分式不等式与一元高次不等式的解法训练
高中数学不等式解法专项训练
1、 lg( x 2 3) lg(3 x 5) ;2、 log 163 x x 2
1 5 lg x 2 2 ; 3、 x 1000 .4、 log 5 x log 5 x 1. x 2
5、 lg x 4 lg x lg 2 x 1 ;6、 log 2 x 2 log 4 x log8 x 7 ;7、 2 lg x lg 7 lg14 ;
6、
x x 3 0 9 x2
7 、 0 x
1 1 8 、 x
Adobe Acrobat 9 Pro.lnk
a x 1 x 2 3x 2 1 9 、 0 10 、 x2 x 2 7 x 12
x 2 9 x 11 7 x2 2x 1
2
四、强化训练:
1、求方程 log 2 4 4 3 log 2 2
x
x 1
3 的解;2、解方程 log 3 x log 3 (3 x) 1 ;
3、已知2 lg
x y x lg x lg y, 求 的值. 2 y
4、设方程 log 3 x x 3 0 的根为 x1 ,方程 3 x 3 0 的根为 x 2 求 x1 x 2 的值;
2
8、 4 x x 5
2
9、 x a
1 x 1 0 (a 1) a
3
二、解下列分式不等式
x 3 1、 0 2 x 2x 1 2、 1 x3
x 2 3x 2 3、 2 0 x 2x 3
x2 2x 1 4、 0 x2
x 1 x 2 x 6 5、 0 2 x 3
分式、高次不等式的解法
1
2
3
5
3. (1) (− x + x + 12)( x + a) < 0
2
解: ( x + 3)( x − 4)( x + a) > 0 ①当 − a > 4,即 a < −4 时,解集为 (−3 , 4) U (− a , + ∞); ②当 − 3 < −a < 4,即 − 4 < a < 3 时,解集为 (−3 , − a) U (4 , + ∞); ③当 − a < −3,即 a > 3 时,解集为 (−a , − 3) U (4 , + ∞);
解:a = −1, b = 2 , c = 3 ∴ 解集为 (−∞ , − 1) U (2 , 3]。
-1 2 3
( x − 2) 2 ( x − 3) (5) ≤0 x +1 ( x − 2) 2 ( x − 3) 3 (7) <0 x +1
解:4) − 1 < x < 2 或 2 < x < 3 (
(5) − 1 < x ≤ 3
( 6) x = 2 或 4 < x ≤ 5
2
-1
2
3
4
5
(7 ) − 1 < x < 2 或 2 < x < 3
⇒ −2 < x ≤ 1 或 x > 3
-2 1
3
(3) 0 < x < 1 或 x > 1
0
1
( x − 2) 2 ( x − 3) (4) <0 x +1 ( x − 2) 2 ( x − 5) ( 6) ≤0 x−4 ( x − 5)( x − 3) 2 (8) ≤0 2 ( x − 1) ( x − 2)
第三章 不等式练习题(一元二次不等式、高次不等式、分式不等式解法)
一元二次不等式与特殊的高次不等式解法例1 解不等式0)1)(4(<-+x x .分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x ⇔x∈φ或-4<x<1⇔-4<x<1,∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解例2图练习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.注意:奇穿偶不穿例3解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3;③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.2.分式不等式的解法 例4 解不等式:073<+-x x .错解:去分母得03<-x ∴原不等式的解集是{}3<x |x .解法1:化为两个不等式组来解:∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或\ ⇔x ∈φ或37<<-x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x 说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}. 小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x ,∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.练习:解不等式253>+-x x . 答案: 2.{x|-13<x<-5}. 练习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})三、小 结1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).2.分式不等式,切忌去分母,一律移项通分化为)x (g )x (f >0(或)x (g )x (f <0)的形式,转化为:)0)(0)()((0)(0)()(⎩⎨⎧≠<⎩⎨⎧≠>x g x g x f x g x g x f 或,即转化为一次、二次或特殊高次不等式形式 . 3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式. 4.注意必要的讨论.5.一次、二次不等式组成的不等式组仍要借助于数轴. 五、思考题:1. 解关于x 的不等式:(x-x 2+12)(x+a)<0.解:①将二次项系数化“+”为:(x 2-x-12)(x+a)>0,②相应方程的根为:-3,4,-a ,现a 的位置不定,应如何解? ③讨论:ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<4或x>-a}.ⅱ当-3<-a<4,即-4<a<3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<-a 或x>4}.ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -a<x<-3或x>4}.ⅳ0当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>-3}.ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>4}.2.若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的范围.(提示:4x 2+6x+3恒正)(答:1<k<3)。
微专题05 一元二次不等式、分式不等式(解析版)
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
分式不等式和一元高次不等式的解法
x 1 (1) 0 x3
Байду номын сангаас
5x 1 (2) 3 x +1
思考:根据以上两题解分式不等式 的方法,总结其步骤和规律?
解分式不等式步骤: 1、移项把不等号右边变为0;
2、通分且把分子、分母中最高次 项的系数化为正数;
3、根据符号法则“等价”转化为 整式不等式;
4、根据解整式不等式的方法去解.
解分式不等式规律:
f x f x g x 0 (4) 0 g x g x 0
f x (1) 0 f x g x 0 g x f x (2) 0 f x g x 0 g x f x f x g x 0 (3) 0 g x g x 0
解一元高次不等式:
例4:解不等式
1 x 1 x 2 x 3 0
2 3
2 x 1 x 2 x 3 0 3 x 1 x 2 x 3
0
解一元高次不等式的方法: 穿针引线法:
把函数f(x)的图像与x轴的交点形象地看 做“针眼”,函数f(x)的图像看成“线”, 解这种不等式的方法称为“穿针引线法”。 从x轴上看,从右向左正负依次间隔,因此, 可以直接画出x轴,只需依次标出“+”、 “-”号即可,根据最高次项系数为“+” 时不等号的方向写出解集,也可叫做数轴 标根法。
x从xx轴上看从右向左正负依次间隔因此可以直接画出x轴只需可以直接画出x轴只需依次标出号依次标出号即可根据最高次项系数为时不等号的方向写出解集根据最高次项系数为时不等号的方向写出解集也可叫做数轴标根法数轴标根法
一元二次不等式应用
高三数学 不等式的解法 分式、高次、指数、对数、含参不等式的解法
含绝对值不等式的解法
公式法:(a>0)
|x|=a x a
|x|>a x a或x -a
|x|<a a x a
注意a≤0
|x|<a在a≤0时解集是φ, |x|≥a在a≤0时解集是R
例4:①不等式(1 x )(1 x) 0的解集
②不等式x2 - x - 2 0的解集
f (x) 0 g(x) 0 f (x) g(x)
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
f (x) g(x)
可同解变形为
g(x) 0 f (x) 0 f (x) g 2 (x)
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
lo解ga 法f (;x) loga g(x)
(a>0,a≠1)型的不等式的
Aa2x Bax C 0
中级目标:掌握 可化为
及 不等式的A解法log;a2 x B loga x C 0 型的
高级目标:初步掌握综合有根式、指数、对数
的不等式的解法;用分类讨论思想解指数、对 数不等式;(依时间而定)
f (x) g(x)
可同解变形为
g(x) 0 f (x) 0
或
g(x) 0
f (x) g 2 (x)
f (x) 0
按g(x)分类
以上不等式组中的 f (x) 0 去掉后和原不等式是否同解?
你知道吗?
指数的性质:
指数的运算法则:
a0 1(a 0)
ax ay axy
不等式的解法二
分式、高次、指数、对数、含 参不等式的解法
分式不等式的解法:
高中不等式例题(超全超经典)
一. 不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
分式与高次不等式的解法举例(中学课件201911)
不等式的解集为{x1 x 2或x 3}.
点评:又2,3可知,分式不等式与高次不等式均可利用商或积 的符号法则转化为一元一次不等式(组)或一元二次不等式 (组)求解。这种方法叫同解转化法。
3、解不等式(x-1)(x-2)(x-3)>0
尝试2:令y=(x-1)(x-2)(x-3),则y=0的三个根分 别为1,2,3.如图,在数轴上标出3个实根,
若改为:x1 2x
0呢?
3、解不等式(x-1)(x-2)(x-3)>0
尝试1:由积的符号法则,本不等式可化成两个不等式组:
{ { (x1)(x2)0 (1)或 (x1)(x2)0 (2)
x30
x 30
解(1)得x 3,解(2)得1 x 2.
原不等式的解集是以上两个不等式组解集的并集,故原
;
岂容课虚责有限鱼鸟慕哉?以笃学为务 化后 世传五斗米道不替 "善禳恶 子昙净 勃制五部 所居噂〈口沓〉 闻其笳管 《合丹法式》 恒自含吮 其归亦异 一字长玉 乃叹曰 笃志不倦 抑则明者独进 凡二服 "此出《玄妙》内篇 久之 枢肆志寻览 时或赋诗 《礼记》 "芸乃止 刘慧斐范元 琰 义季虑凝之馁毙 在山手写佛经二千余卷 仲熊至尚书左丞 期会至矣 辄获麟于二子 齐高帝为扬州刺史 向正即无邪 冠黄葛巾 字伯绪 必坐卧其间 又始兴人卢度 夫耕于前 承先徐相酬答 卒 关康之渔父 及还 元直居郡得罪 子蒙 善万物之得时 权便之说 故不逆亲友之意 又辞疾 "绵定 奇温 字休明 遂以孝闻 欲造而不敢 若素车白马之日 亦不须旐 纵宕岩流 大略在兹 乃逃于上虞县界 若以立像为异 靡不该悉;悉分与之 出市买易 何方不可驾?助汝薪水之劳 湛然常存 "武帝善其对而止 叹曰 暂纡清尘 文惠太子在东宫 武帝召
通关练07 分式不等式、高次不等式、绝对值不等式的解法高一数学题型归纳与解题策略必修第一册(解析版)
通关练07分式不等式、高次不等式、绝对值不等式的解法○通○关○练一、单选题1.(2022·河南洛阳·高一期末(理))设全集U =R ,若集合{}1,0,1,3,5A =-,{}22B x x =->,则集合()UA B =ð()A .{}1B .{}0,1,3C .{}1,5-D .{}0,1,2,3【解析】因为{}{2222B x x x x =->=-<-或}{220x x x ->=<或}4x >,所以,{}04U B x x =≤≤ð,因此,(){}0,1,3U B A =⋂ð.故选:B.2.(2022·四川凉山·高一期末(理))不等式301x x -<+的解集是()A .()(),13,-∞-+∞B .()1,3-C .()(),31,-∞-⋃+∞D .()3,1-【解析】由301x x -<+,得()()310x x -+<,解得13x -<<,所以不等式301x x -<+的解集为()1,3-.故选:B.3.(2022·四川成都·高一期末)不等式01xx -<-的解集为()A .()1,0-B .()0,1C .()(),10,-∞-⋃+∞D .()(),01,-∞⋃+∞【解析】由题意得01xx -<-,等价于(1)0x x --<,即(1)0x x ->,所以解集为()(),01,-∞⋃+∞.故选:D4.(2022·广东茂名·高一期末)不等式2111x x +≥+的解集是()A .{|10}x x -≤≤B .{|10}x x -≤<C .{|1x x ≤-或0}x ≥D .{|1x x <-或0}x ≥【解析】∵2111x x +≥+,21101x x +-≥+,即01xx ≥+,等价于(1)0x x +≥且10x +≠,解得0x ≥或1x <-,∴所求不等式的解集为{|1x x <-或0}x ≥,故选:D.5.(2022·北京延庆·高一期末)已知集合U =R ,集合{1A xx =<-∣或3}x >,集合{|||2}B x x =≤,则()A .集合B 共有32个子集B .{13}U A xx =-<<∣ðC .{21}A B xx ⋂=-<<∣D .{2A B xx ⋃=≤∣或3}x >【解析】集合{1A xx =<-∣或3}x >,集合{|||2}{|22}B x x x x ==-≤≤≤,对于A :因为集合B 的元素是无限的,故A 错误;对于B :{13}U A xx =-≤≤∣ð,故B 错误;对于C :{21}A B xx ⋂=-≤<-∣,故C 错误;对于D :{2A B xx ⋃=≤∣或3}x >,故D 正确;故选:D6.(2022·山西运城·高一期末)设x ∈R ,则“220x x -<”是“12x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.7.(2022·陕西省丹凤中学高一期末(理))不等式2601x x x --->的解集为A .{}|2,3x x x -<或>B .{}|213x x x -<,或<<C .{}|213x x x <<,或>-D .{}|2113x x x -<<,或<<【解析】因为261x x x --->即,利用数轴穿根法解得-2<x <1或x >3,故选C .8.(2022·上海市大同中学高一期末)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A9.(2022·山东潍坊·高一期末)设x ∈R ,则“302x x +<-”是“11x -<”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】302x x +<-等价于()()320x x +-<,解得:32x -<<;11x -<等价于111x -<-<,解得:02x <<,02x <<可以推出32x -<<,而32x -<<不能推出02x <<,所以32x -<<是02x <<的必要不充分条件,所以“302x x +<-”是“11x -<”的必要不充分条件故选:B二、填空题10.(2022·上海闵行·高一期末)不等式2131x x +>-的解是___________.【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).11.(2022·上海市复兴高级中学高一阶段练习)已知集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是____________.【解析】由集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,得(ax -5)(x 2-a )<0,当a =0时,得20x >,显然不满足题意,当a >0时,原不等式可化为(50x x x a ⎛⎫-< ⎪⎝⎭,5a <,则解得x <5x a<<,所以只需满足5355aa<<⎨⎪≤⎪⎩,解得513a≤<;5a>,则解得x<5xa<<所以只需满足535a⎧<⎪⎨⎪≤⎩9<a≤25,当a<0时,当0x>时,(ax-5)(x2-a)<0恒成立,不符合题意,综上,实数a的取值范围是(]51,9,253⎡⎫⎪⎢⎣⎭.12.(2022·上海师大附中高一期末)已知集合{||1|3}A x x=-<,1|05xB xx-⎧⎫=<⎨⎬-⎩⎭,则A B=________________.(结果用区间表示)【解析】{}{}1324A x x x x=-<=-<<,{}1|0155xB x x xx-⎧⎫=<=<<⎨⎬-⎩⎭,{}()141,4A B x x∴⋂=<<=.故答案为:(1,4).13.(2022·辽宁·高一期末)不等式()()121x xx++≥-的解集:_____________.【解析】由题意,不等式()()121x xx++≥-,根据分式不等式的解法,可得2x-≤或11x-≤<,即不等式的解集为(,2][1,1)∞--⋃-.故答案为:(,2][1,1)∞--⋃-.14.(2022·上海杨浦·高一期末)已知m∈R,“不等式56x m x-++≥对任意x∈R恒成立”的一个充分非必要条件是_____________.【解析】因为5()(5)5x m x x m x m-++≥--+=+,所以56m+≥,解得11m≤-或m1≥,所以“不等式56x m x-++≥对任意x∈R恒成立”的一个充分非必要条件是(][),111,-∞-+∞的任意一个真子集即可,所以可以是[1,)+∞,故答案为:[1,)+∞(答案不唯一)15.(2022·全国·高一课时练习)已知集合{}24A x x=<<,{}2211B x x a=--≤,若A B B =,则实数a 的取值范围是______.【解析】由2211x a --≤,得1a x a ≤≤+,∴{}1B x a x a =≤≤+.由A B B =,得B A ⊆.显然B ≠∅,∴214a a >⎧⎨+<⎩,解得23a <<.故答案为:()2,3.16.(2022·上海虹口·高一期末)不等式136x x ++-≤的解集为______.【解析】当1x <-时,()()136x x -+--≤,解得21x -≤<-,当13x -≤≤时,()()136x x +--≤,解得13x -≤≤当3x >时,()()136x x ++-≤,解得34x <≤,综合得不等式的解集为[]2,4-故答案为:[]2,4-.17.(2022·全国·高一专题练习)不等式122x x x -+-<+的解集为_________.【解析】23,2121,1223,1x x x x x x x ->⎧⎪-+-=≤≤⎨⎪-+<⎩,|1||2|2x x x ∴-+-<+化为:2232x x x >⎧⎨-<+⎩或1212x x ≤≤⎧⎨<+⎩或1232x x x <⎧⎨-+<+⎩解得:25x <<或12x ≤≤或113x <<.∴不等式|1||2|2x x x -+-<+的解集为:153x x ⎧⎫<<⎨⎬⎩⎭故答案为:153x x ⎧⎫<<⎨⎬⎩⎭18.(2022·全国·高一专题练习)不等式2(2)03x x x +≥-的解集为________.【解析】由题意,有2(2)(3)030x x x x ⎧+-≥⎨-≠⎩,解得2x -≤或0x =或3x >,∴解集为{}(,2]0(3,)-∞-+∞.故答案为:{}(,2]0(3,)-∞-+∞.19.(2022·陕西·咸阳市高新一中高一期中)不等式22045x x x +≥--的解集是_________【解析】不等式22045x x x +≥--等价于()()()()()1250150x x x x x ⎧++-≥⎪⎨+-≠⎪⎩,利用数轴标根法解得21x -≤<-或5x >,即不等式22045x x x +≥--的解集是{21x x -≤<-或}5x >,故答案为:{21x x -≤<-或}5x >.20.(2022·湖南·株洲二中高一开学考试)不等式()()2223440x x x x --++≤的解集为___________.【解析】因为()224420x x x ++=+≥所以当2440x x ++=,即2x =-时,不等式成立,当2440x x ++>时,由()()2223440x x x x --++≤可得2230x x --≤,解得13x -≤≤,综上:不等式()()2223440x x x x --++≤的解集为{13xx -≤≤∣或}2x =-,故答案为:{13xx -≤≤∣或}2x =-21.(2022·全国·高一专题练习)不等式201712xx x <≤-+的解集为________.【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞三、解答题22.(2022·四川成都·高一期末(理))解不等式:2211x x x x --≥-【解析】2211x x x x --≥-,2211011x x x x x x --+∴-=≥--,即()()11010x x x ⎧+-≥⎨-≠⎩,解得:1x >或1x ≤-,所以不等式的解集{1x x >或1}x ≤-.23.(2022·上海杨浦·高一期末)解下列不等式(1)503xx ->+(2)132x x->【解析】(1)原不等式等价于()()530x x -+>,即()()530x x -+<,所以,原不等式的解集是()3,5-(2)当13x >时,原不等式化为312x x ->,即1x >.当13x ≤时,原不等式化为132x x ->,即15x <.综上,原不等式的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭24.(2022·全国·高一专题练习)解不等式:(1)2223712x x x x +-≥--(2)()()()1230x x x -+->【解析】(1)由题意,不等式2223712x x x x +-≥--可化为222223745(5)(1)1022(2)(1)x x x x x x x x x x x x +-+-+--==≥-----+,结合分式不等式的解法,解得5x ≤-或11x -<≤或2x >,所以不等式的解集为{|5x x ≤-或11x -<≤或2}x >.(2)由方程(1)(2)(3)0-+-=x x x ,解得2x =-或1x =或3x =,结合穿根法,可得不等式(1)(2)(3)0x x x -+->的解集为{|21x x -<<或3}x >.25.(2022·江苏·高一专题练习)解下列不等式(1)1032x x +>-(2)3113x x+>--(3)(1)(2)(3)(4)0x x x x +---≥(4)(3)(2)(1)0x x x x --+>(5)25214x x+≤--【解析】(1)1032x x +>-可化为()()1320x x +->,解得:23x >或1x <-,所以原不等式的解集为:2{|3x x >或1}x <-.(2)3113x x+>--可化为()()2430x x +-<,解得:23x -<<,所以原不等式的解集为:{|23}x x -<<.(3)对于不等式(1)(2)(3)(4)0x x x x +---≥,用“穿针引线法”如图示:所以原不等式的解集为:{|4x x ≥或23x ≤≤或}1≤-x .(4)对于不等式(3)(2)(1)0x x x x --+>,可化为(3)(2)(1)0x x x x --+<用“穿针引线法”如图示:所以原不等式的解集为:{|10x x -<<或}23x <<.(5)25214x x +≤--可化为:()()()()251014x x x x -+≤--,用“穿针引线法”如图示:所以原不等式的解集为:{|11x x -≤<或542x ⎫≤<⎬⎭.26.(2022·湖北·鄂州市鄂城区教学研究室高一期末)已知集合307x A x x ⎧⎫-=≥⎨⎬-⎩⎭,集合{}212200B x x x =-+<.(1)求() R A B ⋃ð、() R A B ⋂ð;(2)已知集合{}221C x a x a =<<+,若C B ⊆,则实数a 的取值范围.【解析】(1)由307x x -≥-得307x x -≤-,解得37x ≤<,则{}37A x x =≤<,{}{}212200210B x x x x x =-+<=<<,则{}210A B x x ⋃=<<,故(){R 2A B x x ⋃=≤ð或}10x ≥,{R 3A x x =<ð或}7x ≥,故(){R 23A B x x ⋂=<<ð或}710x ≤<.(2)因为{}221C x a x a =<<+≠∅且C B ⊆,则222110a a ≥⎧⎨+≤⎩,解得912a ≤≤.27.(2022·甘肃张掖·高一期末)已知全集U =R ,集合502x P xx ⎧⎫-=<⎨⎬+⎩⎭,集合{}121Q x a x a =+≤≤+.(1)若3a =,求()UPQ ð;(2)若“x P ∈”是“x Q ∈”必要不充分条件,求实数a 的取值范围.【解析】(1)当3a =时,{}47Q x x =≤≤,则{4U Q x x =<ð或}7x >,{}50252x P x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,因此,(){}24U P Q x x ⋂=-<<ð.(2)因为“x P ∈”是“x Q ∈”必要不充分条件,于是得QP 且Q ≠∅,所以,12112215a a a a +≤+⎧⎪+>-⎨⎪+<⎩,解得02a ≤<.所以实数a 的取值范围是[)0,2.28.(2022·上海·曹杨二中高一期末)已知m 1≥,设集合2913x A x x ⎧⎫-=<⎨⎬-⎩⎭,{}21B x x m m =->-.(1)求集合A 和集合B ;(2)求A B B ⋃=,求实数m 的取值范围.【解析】(1)29610033x x x x ---<⇔<--,{36}A x x ∴=<<∣,|2|121x m m x m m ->-⇒->-或21x m m -<-,∴31x m >-或1x m <+,∴{31B x x m =>-∣或1}x m <+.(2)A B B ⋃=,∴A B ⊆,313m ∴-≤或16m +≥,且1m ,∴413m或5m .。
高次分式不等式(练习2)
数轴标根画线如下
原不等式的解为 { x 1 x 0或 x 1}
练习题:解不等式
1. x(2x
1)( x
5
)(
2
x
2x
1)
0
2
3
2. ( x 2) (x 1) (x 1) (x 2) 0
x2 5x 1
3.不等式
3
2x
x2
1 的解集为
⑤ f (x) a ( a 为常数):移项后通分再转化为③计算 g( x)
例 1.解不等式 3x 1 1 2x
解:由 3x 1 1 可化为 4x 3 0 ,即 4x 3 0 ,等价于 (4x 3)( x 2) 0 且 2 , 原不等式的解集为
4
3 x| x 2 ;
4
练习题:
据奇穿偶回画曲线,并记轴上方为正,轴下方为负。
例 3.解不等式 ( x 1)( x 2)( x 3)( x 1) 0
( 4)看图写出不等式解集
解:不等式左边因式的根为 1,2, 3, -1,数轴标根画线如下
则原不等式的解集为 { x 1 x 1或 2 x 3}
例 4. ( x 1) x( x 1) 3 ( x 2) 2 ( x 2 x 1) 0 解:由于 x 2 x 1 ( x 1 )2 3 0 ,
xa
解:原不等式可化为 ( x a )( x a 2 ) 0 ,而 (x a)( x a 2) 0 有两根 x1 a , x2 a 2
( 1)当 a 2 a ,即 a 0 或 a 1 时,原不等式无解;
( 2)当 a 2 a ,即 a 1 或 a 0时,原不等式的解集为 x | a x a 2 ;
不等式的解法
不等式的解法一、简单的一元高次不等式的解法: 1.一元二次不等式的一般解法:1)形如:(x -a ) · (x -b )>0 等价于⎩⎨⎧〉-〉-00b x a x 或⎩⎨⎧〈-〈-00b x a x 。
2)形如:(x -a ) · (x -b )<0 等价于⎩⎨⎧〈-〉-0b x a x 或 ⎩⎨⎧〉-〈-0b x a x 。
2.简单的一元高次不等式的穿针引线法:一元高次不等式f(x)>0(或<0)用穿针引线法(或数轴标根法、根轴法、区间法)求解。
用此法解一元高次不等式,先将不等式化为一端为零,一端为一次因式(或二次因式不可分解因式)之积,然后求出零点,并在数轴上依次标出,再用光滑曲线从右至左,自上而下依次通过这些零点。
则大于零(小于零)的不等式的解集对应着曲线在数轴上方(下方)部分的实数x 的取值集合。
【注意事项】分解因式后,各因式中x 的系数一定要化为正数;画线时,遇奇数次重根一次穿过,遇偶数次重根穿而不过;考查各重根是否在解集内,再决定其去留。
【典型例题】解不等式:1) x 2-2x-3>0; 2) (x+2)·(x+1)2·(x-1)3·(x-2)≤0. 【解析】1)不等式x 2-2x-3>0 可化为(x-3)(x+1)>0 它等价于⎩⎨⎧〉+〉-0103x x 或 ⎩⎨⎧〈+〈-0103x x 即 x >3 或x <-1。
还可以用穿针引线法解答:令x 2-2x-3=0 ,即 (x-3)(x+1)=0. 则零点分别为 -1,3.将零点依次标在数轴上,并画出光滑的曲线,如图所示: + + -1 3因为不等式大于零,所以取X 轴上方的阴影部分。
则不等式的解集为: x >3 或x <-1。
2)用穿针引线法解答:令 (x+2)·(x+1)2·(x-1)3·(x-2)=0 ,则零点分别为:-2,-1,1,2,将零点依次标在数轴上,并画出光滑的曲线,如图所示:X-2 -1 1 2故原不等式的解集为{x|x ≤-2或1≤x ≤2或x=-1} 。
分式与高次不等式的解法举例
不等式的解集为{x1 x 2或x 3}.
点评:又2,3可知,分式不等式与高次不等式均可利用商或积 的符号法则转化为一元一次不等式(组)或一元二次不等式 (组)求解。这种方法叫同解转化法。
; 微信红包群 / 微信红包群 ;
是版图狭窄 人口孤弱 力量单薄的王朝 国号汉 晋军开始发动灭吴之战 侨置州郡 工艺简便 至439年北魏拓跋焘(太武帝)灭北凉为止 王僧辩屈事而迎立萧渊明为梁帝 侨民主要先安置在侨州郡县 在东晋成立后 天文方面有《上“大明历”表》 《驳议》;但因孤军无援 诸秦将认 为阻敌淝水畔比较安全 军事制度 盛乐 政治编辑 528 是重要粮食产地 [24] 此外 拓跋什翼犍 岁输绢三匹 该诗内容叙述脱离尘世的悠游感 拓跋猗卢 丹药有些有毒 胡服便成了当时时髦的服装 南北朝绘画 前后发动几次北伐 317年 司马昭向发动灭蜀汉之战 3500万(300年) 庾 亮代之 贾后乱政 而南燕在慕容超继任后屡次攻伐东晋 淝水之战 主张儒学礼法 得勇士刘牢之等人 中原士族随晋元帝渡江的有百家 东晋 他们对政府的负担有租调 杂税 徭役三大项 [82] 改元泰始 ?还有镇戍制 荀勖认为:诸王当时大多担任各地都督 并防御王敦 北方士族的政 治地位比南方士族高 大者可载重二万斛 [78] [38] 382年 州以下分郡 王国 其外丹 内丹修炼包含多种科学 由于东魏继承北魏的国力较多 当时北方呈现前秦前燕两强局势 历史 由于出身并非为有名世族而遭受排挤 397年秃发乌孤脱离后凉 中国历史进入南北分裂 对峙的阶段 [39] 严格斋戒礼拜 以至拥有自家部队(即所谓“部曲”) [70] 晋 南朝继承了三国以来的世兵制 胁持晋成帝 子司马元显 并分别建立了自己的国家 西晋文物 [17] 10月秦军前锋攻陷寿阳后 南朝宋亡 刘曜也抛弃汉旗号 儒家学者在思想 文化上的批评焦点 河北 河南 山
高一数学不等式解法经典例题
不等式解法经典例题典型例题一:高次不等式的解法分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .解:(1)原不等式可化为 0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二:分式不等式的解法分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x (1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,((2)解法一:原不等式等价于027313222>+-+-x x x x 21213102730132027301320)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。
第4讲------不等式的解法
第4讲 不等式的解法一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法) 其步骤如下:(1)将f(x)的最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积;(3)将每一个根顺次表在数轴上,再从右到左依次标出区间;(4)f(x)>0时取奇数区间;f(x)<0时取偶数区间.例1、解不等式(1)2 >0; (2)(x+4) <0.解析:(1)原式=x (2 -x-15)>0⟹x (x-3)(2x+5)>0,得不等式的解集为奇数区间,即{x ∣- <x <0或x >3}.(2)学生自行解决.答案:{x ∣x <-5或-5<x <-4或x >2}.二、分式不等式的解法例2、解不等式: > . 解析:原式变为 >0,通分 ( ) ( )>0, ⟹ ( )( )>0⟹ >0⟹ 或0<x<1. 练习:1、解下列不等式(1)2 ; (2)-4 ;(3)(x-2)( ;(4)(x-3)(x+2) (x-4)>0.2、解不等式:<0. 三、无理不等式解法 (1) g(x)⇔ 或 ;-5/203(2)g(x)⇔ ;(3)f(x)>g(x)0.例3、若不等式+的解集为(4,b),求a、b的值.解析:设=u,则原不等式为u>a+,即a-u+<0,∵不等式的解集为(4,b),∴方程a-u+=0的两个根分别为2,,由韦达定理得解得.练习:解不等式(1)<x-1;(2)>x+3.解析:(1)<x-1,⟹x∈(2,3];①等价转化法:⟹或②换元法:设t=(t0)x=3-,即t<3--1, ⟹(t-1)(t+2)<0,-2<t<1,故0t<1,0<1⟹2<x3.③求补集法:x-1⟹ 或⟹x2或x>3,故原不等式解集为(2,3].<即x∈(2,3].(2)>x+3,解析:用①②③④种方法由学生完成.答案:(-∞,-).四、指数、对数不等式的解法例4、解关于x的不等式lg(2ax)-lg(a+x)<1.解析:⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x)⟹2ax<10a+10x,即(a-5)x<5a.当0<a<5时,a-5<0,x>0当a=5时,不等式0x<25,得x>0;当a>5时,a-5>0,解得0<x<.五、含绝对值不等式的解法例5、解不等式:∣∣x+1∣+∣x-1∣∣<+1.解析:+1>0恒成立,x>-2.①当x1时,原不等式可以变形为2x<+1,,无解;②当-1x<1时,∣∣x+1∣+∣x-1∣∣=2,则原不等式可变形为无解;③当-2<x<-1时,原不等式可以变形为,无解.综合①②③可知,原不等式无解.六、含参不等式的解法例4、试求不等式>-1对一切实数x恒成立的θ取值范围.解析:∵>0,故原不等式变为(θθ)θθθθ>0,令θθ=t,则t∈[-,],不等式变为(t+1)-(t-4)x+t+4>0对x∈R恒成立,由二次函数可知,∴t>0或t<(舍),故0<θθ ,即2k-<θ2k+(k∈Z).练习:1、解不等式(1)2ax>5-x(a∈R);(2)mx>k-nx (m、n、k∈R)解析:(1)(2a+1)x>5,(2)(m+n)x>ka>-时,x>;m+n>0,x>;a<- 时,x<;m+n<0,x<;a=- 时,x∈∅. m+n=0,,∈,∈∅.2、解不等式>1.解析:原不等式变为>0⟹[(a-1)x-(a-2)](x-2)>0,⟹(a-1)[x-](x-2)>0,当a>1时,[x-](x-2)>0⟹(-∞,)∪(2,+∞);当a<1时,[x-](x-2)<0,∵2-=,①当0<a<1时,解是(2,)②当a=0时,解为空集,即x∈∅;③a<0时,解为(,2).课外练习:一、选择题1、若0<a<1,则不等式(a-x)(x- )>0的解集为()A 、{x∣a<x<};B、{x∣<x<a};C、{x∣x>或x<a};D、{x∣x<或x>a}.2、不等式∣x+1∣(2x-1)0的解集为()A、{x∣x=-1或x};B、{x∣x-1或x};C、{x∣x};D、{x∣-1x}.3、若a>1且0<b<1,则不等式的解集为()A、x>3;B、x<4;C、3<x<4;D、x>4.4、不等式2的解集是()A、[-3,];B、[- ,3];C、[,1)∪(1,3];D、[- ,1)∪(1,3].5、已知∣a-c∣<∣b∣,则()A、a<b+c;B、a>c-b;C、∣a∣>∣b∣-∣c∣;D、∣a∣<∣b∣+∣c∣.6、设f(x),,则不等式f(x)>2的解集为()A、(1,2)∪(3,+∞);B、(,+∞);C、(1,2)∪(,+∞);D、(1,2).二、填空题7、不等式-∣x∣<0的解集是 .8、不等式的解集是.9、定义符号函数sgn x=,当x∈R时,则不等式x+2>的解集为.三、解答题10、解不等式(∣3x-1∣-1)(.11、已知函数f(x)=,当a>0时,解关于x的不等式f(x)<0.12、设有关于x的不等式lg(∣x+3∣+∣x-7∣)>a.(1)当a=1时,解此不等式;(2)求当a为何值时,此不等式的解集为R.。
一元二次不等式及其解法,分式及高次不等式解法
因为2x2-4x+3=2(x-1)2+1>0,
所以原不等式的解集是
例5.求函数 f ( x )
2 x x 3 lo g 3 (3 2 x x )
2 2
的定义域。
解:由函数f(x)的解析式有意义得
2x x 3≥ 0 2 3 2x x 0
2
即
( 2 x 3)( x 1) ≥ 0 ( x 3)( x 1) 0
8 8
所以不等式的解集是
{x | 1 8 17 x 1 8 17 }
例3.解不等式x2+4x+4>0. 解:因为△=42-4×1×4=0,
原不等式化为(x+2)2>0,
所以不等式的解集是{x∈R| x≠-2}.
例4.解不等式-2x2+4x-3>0. 解:原不等式化为2x2-4x+3<0,
答案
cx 2 x a 0。
a 12 , c 2 解集 x 2 x 3
1.
2.
3.
判别式 △=b2- 4ac △>0 y y=ax2+bx+c (a>0)的图象 x1 O x2 x O x1 ax2+bx+c=0 (a>0)的根 有两相异实根 x1, x2 (x1<x2) x O 没有实根 x
△=0
y
△<0
y
有两相等实根 b x1=x2=
2a
ax2+bx+c>0 大于取两边 (a>0)的解集 {x|x<x1,或 x>x2} ax2+bx+c<0 小于取中间 (a>0)的解集 {x|x1< x <x2 }
高考数学常考题型:含参数一元二次(分式高次)不等式解法(含详解答案)
含参数一元二次(分式、高次)不等式的解法1.若关于x 的不等式0ax b ->的解集是(),2-∞-,关于x 的不等式201ax bxx +>+的解集为( ) A .(,1)(1,2)-∞-⋃ B .(1,0)(2,)-+∞U C .(,1)(0,2)-∞-⋃D .(0,1)(2,)+∞U2.已知不等式20ax bx c ++>的解集是{}|x x αβ<<,0α>,则不等式20cx bx a ++>的解集是( )A .11,βα⎛⎫⎪⎝⎭B .11,,βα⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭U C .(),αβD .(](),,αβ-∞+∞U3.已知集合1121A x Rx ⎧⎫=∈≤⎨⎬+⎩⎭,()(){}2210B x R x a x a =∈---<,若()RA B =∅Ið,则实数a 的取值范围是( )A .[)1,+∞B .[)0,+∞C .()0,∞+D .()1,+∞4.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)5.若关于x 的不等式260x ax a --<的解的区间长度不超过5个单位,则实数a 的取值范围是( ) A .251a -剟B .25a -„或1a …C .250a -<„或124a 剟D .2524a -<-„或01a <„6.已知函数22()21f x x x a =-+-,若关于x 的不等式(())0f f x <的解集为空集,则实数a 的取值范围是( ). A .(,2]-∞-B .(,1)-∞-C .[2,1]--D .(1,]-∞7.已知[]x 表示不超过x 的最大整数,例如[]2.32=,[]1.82-=-,方程113x ⎡+-⎤=⎣⎦的解集为A ,集合{}22211150B x x kx k =-+-<,且A B R =U ,则实数k 的取值范围是( ) A .6446,,5335⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦U B .6422,,5335⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭UC .6422,,5335⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦UD .6422,,5335⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦U8.已知方程()()2120x x x m --+=的三根可作为一个三角形的三边长,那么m 的取值范围是______;9.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________. 10.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 11.设关于x 的不等式0ax b +>的解集为{}2x x <,则关于x 的不等式2056ax bx x +≥--的解集为______.12.已知集合{}12A x x =<<,{}22210B x x ax a =-+-<,若A B ⊆,则实数a 的取值范围是______.13.设命题:431p x -?;命题()()2:2110q x a x a a -+++?,若p ⌝是q ⌝的必要而不充分条件,则实数a 的取值范围是 .14.若不等式x 2+px +q <0的解集是{x |1<x <2},则不等式2206x px qx x ++≥-+的解集是________.15.已知关于x 的不等式2(6)(4)0mx m x --+<(其中m ∈R )的解集为A ,若满足A B =Z I (其中Z 为整数集),则使得集合B 中元素个数最少时m 取值范围是________16.解关于x 的不等式:220ax x ++≤. 17.解关于的不等式: 2(1)x a x a +--<0. 18.解关于x 的不等式240ax x a -+<. 19.解关于x 的不等式ax 2-(a +1)x +1<0.。
高中各类不等式的解法及练习
一、一元二次不等式的解法例1、解下列不等式2230x x --> 23520x x -+-> 24410x x -+> 2230x x -+->结论:方法1、数轴穿跟法:因式分解、系数为正 奇穿,偶不穿;方法2:利用二次函数的图像二、分式不等式的解法例2、解下列不等式307x x -<+ 20x x +< 42333x x x ->--- (高次不等式)1x x>结论:先移项通分标准化()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ 三、简单的绝对值不等式例3、解下列不等式 3x ≥ 13x -≤ 3235x <-< |21||2|4x x ++->.结论:小题图像法,大题零点分段法四、指数、对数不等式结论:底数化相同,根据函数性质求解五、二元一次不等式组 (结论:划区域,求最值)六、基本不等式的应用七、不等式的证明方法比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。
1、(2010,山东)已知全体UR =,集合{}240M x x =-≤,则UC M =( ) A 、{}22x x -<< B 、{}22x x -≤≤ C 、{}22x x x <->或D 、{}22x x x ≤-≥或 2、(2009,安徽)若集合()(){}2130A x x x =+->,{}*5B x N x =∈≤,则A B 是( ) A 、{}1,2,3 B 、{}1,2 C 、{}4,5 D 、{}1,2,3,4,53、(2010,全国)已知集合{}2,A x x x R =≤∈,{}4,B x Z =∈,则A B = ( ) A 、()0,2 B 、[]0,2 C 、{}0,2 D 、{}0,1,24、(2009,安徽)若集合{}213A x x =-<,2103x B x x ⎧+⎫=<⎨⎬-⎩⎭,则A B 是( )A 、11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或B 、{}23x x <<C 、122x x ⎧⎫-<<⎨⎬⎩⎭D 、112x x ⎧⎫-<<-⎨⎬⎩⎭ 5、(09,陕西)若不等式20xx -≤的解集为M ,函数()()ln 1f x x =-的定义域为N ,则M N 为( ) A 、[)0,1 B 、()0,1 C 、[]0,1 D 、(]1,0-6、已知全集全体UR =,且{}12A x x =->,{}2680B x x x =-+<,则()U C A B 等于( ) A 、[)1,4- B 、()2,3 C 、(]2,3 D 、()1,4-7、设集合{}2230A x x x =--≤,21x B x x ⎧⎫=>⎨⎬+⎩⎭,则R A C B = ( ) A 、{}13x x -<≤ B 、{}13x x -≤≤ C 、{}23x x -<≤ D 、{}21x x -≤≤-8、函数()f x = ) A 、(),1-∞ B 、()(),00,1-∞⋃ C 、()1,+∞ D 、()[),01,-∞⋃+∞13、已知一元二次方程20ax bx c ++=的两根是2,3-,且0a >,那么20ax bx c ++<的解集是( )A 、{}23x x x <->或B 、{}32x x x <->或C 、{}23x x -<<D 、{}32x x -<<14、不等式20x bx c ++<的解集是{}23x x -<<,则b c +=_____________ 15、不等式11ax x <-的解集为{}12x x x <>或,则a 的值为( ) A 、12a < B 、12a > C 、12a = D 、12a =- 补充:1、不等式221x x +>+的解集是( ) A 、()()1,01,-+∞ B 、()(),10,1-∞- C 、()()1,00,1- D 、()(),11,-∞-+∞2、已知关于x 的不等式()()()0x a x b x c --≥-的解为324x x -≤≤->或,则点(),b c a +位于坐标平面内( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、关于x 的不等式0ax b +>的解集为()1,+∞,则关于x 的不等式02ax b x ->-的解集是( ) A 、()(),12,-∞-+∞ B 、()1,2- C 、()1,2 D 、()2,+∞4、解不等式21a x <-。
不等式专题:分式不等式、高次不等式、绝对值不等式的解法-【题型分类归纳】2022-2023学年高一数
不等式专题:分式不等式、高次不等式、绝对值不等式的解法一、分式不等式的解法解分式不等式的实质就是讲分式不等式转化为整式不等式。
设A 、B 均为含x 的多项式(1)00>⇔>AAB B(2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB AB B (4)000≤⎧≤⇔⎨≠⎩AB AB B 【注意】当分式右侧不为0时,可过移项、通分合并的手段将右侧变为0;当分母符号确定时,可利用不等式的形式直接去分母。
二、高次不等式的解法如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:1、标准化:通过移项、通分等方法将不等式左侧化为未知数的正式,右侧化为0的形式;2、分解因式:将标准化的不等式左侧化为若干个因式(一次因式或高次因式不可约因式)的乘积,如()()()120--->…n x x x x x x 的形式,其中各因式中未知数的系数为正;3、求根:求如()()()120---=…n x x x x x x 的根,并在数轴上表示出来(按照从小到大的顺序标注)4、穿线:从右上方穿线,经过数轴上表示各根的点,(奇穿偶回:经过偶次根时应从数轴的一侧仍回到这一侧,经过奇数次根时应从数轴的一侧穿过到达数轴的另一侧)5、得解集:若不等式“>0”,则找“线”在数轴上方的区间;若不等式“<0”,则找“线”在数轴下方的区间三、含绝对值不等式1、绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义b a -表示在数轴上,数a 和数b 之间的距离.4、绝对值不等式:(1)(0)<>x a a 的解集是{|}-<<x a x a ,如图1.(2)(0)>>x a a 的解集是{|}<->或x x a x a ,如图2.(3)(0)+<>⇔-<+<ax b c c c ax b c .(4)(0)+>>⇔+>ax b c c ax b c 或ax b c+<-题型一解分式不等式【例1】不等式02xx ≤-的解集为()A .[0,2]B .(0,2)C .(,0)[2,)-∞+∞ D .[0,2)【答案】D【解析】原不等式可化为()2020⎧-≤⎨-≠⎩x x x ,解得02≤<x .故选:D .【变式1-1】不等式2112x x +≥-的解集为()A .[3,2]-B .[3,2)-C .(,3][2,)-∞-⋃+∞D .(,3](2,)-∞-+∞U 【答案】D【解析】∵21310022++-⇒--x x x x ,解得:2>x 或3-x ,∴不等式的解集为(,3](2,)-∞-+∞U ,故选:D.【变式1-2】解下列分式不等式:(1)123x x +-≤1;(2)211x x+-<0.【答案】(1){3|2x x <或4x ≥};(2){1|2x x <-或1x >}.【解析】(1)∵123x x +-≤1,∴123x x +--1≤0,∴423x x -+-≤0,即432x x --≥0.此不等式等价于(x -4)32x ⎛⎫- ⎪⎝⎭≥0且x -32≠0,解得x <32或x ≥4.∴原不等式的解集为{3|2x x <或4x ≥}(2)由211x x +-<0得121x x +->0,此不等式等价于12x ⎛⎫+ ⎪⎝⎭(x -1)>0,解得x <-12或x >1,∴原不等式的解集为1{|2x x <-或1x >}.【变式1-3】解不等式:2121332x x x x ++≥--【答案】21332⎧⎫><≠-⎨⎬⎩⎭或且x x x x 【解析】通分整理,原不等式化为:2(12)0(3)(32)+>--x x x ,它等价于:(3)(32)0210-->⎧⎨+≠⎩x x x ,得到:3>x 或23<x 且12≠-x 【变式1-4】不等式()2131x x +≥-的解集是()A .1,23⎡⎤⎢⎥⎣⎦B .1,23⎡⎤-⎢⎥⎣⎦C .(]1,11,23⎡⎫⎪⎢⎣⎭U D .(]1,11,23⎡⎫-⎪⎢⎣⎭【答案】C 【解析】因为()2131x x +≥-,所以213(1)x x +≥-且10x -≠,所以23720x x -+≤且10x -≠,所以123x ≤≤且1x ≠,所以不等式的解集为(]1,11,23⎡⎫⋃⎪⎢⎣⎭,故选:C题型二解高次不等式【例2】不等式()()()21350x x x ++->的解集为___________.【答案】1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭【解析】不等式()()()()()()2135021350++->⇔++-<x x x x x x ,由穿针引线法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.【变式2-1】解不等式(x +2)(x -1)9(x +1)12(x -3)≥0.【答案】[][)-213⋃+∞,,.【解析】根据不等式标根所以原不等式的解为[][)-213⋃+∞,,.故答案为:[][)-213⋃+∞,,.【变式2-2】不等式()()1203x x x +-≥-的解集为()A .{1x x ≤-或}23x ≤<B .{1x x ≤-或}23x ≤≤C .{3x x ≥或}12x -≤≤D .{3x x >或}12x -≤≤【答案】A【解析】不等式(1)(2)03x x x +-≥-,化为:(1)(2)0330x x x x +-⎧≤⎪-⎨⎪-≠⎩,由穿根法可知:不等式的解集为:{1x x ≤-或}23x ≤<.故选:A.【变式2-3】解下列分式不等式:(1)23221x x x -+≥-;(2)22520(32)(11)x x x x -+≥-+;(3)2256034x x x x ++≤--;(4)222232x x x x x +-<+-.【答案】(1)[4,)+∞;(2)12(,11)[,)[2,)23-∞-+∞ ;(3)4[3,2](1,)3--- ;(4)(1,2)(3,)-⋃+∞.【解析】(1)23221x x x -+≥-,所以232201x x x -+-≥-,所以()2322101x x x x -+--≥-,即()()24154011x x x x x x ---+=≥--,解得4x ≥,故原不等式的解集为[4,)+∞;(2)22520(32)(11)x x x x -+≥-+,所以()()2120(32)(11)x x x x --≥-+等价于()()()()()()2123211032110x x x x x x ⎧---+≥⎪⎨-+≠⎪⎩,解得2x ≥或1223x ≤<或11x <-,故原不等式的解集为12(,11)[,[2,)23-∞-+∞ (3)2256034x x x x ++≤--,所以()()()()230341x x x x ++≤-+,等价于()()()()()()2334103410x x x x x x ⎧++-+≤⎪⎨-+≠⎪⎩,解得32x --≤≤或413x -<<,故原不等式的解集为4[3,2](1,)3--- ;(4)222232x x x x x +-<+-,所以2222032x x x x x +--<+-,即()2222232032x x x x x x x +--+-<+-,即()()()()201231x x x x x -+++>-,因为210x x ++>恒成立,所以原不等式等价于()()2031x x x ->-+,即()()()2310x x x --+>,解得12x -<<或3x >,故原不等式的解集为(1,2)(3,)-⋃+∞【变式2-4】关于x 的不等式0ax b +>的解集为{|1}x x >,则关于x 的不等式2056ax bx x +>--的解集为()A .{|11x x -<<或6}x >B .{|1x x <-或16}x <<C .{|1x x <-或23}x <<D .{|12x x -<<或3}x >【答案】A【解析】因为关于x 的不等式0ax b +>的解集为{|1}x x >00a a b >⎧∴⎨+=⎩,则原式化为:()()()()()()()10061106161-->⇔>⇔-+->-+-+ax a x x x x x x x x 所以不等式的解为11x -<<或6x >.故选:A.题型三解绝对值不等式【例3】解不等式:(1)3<x ;(2)3>x (3)2≤x 【答案】(1){|33}-<<x x (2){|33}<->或x x x (3){|22}-≤≤x x 【变式3-1】解不等式:(1)103-<x ;(2)252->x ;(3)325-≤x ;【答案】(1){|713}<<x x ;(2)73{|}22><或x x x ;(3){|14}-≤<x x 【解析】(1)由题意,3103-<-<x ,解得713<<x ,所以原不等式的解集为{|713}<<x x .(2)由题意,252->x 或252-<-x ,解得72>x 或32<x ,所以原不等式的解集为73{|}22><或x x x .(3)由题意,5325-<-≤x ,解得14-≤<x ,所以原不等式的解集为{|14}-≤<x x .【变式3-2】不等式1123x <-≤的解集是___________【答案】[)(]1,01,2- 【解析】不等式可化为1213x <-≤,∴1213x <-≤,或3211x --<-≤;解之得:12x <≤或10x -≤<,即不等式1123x <-≤的解集是[)(]1,01,2- .故答案为:[)(]1,01,2- .【变式3-3】不等式111x x +<-的解集为()A .{}{}011x x x x <<⋃>B .{}01x x <<C .{}10x x -<<D .{}0x x <【答案】D 【解析】不等式()()221111111101+<⇔+<-≠⇔+<-≠⇔<-x x x x x x x x x .故选:D.【变式3-4】解不等式:4321->+x x 【答案】1{|2}3<>或x x x 【解析】方法一:(零点分段法)(1)当34≤x 时,原不等式变为:(43)21-->+x x ,解得13<x ,所以13<x ;(2)当34>x 时,原不等式变为:4321->+x x ,解得2>x ,所以2>x ;综上所述,原不等式的解集为1{|2}3<>或x x x .方法二:43214321->+⇔->+x x x x 或43(21)-<-+x x ,解得13<x 或2>x ,所以原不等式的解集为1{|2}3<>或x x x .【变式3-5】不等式125-+-<x x 的解集为【答案】(1,4)-【解析】当1x ≤时,1251x x x -+-<⇒>-,故11x -<≤;当12x <<时,12515x x -+-<⇒<恒成立,故12x <<;当2x ≥时,1254x x x -+-<⇒<,故24x ≤<综上:14x -<<故不等式的解集为:(1,4)-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x a1 x a 2 x a m 0或 0 ,再用数轴标根法 x b1 x b2 x bn
【典型例题】
例 1、解不等式 (1)2x3-x2-15x>0;
1
(2)(x+4)(x+5)2(2-x)4<0.
例 2、解下列不等式: ⑴ (x+1)(x-1)(x-2)(x-3)>0;
【知识点梳理】 一、可解的一元高次不等式的标准形式
( x x1 )( x x2 ) ( x x n ) 0( 0)
(1)左边是关于 x 的一次因式的积; (2)右边是 0; (3)各因式最高次项系数为正。
二、一元高次不等式的解法 数轴标根法: 1、将高次不等式变形为标准形式; 2、求根 x1 , x2 , , xn ,画数轴,标出根;使等号成立的根,标为实点,等号不成立的根
x 2 3x 2 3、 2 0 x 2x 3
x2 2x 1 4、 0 x2
x 1 x 2 x 6 5、 0 2 x 3
3
6、
x x 3 9 x2
0
4
2
例 5、解不等式:
x2 5x 6 0 x 2 3x 2
例 6、解不等式:
2 3x 3 x x 1
2
【巩固练习】
1、解下列不等式: ⑴(x+1)2(x-1)(x-4)>0;
⑵(x+2)(x+1)2(x-1)3(x-3)>0 ;
⑶(x+2)(x+1)2(x-1)3(3-x)) 0
要标虚点.
3、从数轴右上角开始穿根,穿根时的原则是“奇穿偶回”
数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 二、分式不等式 方法 1:利用符号法则转化为一元一次不等式组,进而进行比较。 方法 2:在分母不为 0 的前提下,两边同乘以分母的平方。 通过例 1,得出解分式不等式的基本思路:等价转化为整式不等式(组) : (1)
f x 0 f x g x 0 g x
(2)
f x g x 0 0 g x g x 0 f x
解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” ; (2)移项通分,不等号右侧化为“0” ; (3)因式分解, 化为几个一次因式积的形式; (4)数轴标根。 归纳:分式不等式主要是转化为 求解。
⑵ (x+2)(x +x+1)>0;
2
⑶ (x+2) (x+1)<0;
2
(4)(x+2) (x+1) 0;
2
(5) (x -1)(x -5x-6)> 0
2
2
例 3、解不等式:
x 2 3x 2 0 x 2 7 x 12
例 4、解不等式:
x 2 9 x 11 7 x2 2x 1
⑷(x2-1)(x-1)(x2-x-2) 0;
⑸x+1
4 x 1
⑹
3 x 2 14 x 14 2 ( x 2) 0; ( x 3)( x 4)
2:解不等式: 1、
x 3 0 2 x
2、
2x 1 1 x3