生简单的推理能力.二、预习思考题及答案比较下列各组数的大小:(1)-10与0;(2)-9与-1;(3)-与-57473;(4)-与-. 7847473;(4)-<-.784【答案】(1)-10<0;(2)-9<-1;(3)-<-【设计说明】让学生体会出这四道题的难度较大,培养学生的自学能力.课内探究一、导入新课,探究新知教材12页探究如图1.2-6给出了一周中每天的最高气温和最低气温,其中最低的是℃,最高的是℃.你能将这14个数按从低到高的顺序排列吗?分析:图1.2-6给出的14个温度按从低到高排列为:-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9.按照这个顺序排列的温度,与温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的.(学生活动)在练习纸上画出数轴,把每个数标在对应点上,并比较大小.师:我们已知两个正数(或0)之间怎样比较大小,例如0<1,1<2,2<3,… 任意两个有理数(例如-4和-3,-2和0,-1和1)怎样比较大小呢?数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.由这个规定可知:-6<-5,-5<-4,-4<-3,-2<0,-1<1,…得出结论:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.例如 10,0-1,1-1,-1-2【设计说明】探究数的大小比较的方法,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法.二、应用新知例比较下列各对数的大小(1)-(-1)和-(+2);(2)-183和-;(3)-(-0.3)和-. 3217解:(1)先化简,-(-1)=1,-(+2)=-2.正数大于负数,1>-2,即-(-1)>-(+2).(2)这是两个负数比较大小,要比较它们的绝对值.-88339,-==.=21217721∵8389<-,<,即-2172121∴-83<-. 21711=,33(3)先化简,-(-0.3)=0.3,-∵0.3 <11,∴-(-0.3)<-. 33【设计说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度.三、巩固新知(1)比较下列各对数的大小:-3和-5;-2.5和--2.5(2)判断题:①两个有理数比较大小,绝对值大的反而小.()②有理数中没有最小的数.()③若a=-b,则a=b.()④若a<b<0,则a<b.()(3)写出绝对值不大于4的所有整数,并把它们表示在数轴上.(4)比较大小:-2_________-5,-2.5--2.5;-8567-,--. 9658(写出过程)四、归纳小结师:谁能说说今天这节课我们学习了哪些内容?生:如何比较两个有理数大小.师:两个有理数是如何比较大小的?生:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.师:还有没有方法了?生:利用数轴比较,左边的数小于右边的数.【设计说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用绝对值比较大小只适用于两个负数.【布置作业】比较下列各组数的大小.-9和-5,-2.22和-2.25,-〖参考答案〗-9<-5,-2.22>-2.25,-【板书设计】2.4绝对值(2)(1)正数大于0,0大于负数,正数大于负数(2)两个负数,绝对值大的反而小.例解:(1)Θ-(-1)=1,-(+2)=-2.∴ 1>-2,即-(-1)>-(+2).(2)-135⎛22⎫和-,- +⎪和-3.14 248⎝7⎭135⎛22⎫>-,- +⎪<-3.14 248⎝7⎭88339,-==.=21217721∵8389<-,<,即-2172121∴-83<-. 21711=. 33(3)先化简,-(-0.3)=0.3,-∵0.3 <11,∴-(-0.3)<-. 33课后提升课后练习题及答案:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(3)若x+|x|=0,则x是______数.(4)已知│a│=4,│b│=3,且a>b,求a、b的值.〖参考答案〗(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(3)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0 ∴x≤0,x是非正数.(4)∵|a|=4,∴a=±4∵|b|=3,∴b=±3∵a>b,∴a=4,b=±3【设计说明】“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下三点:(1)任何一个数的绝对值一定是正数或0,即|a|≥0;(2)互为相反数的两个数的绝对值相等,|a|=|-a|;(3)求一个含有字母的代数式的值,一定要根据字母的取值范围分情况进行讨论.第二篇:七年级数学上册:绝对值与相反数教学案七年级数学上册:绝对值与相反数教学案【学习目标】使学生能说出相反数的意义2使学生能求出已知数的相反数3使学生能根据相反数的意思进行化简【学习过程】【情景创设】回忆上节的情境,小明从学校出发沿东西大街走了0千米,在数轴上表示出他的位置。

绝对值说课稿人教版(优秀教案)

绝对值说课稿人教版(优秀教案)

绝对值各位评委,领导:下午好!我叫,来自四川师范大学。

今天我说课的课题是《绝对值》。

下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

一、教材分析(一)教材的地位和作用《绝对值》是七年级上第二章的内容。

《绝对值》是在引入有理数和数轴等基本概念后又一重要内容,在教材编排中起承上启下的作用,是学习有理数加减法、乘除法的基础,在今后学习二次根式化简时,也是一个必不可少的工具,它也是我们所认识的第一个非负数。

本节课要求从代数与几何两个角度初步理解绝对值的概念,能求一个数的绝对值。

通过应用绝对值解决实际问题,使学生体会绝对值的意义,感受数学在生活中的价值。

对于从没有学习过类似知识的七年级学生来说,接受起来有点难和慢,尤其在绝对值的意义方面有一定的难度。

但七年级学生有思维活跃,富有激情的特点,我在教学时充分把握和利用了这一特点。

(二)、学情分析通过前一阶段的教学,学生对数轴和有理数的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生在已初步掌握了数轴和相反数,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

能力层面:学生在初中已经初步具备了数形结合的思想。

情感层面:学生对数学新内容的学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡(三)教学内容本节内容分课时学习。

(本课时,品味数学中的和谐美,体验成功的喜悦。

)二、教学目标分析根据教学大纲的要求、本节教材的特点和七年级学生的认知规律,本节课的教学目标确定为:知识与技能目标:⑴借助数轴,初步理解绝对值的概念,会求一个数的绝对值⑵通过应用绝对值解决实际问题,体会绝对值的意义和作用,感受数学在生活中的作用。

过程与方法:⑴使学生形成从一般到特殊的解题思想,养成严密的思维习惯。

人教版数学七年级上册1.2.4绝对值(教案)

人教版数学七年级上册1.2.4绝对值(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《绝对值》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要考虑数的正负之外的大小的情况?”(例如:温度计上的温度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索绝对值的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调正数、负数和0的绝对值以及绝对值在数轴上的表示这两个重点。对于难点部分,比如负数的绝对值,我会通过数轴和具体例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与绝对值相关的实际问题,如温度变化、距离计算等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如在数轴上标出几个点,然后计算它们之间的距离,这个操作将演示绝对值的基本原理。
我也观察到,在实践活动和小组讨论中,有些学生表现得比较内向,不太愿意主动发言。我需要在今后的教学中更加关注这部分学生,鼓励他们大胆表达自己的观点,增强他们的自信心。
另外,我觉得在新课导入环节,通过提问的方式引起学生们的兴趣和好奇心是有效的。但可能我提的问题还不够贴近他们的生活,导致一些学生似乎并没有完全被吸引。在以后的教学中,我需要更加精心设计导入环节,让问题更具有针对性和趣味性。
五、教学反思
在这次绝对值的教学中,我发现学生们对绝对值的概念理解起来还是有一定难度的。尤其是在理解负数的绝对值时,他们往往会感到困惑。我尝试通过数轴和实际案例来解释,但感觉效果并不是特别理想。这可能是因为我对这个难点的讲解还不够透彻,或者是我需要找到更适合学生的讲解方法。
在讲授过程中,我注意到了学生们在小组讨论和实践活动中表现出的积极性和参与度。他们能够将绝对值与日常生活相联系,提出一些很有意思的问题和应用场景。这让我感到很欣慰,说明他们能够将所学知识与实际相结合,这对于知识的掌握和应用是非常重要的。

七年级数学《绝对值》教案

七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。

这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。

七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。

这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。

绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。

(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。

(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。

(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。

教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。

初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。

三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。

演示法中需要的教具有多媒体和温度计。

四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。

所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。

五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a的绝对值记作|a|。

举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲解。

)强调:表示0的点与原点的距离是0,所以|0|=0。

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。

首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。

人教版七年上册1.2.4绝对值教学设计

人教版七年上册1.2.4绝对值教学设计
5.教学拓展:
-结合生活实际,拓展绝对值的应用场景,让学生感受数学与生活的紧密联系。
-介绍绝对值在其他学科中的应用,如物理学中的速度、位移等,增强学生对绝对值重要性的认识。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将通过一个与学生生活密切相关的例子来导入新课。我会询问学生在早晨如何知道当天的气温,并引导学生关注温度计上的读数。接着,我会提出问题:“如果温度计显示温度为-3℃,那么实际温度是多少?”这个问题将激发学生的好奇心,使他们开始思考负数的实际意义。
b.认真审题,注意题目中的关键信息。
c.解题过程中,充分利用数轴等工具,提高解题效率。
d.完成作业后,认真检查,确保答案的正确性。
(三)学生小组讨论
在讲授新知之后,我会将学生分成小组,让他们进行讨论。每个小组都会得到一系列的讨论题目,这些题目旨在帮助学生深入理解绝对值的含义和应用。题目可能包括:
1.举出生活中的例子,说明绝对值的应用。
2.讨论绝对值的双重性,并解释为什么它对解决某些问题很有帮助。
3.讨论如何利用数轴来比较两个数的绝对值大小。
1.注重启发式教学,通过生动形象的语言和具体实例,帮助学生化解绝对值概念的抽象性,使其更好地理解绝对值的意义。
2.关注学生的个体差异,针对不同学生的学习需求,提供有针对性的指导,帮助学生逐步克服学习难点。
3.创设生活情境,引导学生运用绝对值知识解决实际问题,提高学生将数学知识应用于生活的能力。
4.强调数形结合思想,运用数轴等工具,帮助学生形象地理解绝对值,降低学习难度,提高学生的学习兴趣。
学生需要将讨论结果整理成文字报告,并在下节课上进行分享。
4.创新思维题:请学生自编一道与绝对值相关的应用题,要求题目具有一定的创新性和实际意义。此类题目旨在激发学生的创新思维,提高学生的问题提出和解决能力。

七年级数学上册(人教版)1.2.4绝对值(第1课时绝对值的概念及性质)优秀教学案例

七年级数学上册(人教版)1.2.4绝对值(第1课时绝对值的概念及性质)优秀教学案例
2.学生进行自我评价,反思自己在学习过程中的优点和不足,制定改进措施。
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,鼓励学生的进步和创新。
4.结合学生的反馈和评价,教师调整教学策略,为后续教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中与绝对值相关的实际问题,如地图上的距离、运动员比赛得分等,引导学生关注绝对值在现实生活中的应用。
本节课的主要内容包括绝对值的概念、绝对值的性质以及绝对值在实际问题中的应用。在教学过程中,教师应注重从实际问题出发,引导学生发现绝对值的意义,并通过合作交流、讨论归纳出绝对值的性质。同时,结合典型例题,让学生在实践中掌握绝对值的应用,提高解决问题的能力。
为了提高教学效果,教师可以运用多媒体教学手段,如动画、图片等,形象地展示绝对值的概念及性质,增强学生的直观感受。同时,注重启发式教学,引导学生主动思考、探究,培养学生的创新精神和实践能力。
3.教师通过典型例题,讲解绝对值在实际问题中的应用,引导学生学会运用绝对值解决问题。
(三)学生小组讨论
1.教师提出小组讨论任务,让学生结合实例探讨绝对值的性质。
2.学生分组讨论,共同分析绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。
3.各小组汇报讨论成果,教师点评并总结绝对值的性质。
(二)问题导向
1.引导学生提出关于绝对值的问题,如“绝对值有什么意义?”,“如何表示一个数的绝对值?”等,激发学生的探究欲望。
2.教师提出具有挑战性的问题,如“你能用绝对值解释生活中的哪些现象?”引导学生运用所学知识解决实际问题。
3.鼓励学生自主探究,引导学生发现绝对值的性质,如正数和0的绝对值是其本身,负数的绝对值是其相反数。

2024绝对值人教版数学七年级上册教案

2024绝对值人教版数学七年级上册教案

2024绝对值人教版数学七年级上册教案一、教学目标1.知识与技能:理解绝对值的概念,掌握绝对值的性质和计算方法。

2.过程与方法:通过实例分析,培养学生运用绝对值解决问题的能力。

二、教学重点与难点1.教学重点:理解绝对值的概念,掌握绝对值的性质和计算方法。

2.教学难点:灵活运用绝对值解决实际问题。

三、教学过程第一课时:绝对值的概念与性质一、导入新课1.联系生活实际,引导学生思考:在现实生活中,我们如何表示一个数的大小?2.引导学生回顾有理数的概念,为新课的学习做好铺垫。

二、新课讲解1.通过实例引入绝对值的概念,让学生理解绝对值的意义。

2.讲解绝对值的性质,如:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

3.通过具体例子,让学生掌握绝对值的计算方法。

三、案例分析1.分析教材中的案例,让学生在实际操作中感受绝对值的性质。

2.引导学生讨论:为什么绝对值能表示数的大小?四、课堂练习1.让学生独立完成教材中的练习题,巩固所学知识。

2.对学生的答案进行点评,指出错误原因,引导学生正确解题。

五、课后作业1.完成教材中的课后习题,巩固绝对值的概念和性质。

2.收集生活中的实例,运用绝对值进行描述。

第二课时:绝对值的运用一、复习导入1.复习绝对值的概念和性质。

2.提问:我们在生活中如何运用绝对值?二、新课讲解1.讲解绝对值在解决实际问题中的应用,如:距离、温度等。

2.通过具体例子,让学生掌握绝对值方程的解法。

三、案例分析1.分析教材中的案例,让学生在实际操作中感受绝对值的运用。

2.引导学生讨论:如何将实际问题转化为绝对值问题?四、课堂练习1.让学生独立完成教材中的练习题,巩固所学知识。

2.对学生的答案进行点评,指出错误原因,引导学生正确解题。

五、课后作业1.完成教材中的课后习题,巩固绝对值在解决实际问题中的应用。

2.收集生活中的实际问题,尝试运用绝对值进行解决。

第三课时:绝对值与函数一、复习导入1.复习绝对值的概念、性质及其运用。

人教版初中数学七年级上册《绝对值》教学设计

人教版初中数学七年级上册《绝对值》教学设计

人教版初中数学七年级上册《绝对值》教学设计绝对值是数学中的一个概念,本节课的教学目标是让学生能够正确理解绝对值的意义,能够求一个数的绝对值,理解绝对值的代数和几何意义,并能够比较大小。

在教学过程中,我们将通过现实模型来帮助学生从代数和几何两个角度正确理解绝对值的意义,同时培养学生运用数学转化思想指导思维活动的能力。

教学流程设计如下:一、创设问题情景,引出本节内容。

通过请两位同学到讲台前,分别向东、西走2米的活动,引出绝对值的概念。

二、新知探究、思考、合作交流。

在此环节中,我们将探索绝对值的代数和几何意义,并培养学生灵活运用知识的能力。

首先,我们规定在数轴上,表示有理数的点到原点的距离叫做数的绝对值。

这样,我们就进一步明确一个数是由它的符号和绝对值两部分组成。

接着,通过让同学们在数轴上画出一对互为相反数的有理数的点,并观察它们的位置关系,让同学们发现有理数的绝对值具有两个性质:一是两个点分别在原点的两侧,二是两个点到原点的距离相等或者说两个点到原点有相同倍单位长度。

通过这些探索,让学生更好地理解绝对值的几何意义。

三、知识应用、拓展创新。

在此环节中,我们将让学生运用所学知识,灵活地解决问题。

通过练,让学生掌握求已知数的绝对值、比较大小等技能。

四、小结与作业。

在此环节中,让学生自主总结本节课所学内容,并布置相应的作业。

通过以上教学流程的设计,我们旨在让学生能够正确理解和运用绝对值的概念,同时培养他们的合作能力、独立思考能力和交流能力。

问题1:绝对值的概念对于一个数a,它的绝对值记作|a|,表示a到原点的距离,即|a|=a(a≥0),|a|=-a(a<0)。

例如,对于点A(4,0),它到原点的距离是4个单位长度,因此4的绝对值是4;对于点B(0,-3),它到原点的距离是3个单位长度,因此-3的绝对值是3;对于点C(-2,-3),它到原点的距离是3个单位长度,因此-2的绝对值是2.特别地,对于原点,它到原点的距离是0,因此它的绝对值是0.问题2:绝对值的代数定义根据绝对值的概念,可以得到绝对值的代数定义:对于任意一个有理数a,它的绝对值|a|等于a的相反数(-a)和a本身中的较大值,即|a|=max(a,-a)。

人教版七年级上册数学公开课优秀教案《绝对值》教学设计与反思

人教版七年级上册数学公开课优秀教案《绝对值》教学设计与反思

人教版七年级上册数学公开课优秀教案《绝对值》教学设计与反思第1课时绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景.2.两只小狗它们所跑的路线相同吗?3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法【类型一】求一个数的绝对值-3的绝对值是( )A.3 B.-3 C.-13D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a -3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a -3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).一号球二号球三号球四号球五号球六号球-0.5 0.1 0.2 0 -0.08 -0.15(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g的为优等品,超过0.1g 但不超过0.3g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫作数a的绝对值,记作|a|.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=a(a 0)0(a=0)-a(a 0)或|a|=a(a≥0)-a(a 0)绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1. 使学生掌握有理数的绝对值概念及表示方法。

初中数学绝对值教案(5篇)

初中数学绝对值教案(5篇)

初中数学绝对值教案(5篇)初中数学绝对值教案(5篇)通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

下面是小编为大家整理的初中数学绝对值教案,如果大家喜欢可以分享给身边的朋友。

初中数学绝对值教案【篇1】一、素质教育目标(一)知识教学点1、能根据一个数的绝对值表示距离 ,初步理解绝对值的概念。

2、给出一个数,能求它的绝对值。

(二)能力训练点在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

(三)德育渗透点1、通过解释绝对值的几何意义,渗透数形结合的思想。

2、从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

(四)美育渗透点通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美。

二、学法引导1、教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现教为主导,学为主体的教学要求,注意创设问题情境,使学生自得知识,自觅规律。

2、学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)三、重点、难点、疑点及解决办法1、重点:给出一个数会求出它的绝对值。

2、难点:绝对值的几何意义,代数定义的导出。

3、疑点:负数的绝对值是它的相反数。

四、课时安排2课时五、教具学具准备投影仪(电脑)、三角板、自制胶片。

六、师生互动活动设计教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。

七、教学步骤(一)创设情境,复习导入师:以上我们学习了数轴、相反数。

在练习本上画一个数轴,并标出表示-6,0及它们的相反数的点。

学生活动:一个学生板演,其他学生在练习本上画。

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。

人教版数学七年级上册《绝对值》教学设计1

人教版数学七年级上册《绝对值》教学设计1

人教版数学七年级上册《绝对值》教学设计1一. 教材分析《绝对值》是初中数学七年级上册的重要内容,主要介绍了绝对值的概念、性质及其应用。

通过学习绝对值,学生可以更好地理解实数的概念,提高解决实际问题的能力。

本节课的教学内容主要包括绝对值的定义、绝对值的性质和绝对值在坐标系中的应用。

二. 学情分析学生在进入七年级之前,已经学习了实数、有理数等基础知识,对于数学概念和性质有一定的了解。

但部分学生对于实数的理解仍较为模糊,对于一些实际问题的解决能力有待提高。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和解答。

三. 教学目标1.了解绝对值的概念,掌握绝对值的性质;2.能够运用绝对值解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.绝对值的定义和性质;2.绝对值在坐标系中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解绝对值的概念和性质;2.合作学习法:分组讨论,让学生在合作中思考和解决问题;3.启发式教学法:引导学生主动发现问题、解决问题,培养学生的创新思维。

六. 教学准备1.教学课件:制作课件,展示绝对值的概念、性质及应用;2.实例材料:准备一些实际问题,用于引导学生运用绝对值解决;3.坐标纸:用于讲解绝对值在坐标系中的应用。

七. 教学过程1.导入(5分钟)利用生活中的实例,如距离、温度等,引导学生思考实数中的绝对值概念。

例如,讨论两地之间的距离,不考虑路线,只考虑起点和终点之间的直线距离。

2.呈现(10分钟)介绍绝对值的定义和性质,让学生通过观察和思考,发现绝对值的规律。

如:|a|表示a与0之间的距离,且|a|总是非负的。

3.操练(10分钟)学生分组讨论,尝试解决一些涉及绝对值的实际问题。

教师巡回指导,解答学生的疑问。

例如:已知两点A(2,3)和B(-3,-4),求线段AB的长度。

4.巩固(10分钟)让学生在坐标纸上画出点A和点B,并标出线段AB的长度。

2023最新-七年级数学《绝对值》教案优秀3篇

2023最新-七年级数学《绝对值》教案优秀3篇

七年级数学《绝对值》教案优秀3篇作为一名人民教师,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。

那么教案应该怎么写才合适呢?的精心为您带来了3篇《七年级数学《绝对值》教案》,可以帮助到您,就是最大的乐趣哦。

数学《绝对值》教案篇一一、教学目标1、知识与技能(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;(3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。

通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:1、教师检查组长学案学习情况,组长检查组员学案学习情况。

(约5分钟)2.在组长的组织下进行讨论、交流。

(约5分钟)3、小组分任务展示。

(约25分钟)4、达标检测。

(约5分钟)5、总结(约5分钟)四、小组对学案进行分任务展示(一)、温故知新:前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?(二)小组合作交流,探究新知1、观察下图,回答问题: (五组完成)大象距原点多远?两只小狗分别距原点多远?归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章有理数及其运算
3.绝对值
一、学生起点分析
学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析
1.地位和内容
相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

2.教学重点和难点
教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3. 教学目标
(1)借助数轴,理解绝对值和相反数的概念
(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。

第一环节创设情境,导入新课
活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?
活动目的:提供几组数让学生进行比较,从而得出相反数的概念。

并让学生理解消化相反数的概念。

活动内容2:点将游戏一。

A同学任意说出一个有理数,再随意地点另一个同学B回答它的相反数。

B同学回答后,也任意说出一个有理数,再点另一个同学C 回答它的相反数……以此类推,约有一半的学生参与后,游戏结束。

活动目的:利用游戏的形式巩固相反数的概念。

活动内容3:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?
活动目的:从形的角度进一步理解相反数。

实际效果:通过数、游戏、形多个方面让学生认识相反数,学生很快理解相反数,全体学生都能顺利的说出一个数的相反数。

第二环节合作交流,探索新知
活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”
1.引入绝对值概念
在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

一个数a的绝对值记作│a│.如│+3│=3,│-3│=3,│0│=0.
2.例1 求下列各数的绝对值:
- 7.8, 7.8, - 21, 21,-94,9
4, 0 (学生充分思考后,让学生回答,老师板书)
3.议一议:(1)互为相反数的两个数的绝对值有什么关系?
(2)一个数的绝对值与这个数有什么关系?
(给学生充分的时间思考、探究,老师个别指导;然后小组交流)
4.通过上面例子,引导学生归纳总结出:
互为相反数的两个数的绝对值相等.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)
5.点将游戏二.A 同学任意说出一个有理数,再随意地点另一个同学B 回答它的绝对值。

B 同学回答后,也任意说出一个有理数,再点另一个同学C 回答它的绝对值……以此类推,约有一半的学生参与后,游戏结束。

6.“做一做”:
(1)在数轴上表示下列各数,并比较它们的大小:
-1.5,-3,-1,-5;
(2)求出(1)中各数的绝对值,并比较它们的大小;
(3)你发现了什么?
(老师可引导学生多举一些例子,让学生合作讨论后得出:两个负数比较大小,绝对值大的反而小)
活动目的:让学生在有趣的问题情境中获取对绝对值概念的感性认识,并激发学生学习的积极性与主动性。

应用绝对值的概念来求一个数的绝对值,并通过对计算结果的观察与思考,学生从“特殊到一般” 归纳出互为相反数的两个数的绝对值相等,分类归纳出绝对值的代数意义,总结出绝对值的内在涵义,体现学生的主体性。

探索用绝对值比较两负数的方法,体验概念的形成过程。

用点将游戏的形式巩固绝对值概念,寓教于乐。

实际效果:用点将游戏的形式巩固绝对值概念,效果良好,体现了“自主——协作”学习。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理
解。

第三环节:应用迁移,巩固提高
活动内容:
例2 比较下列每组数的大小:
(1)-1和-5;(2)65
- 和-2.7。

(给学生充分的时间思考、探究不同解法,并评价不同方法之间的差异。

) 随堂练习:
1.在数轴上距离原点2个单位长度的点表示的数是 ,也就是说绝对值等于2的数是 .
2. 在数轴上表示下列各数,并求它们的绝对值: ,6 ,-3 , ;
3.比较下列各组数的大小:
(1) (2)
(3) (4)
4.下面的说法是否正确?请将错误的改正过来.
(1)有理数的绝对值一定比0大;
(2)有理数的相反数一定比0小;
(3)如果两个数的绝对值相等,那么这两个数相等;
(4)互为相反数的两个数的绝对值相等.
活动目的:对本节知识进行巩固训练,进一步培养学生分析问题、解决问题的能
力。


过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之
间的差异。

实际效果:通过以上题组训练,学生对本节知识有了更深一步的理解,并进一步明确了绝对值的内涵与意义,解决问题的能力得到了大大提高。

2
3-45
;,72101--;,5.032--;,032-.
7,7-
第四环节:总结反思,知识内化
活动内容:总结:1.本节学习的数学知识;2.本节学习的数学方法。

(老师可先鼓励学生描述出自己的认识与收获,然后再作进一步归纳总结。

) 反思:两个负数比较大小,方法有几种?请举例说明。

活动目的:通过对绝对值定义,代数意义及数学思想方法的归纳总结,充分发挥学生的自主归纳能力,使学生能够系统的、完全的理解知识点。

并明确在数学思想和方法的指导下,运用数学方法解决数学问题的重要性。

在反思与拓展中使学生的认识得到经一步升华。

实际效果:学生能够互相点评,共同归纳,并做进一步反思,这样既发展了学生自主学习能力,又强化了协作精神,同时使知识得到了进一步完善与升华。

第五环节:当堂检测,及时反馈
1. │-5│= , │+3│= ,│0│= .
2.一个数的绝对值是它本身,那么这个数一定是 .
3.用“>、<、=”填空:│+8││-8│ , -5 -8.
4.如果一个数的绝对值等于 4,那么这个数等于 .
5.绝对值小于3的整数有个,分别是 .
活动目的:体现“三回应”的原则,回应目标,回应过程,回应重点。

旨在落实基础,巩固学习效果,同时通过反馈情况改进今后的教学。

第六环节:拓展延伸,能力提升
1、某日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):
-17,-4,+13,-10,-12,+3,-13,+15,+20.
若每千米耗油0.2升,则这天上午该出租车共耗油多少升?
2、已知:│x-2│+│y-3│=0,求3x+4y的值。

活动目的:教学有弹性、有梯度,体现“不同的人学习不同的数学”的理念
3、布置作业
必做题:
习题2.3,知识技能第2,3,4,5题.
选做题:
若 则a 0; 若 则a 0.
四、教学反思
本节课设计了一个两只动物离原点距离的问题情境,使本节课一开始就充满趣味,让学生产生强烈的好奇心,进而积极主动地投入到学习之中,然后安排同学做互动游戏,给同学们创造了很好的学习氛围,激发了同学们参与学习的积极性,使原本难以理解的绝对值概念变得简单;另外,在整节课中我还给学生提供了很多探索问题的时间和空间、合作交流的时间和空间,并让学生自己归纳和总结获得新知识,锻炼了学生有条理地表达自己的思想以及在与他人交流中学会表达自己思想的能力。

一个数的绝对值实质上是数轴上该数所对应的点到原点的距离的数值,而这种几何解释反映了概念的本质,学生在对概念理解的基础上,最后再概括上升到形式定义上来,这样比较符合从感性认识上升到理性认识的规律,同时使得绝对值概念的非负性具有较扎实的基础。

在传授知识的同时,一定要重视学科基本思想方法的教学,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能逐步形成和发展学生的数学能力。

在小组讨论之前,教师应该留给学生充分的独立思考的时间,并对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

,a a -=,a a =。

相关文档
最新文档