大学物理实验示波器实验报告

合集下载

(2023)大学物理实验示波器实验报告示波器实验数据(一)

(2023)大学物理实验示波器实验报告示波器实验数据(一)

(2023)大学物理实验示波器实验报告示波器实验数据(一)实验报告:大学物理实验示波器实验数据实验目的•了解示波器的基本原理•掌握示波器的操作方法•学会使用示波器测量电路的波形实验器材•示波器•电源•信号发生器•电阻、电容、电感等元件实验原理示波器是一种用于观测信号波形的电子仪器。

其基本原理是将观测电路中的信号通过元件转换成一定的电压或电流,再将其显示在示波器的屏幕上。

在实验中,我们需要使用信号发生器产生不同频率、不同幅度的正弦波信号,通过示波器观测电路中信号的波形,进而分析电路的性质。

实验步骤与记录1.将电阻、电容、电感等元件按照电路图进行连接,并接入电源。

2.使用信号发生器产生5 Vp-p、1 kHz的正弦波信号,接入电路中。

3.调节示波器的控制开关,使屏幕正常显示波形。

4.调节示波器的扫描开关,使波形填满屏幕。

5.根据示波器屏幕上的刻度,测量电路中信号的峰峰值、有效值、频率等参数,并记录数据。

实验结果与分析经过测量,我们得到了以下数据: * 信号峰峰值:9.8 V * 信号有效值:3.3 V * 信号频率:1.01 kHz根据以上数据,可以计算出电路中的电阻、电容、电感等参数,进而分析电路的特性和工作原理。

实验结论本次实验通过使用示波器测量电路中的信号波形,了解了示波器的基本原理和操作方法。

同时,我们也成功掌握了电路测量的方法和技巧,为今后的学习和实践打下了基础。

实验注意事项与改进意见1.在进行实验前,应仔细阅读实验指导书,了解实验原理和操作方法。

2.在连接电路时,应注意元件的极性和接线方式,以免损坏元件或影响实验结果。

3.在调节示波器时,应按照操作手册的要求进行,不要随意更改参数,以免影响实验结果。

4.在测量信号参数时,应使用恰当的测量仪器,并注意测量误差的控制。

5.在实验中如遇到问题,应及时向指导老师请教,并进行必要的实验改进。

实验心得体会本次实验是一次非常好的实践机会,通过亲身操作和实验记录,我们进一步了解了示波器的原理和电路测量的方法。

最新大学物理实验——示波器的使用实验报告.

最新大学物理实验——示波器的使用实验报告.

最新大学物理实验——示波器的使用实验报告.实验目的:1. 熟悉示波器的基本结构和工作原理。

2. 掌握使用示波器观察和分析不同类型电信号的方法。

3. 学习测量电信号的基本参数,如幅度、周期、频率和相位差。

实验仪器:1. 示波器(型号:DSO-XXXXX)2. 函数信号发生器3. 电阻、电容等基本电子元件4. 电烙铁及焊接工具5. 电源实验步骤:1. 首先,将示波器接通电源,并进行预热。

2. 打开函数信号发生器,设置所需的频率和幅度,产生标准电信号。

3. 使用探头将函数信号发生器的输出连接到示波器的输入端。

4. 调整示波器的垂直和水平控制钮,使屏幕上显示清晰的波形。

5. 观察并记录波形的幅度和周期,使用示波器的内置测量工具计算信号的频率。

6. 改变函数信号发生器的输出频率和幅度,重复步骤4和5,观察不同参数下的波形变化。

7. 通过串联和并联电阻、电容等元件,生成复杂的电路,观察示波器上显示的波形变化。

8. 实验结束后,关闭所有设备并断开连接。

实验数据与分析:1. 记录不同频率和幅度下的波形图像,并列出测量到的信号参数。

2. 分析波形的变化趋势,如频率增加时波形的变化,幅度变化对波形的影响。

3. 讨论可能出现的误差源,例如探头的接地问题、示波器的校准误差等。

实验结论:通过本次实验,我们成功地使用示波器观察并分析了不同电信号的特性。

我们了解了示波器的基本操作方法,并能够准确地测量电信号的基本参数。

此外,我们还学习了如何通过改变电路参数来观察波形的变化,这将对我们未来在电子实验和研究中起到重要的帮助作用。

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告大学物理实验示波器的使用实验报告引言:示波器是物理实验中常用的仪器之一,它能够将电信号转化为视觉信号,帮助我们观察和分析电信号的特性。

本实验旨在通过使用示波器,掌握其基本操作和原理,并进一步了解电信号的特性和测量方法。

实验目的:1. 熟悉示波器的基本结构和操作方法;2. 学会使用示波器观察和测量不同类型的电信号;3. 掌握示波器的测量误差分析方法。

实验仪器和材料:1. 示波器;2. 信号发生器;3. 电阻、电容等元器件。

实验原理:示波器是一种能够显示电信号波形的仪器,其基本原理是将电信号转化为可视化的波形。

示波器主要由垂直放大器、水平放大器、时间基准、触发电路和显示屏等组成。

实验步骤:1. 将示波器与信号发生器连接,调节信号发生器的频率和幅度,使其输出一个正弦波信号。

2. 打开示波器电源,调节垂直放大器和水平放大器的增益和偏移量,使波形在显示屏上合适地显示。

3. 调节时间基准,使波形在水平方向上适当延展或压缩。

4. 调节触发电路,使波形在显示屏上稳定显示。

实验结果:通过实验,我们成功地观察到了不同频率和幅度的正弦波信号,并通过示波器的测量功能,得到了相应的波形参数。

我们发现,随着频率增加,波形的周期减小,频率越高,波形越密集;而随着幅度增加,波形的振幅增大,幅度越大,波形越高。

误差分析:在实验中,示波器的测量误差主要来自示波器本身的精度和人为操作的不准确性。

示波器的精度受到其分辨率、带宽和噪声等因素的影响。

而人为操作的不准确性则可能导致示波器参数的调节不准确,进而影响到测量结果的准确性。

实验总结:通过本次实验,我们初步掌握了示波器的基本操作方法和原理,并成功地观察和测量了不同类型的电信号。

同时,我们也意识到了示波器的测量误差对实验结果的影响,因此在实际应用中需要注意减小误差,提高测量的准确性。

展望:示波器作为一种重要的电子测量仪器,在科学研究和工程实践中具有广泛的应用前景。

大学物理实验示波器实验报告

大学物理实验示波器实验报告

了解信号发生器的功能和 使用方法。
注意示波器的探头选择和 使用方法,避免损坏设备 或影响测量结果。
02
示波器操作指南
示波器面板功能介绍
显示屏幕
用于显示波形图像,可调整屏幕亮度、 对比度等参数。
垂直控制
包括通道选择、垂直位移、垂直灵敏度 等调节旋钮,用于调整波形的垂直显示 位置及幅度。
水平控制
包括时基选择、水平位移等调节旋钮, 用于调整波形的水平显示宽度及位置。
改进建议提
仪器校准
定期对示波器进行校准和维护,确 保其精度和稳定性。
环境控制
在实验过程中,尽量控制环境因素 对实验结果的影响,如保持恒温、 恒湿等。
操作规范
提高操作人员的熟练程度和规范性, 减少操作误差的产生。
实验方案优化
根据实验结果和讨论,对实验方案 进行优化和改进,提高实验的准确 性和可靠性。
触发控制
包括触发源选择、触发方式选择、触发 电平等调节旋钮,用于设置触发条件, 确保波形稳定显示。
信号发生器使用方法
频率设置
通过调节频率旋钮或按键,设置所需信
号频率。
波形选择
根据需要选择正弦波、方波、三角波等 不同波形。
幅度设置
通过调节幅度旋钮或按键,设置所需信 号幅度。
输出连接
将信号发生器输出端与示波器输入端正 确连接,确保信号正常传输。
解决方案
根据排查结果采取相应的 解决方案,如更换损坏的 部件、调整设置参数等, 以确保实验顺利进行。
04
实验数据分析与讨论
数据处理过程展示
数据采集
详细记录了示波器的各项参数,包括 电压、频率、相位等,确保数据的准 确性和完整性。
图表绘制
根据处理后的数据,绘制了相应的图 表,如波形图、相位图等,以便更直 观地展示数据特征。

示波器使用大学物理实验报告

示波器使用大学物理实验报告

示波器使用大学物理实验报告一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,学会使用示波器测量电压、周期和频率等物理量。

3、观察正弦波、方波、锯齿波等常见信号的波形特征。

二、实验仪器示波器、函数信号发生器、探头、直流电源等。

三、实验原理1、示波器的结构示波器主要由示波管、垂直偏转系统、水平偏转系统、扫描及同步系统、电源等部分组成。

示波管是示波器的核心部件,它由电子枪、偏转板和荧光屏组成。

电子枪发射电子束,经过偏转板的作用,使电子束在荧光屏上产生偏转,从而显示出波形。

2、示波器的工作原理(1)垂直偏转系统:输入的信号电压加到垂直偏转板上,使电子束在垂直方向上产生偏转,偏转的大小与输入信号的电压成正比。

(2)水平偏转系统:锯齿波电压加到水平偏转板上,使电子束在水平方向上匀速移动,形成时间基线。

(3)扫描及同步系统:扫描电压的周期与输入信号的周期相同或成整数倍关系时,荧光屏上就能稳定地显示出输入信号的波形。

四、实验内容及步骤1、熟悉示波器的面板对照示波器的说明书,熟悉示波器面板上各个旋钮和按键的功能,包括垂直灵敏度调节、水平扫描速度调节、触发方式选择、信号输入通道选择等。

2、测量直流电压(1)将示波器的输入通道选择为直流(DC)耦合。

(2)将探头连接到直流电源的输出端,调节垂直灵敏度和水平扫描速度,使直流电压的波形在荧光屏上显示合适。

(3)读取示波器上显示的电压值,并与直流电源的实际输出电压进行比较。

3、测量正弦波信号的电压和周期(1)将函数信号发生器的输出设置为正弦波,调节频率和幅度。

(2)将探头连接到函数信号发生器的输出端,选择合适的垂直灵敏度和水平扫描速度,使正弦波的波形在荧光屏上显示清晰。

(3)使用示波器的测量功能,测量正弦波的峰峰值电压和周期。

根据峰峰值电压计算有效值电压,并与函数信号发生器设置的参数进行比较。

4、观察方波和锯齿波信号(1)将函数信号发生器的输出分别设置为方波和锯齿波,调节频率和幅度。

大学物理实验报告 示波器

大学物理实验报告 示波器

大学物理实验报告示波器大学物理实验报告:示波器引言在大学物理实验中,示波器是一种重要的仪器,用于测量和显示电信号的波形。

它在电子学、通信、电力等领域中发挥着重要作用。

本实验旨在通过对示波器的使用和原理的了解,掌握示波器的基本操作技能,并进一步认识电信号的特性。

一、示波器的基本原理示波器是一种电子测量仪器,能够以波形的形式显示电信号的幅度、频率、相位等特性。

它的基本原理是利用电子束在荧光屏上扫描形成图像。

示波器的主要组成部分包括电子枪、偏转系统、时间基准、触发电路和显示屏。

二、示波器的基本操作1. 示波器的开机与调节首先,将示波器与电源连接,并打开电源开关。

然后,调节亮度、对比度和聚焦度,使显示屏上的波形清晰可见。

2. 示波器的通道设置示波器通常具有多个通道,可以同时测量多个信号。

在本实验中,我们将使用单通道示波器。

首先,将信号源与示波器的输入端连接。

然后,调节示波器的通道开关,选择要测量的通道。

3. 示波器的触发设置触发电路是示波器中一个重要的功能,它用于控制示波器何时开始扫描信号。

在本实验中,我们将使用自由运行触发模式。

首先,调节触发电路的阈值,使其与输入信号的幅度相匹配。

然后,选择触发源,通常为信号源的同步输出。

4. 示波器的时间基准设置时间基准是示波器中用于确定时间轴刻度的参考信号。

在本实验中,我们将使用内部时间基准。

首先,选择合适的时间基准模式,如连续或单次。

然后,调节时间基准的时间/频率刻度,使其适应所测量的信号。

5. 示波器的测量功能示波器通常具有多种测量功能,如幅度、频率、相位等。

在本实验中,我们将主要关注信号的幅度测量。

使用示波器的测量功能,可以直接读取信号的峰值、峰峰值、平均值等参数。

三、示波器的应用示波器在科学研究、工程实践和教学中具有广泛的应用。

以下是一些常见的应用领域:1. 电子学和通信在电子学和通信领域,示波器常用于测量和分析电路中的信号波形。

它可以帮助工程师诊断和解决电路故障,优化电路设计。

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用篇一:大物实验示波器的使用实验报告实验二十三示波器的使用班级自动化153班姓名廖俊智学号6101215073日期2019 3.21指导老师代国红【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。

2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。

3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

【实验仪器】固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。

【实验原理】示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。

在各行各业与各个研究领域都有着广泛的应用。

其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。

基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。

“示波管(CRT)”是示波器的核心部件如图1所示的。

可细分为电子枪,偏转系统和荧光屏三部分。

1)电子枪电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。

阴极被灯丝加热后,可沿轴向发射电子。

并在荧光屏上显现一个清晰的小圆点。

2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。

从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。

若受到横向电场的作用,电子束的运动方向就会偏离轴线,F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X 竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。

x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。

如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。

3)荧光屏荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告
数字示波器 采用数字信号处理技术,将模拟信号转换为数字信号进行 显示。具有高精度、高稳定性和低噪声等特点,但价格较 高。
虚拟示波器
基于计算机技术的虚拟仪器,通过软件实现示波器的功能。 具有灵活、易于升级和低成本等特点,但需要一定的计算 机知识和操作技能。
示波器在物理实验中的作用
01 02
测量信号波形
从而分析信号的频谱特性和频率成分。
03
实验步骤与操作
实验前准备
1 2
了解示波器的基本原理和功能 在开始实验前,需要先了解示波器的工作原理、 主要功能和使用方法,为后续的实验操作做好准 备。
检查实验器材 确保示波器和其他相关器材完好无损,如有损坏 应及时更换或维修。
3
准备实验材料 根据实验需求,准备相应的实验材料和测试样品。
数据分析与解释
数据分析
通过对比输入信号和示波器显示的波形,计算了示波器的幅频特性和相频特性。
结果解释
根据数据分析结果,解释了示波器的工作原理以及信号在传输过程中的变化规律。
误差分析
误差来源
在实验过程中,误差主要来源于信号 源的稳定性、示波器的测量精度以及 人为操作误差。
误差分析
对每个误差来源进行了详细分析,并 评估了其对实验结果的影响程度。
实验后整理
实验结束后,需要将实验器材整理好,并按照要求关闭示 波器和其他相关设备。同时,也需要将实验数据和波形及 时整理和保存。
04
实验结果与分析
实验数据记录与处理
实验数据
在实验过程中,我们记录了不同信号 源输入时示波器的显示波形,包括正 弦波、方波和三角波等。
数据处理
对记录的波形数据进行了处理,包括 测量波形幅度、周期、频率等参数, 并绘制了波形图。

示波器物理实验报告(共8篇)

示波器物理实验报告(共8篇)

篇一:示波器使用大学物理实验报告《示波器的使用》实验报告【实验目的】1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;【实验仪器】1、双踪示波器 gos-6021型 1台2、函数信号发生器 yb1602型 1台3、连接线示波器专用 2根 [实验原理]示波器由示波管、扫描同步系统、y轴和x轴放大系统和电源四部分组成,图片已关闭显示,点此查看1、示波管如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。

亮点在偏转板电压的作用下,位置也随之改变。

在一定范围内,亮点的位移与偏转板上所加电压成正比。

示波管结构简图示波管内的偏转板 2、扫描与同步的作用如果在x轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图图片已关闭显示,点此查看1图扫描的作用及其显示如果在y轴偏转板上加正弦电压,而x轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。

我们看到的将是一条垂直的亮线,如图图片已关闭显示,点此查看如果在y轴偏转板上加正弦电压,又在x轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。

如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。

但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。

由此可见:(1)要想看到y轴偏转板电压的图形,必须加上x轴偏转板电压把它展开,这个过程称为扫描。

如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。

(2)要使显示的波形稳定,y轴偏转板电压频率与x轴偏转板电压频率的比值必须是整数,即:fy?n n=1,2,3, fx示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。

示波器使用大学物理实验报告

示波器使用大学物理实验报告

示波器使用大学物理实验报告一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,包括垂直灵敏度、水平扫描速度、触发方式等的调节。

3、学会用示波器观察正弦波、方波、锯齿波等常见信号的波形,并测量其频率、幅值等参数。

二、实验仪器示波器、函数信号发生器、探头等。

三、实验原理示波器是一种用于显示电信号波形的电子仪器。

它通过在示波管的荧光屏上产生亮点的移动来描绘电信号的变化。

示波管主要由电子枪、偏转系统和荧光屏三部分组成。

电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。

示波器的垂直偏转系统用于控制电子束在垂直方向上的偏转,其灵敏度可以通过调节垂直增益旋钮来改变。

水平偏转系统用于控制电子束在水平方向上的偏转,水平扫描速度可以通过调节水平扫描速度旋钮来调整。

触发系统用于使示波器的扫描与输入信号同步,以稳定显示波形。

四、实验内容及步骤1、示波器的基本调节打开示波器电源,预热几分钟。

将示波器的探头连接到校准信号输出端,调节垂直和水平位移旋钮,使校准信号位于屏幕中央。

调节垂直灵敏度和水平扫描速度旋钮,使校准信号的波形清晰、稳定,并测量校准信号的幅值和频率,与标称值进行比较。

2、观察正弦波信号将函数信号发生器的输出设置为正弦波,频率为 1kHz,幅值为5Vpp。

将探头连接到函数信号发生器的输出端,调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形完整显示在屏幕上。

测量正弦波的幅值、周期和频率,并计算其有效值。

3、观察方波信号将函数信号发生器的输出设置为方波,频率为 500Hz,幅值为10Vpp。

重复步骤 2 中的操作,观察并测量方波的幅值、周期和占空比。

4、观察锯齿波信号将函数信号发生器的输出设置为锯齿波,频率为 200Hz,幅值为3Vpp。

重复步骤 2 中的操作,观察并测量锯齿波的幅值、周期和上升时间。

五、实验数据及处理1、校准信号标称幅值:_____Vpp实测幅值:_____Vpp标称频率:_____kHz实测频率:_____kHz2、正弦波信号幅值:_____Vpp周期:_____ms频率:_____kHz有效值:_____V3、方波信号幅值:_____Vpp周期:_____ms频率:_____Hz占空比:_____%4、锯齿波信号幅值:_____Vpp周期:_____ms频率:_____Hz上升时间:_____ms六、实验误差分析1、仪器误差:示波器和函数信号发生器本身存在一定的精度限制,可能导致测量结果的误差。

工作报告-大学物理实验实验报告——示波器的使用

工作报告-大学物理实验实验报告——示波器的使用

工作报告-大学物理实验实验报告——示波器的使用一、实验目的1.了解示波器的结构和使用方法;2.掌握直流信号、正弦波信号、方波信号在示波器上的显示方法;3.掌握示波器读数的方法,并掌握示波器读数的误差处理方法。

二、实验原理示波器是一种将不同信号转换为电信号后,再将其显示出来的仪器。

它由放大器、水平和垂直偏转系统、扫描电路和显示器等组成。

示波器接通电源后,通过扫描电路和两个偏转系统,将待测信号转换为水平和垂直方向的电信号,再经过放大和滤波后,通过显示器显示出来。

直流信号:示波器直流灵敏度是指单位电压对应的水平偏转量,它的取值决定了示波器的直流灵敏度。

在测量直流信号的时候,应根据待测信号的大小,选择合适的直流灵敏度。

当待测信号超过示波器选择的最大直流灵敏度时,读数将出现溢出现象。

正弦波信号:正弦波信号的显示,要调整垂直灵敏度,使得信号在显示屏上的垂直方向上呈现出适当的振幅。

方波信号:方波信号是一种周期为T的脉冲信号,用示波器显示时,需要将水平扫描频率和信号频率同步,以保证信号在显示屏上能够完整显示出来。

三、实验步骤1.按照示波器的使用说明,正确接线并打开示波器。

2.调节示波器垂直灵敏度,使得测量的信号在显示屏上正好是满幅的。

3.调节偏心旋钮,使得信号的基准线刚好在中央位置。

4.分别接入直流信号、正弦波信号和方波信号,在合适的直流灵敏度和垂直灵敏度下测量信号的幅度、频率等参数。

5.记录读数,并进行误差计算和分析。

4.误差分析在示波器读数时,需要考虑仪器本身的误差和读数误差。

仪器本身的误差是指示波器自身存在的误差,例如示波器内部放大器的增益误差、示波器的垂直灵敏度和直流灵敏度的误差等。

为了减小仪器本身的误差,我们可以在进行实验前先进行仪器校正。

读数误差是指由读数时操作不当或者测量过程中由于外部因素所引起的误差。

在进行读数时,可以先进行多次测量,然后求取平均值,这样可以减小读数误差。

五、实验总结通过本次实验,我们学习了示波器的结构和使用方法,掌握了直流信号、正弦波信号和方波信号在示波器上的显示方法,以及示波器读数的方法和误差处理方法。

(2023)大学物理实验实验报告示波器的使用(一)

(2023)大学物理实验实验报告示波器的使用(一)

(2023)大学物理实验实验报告示波器的使用(一)大学物理实验实验报告-示波器的使用实验目的•掌握示波器的基本原理和使用方法•学会如何使用示波器测量电压信号的幅度和频率•熟练掌握示波器调节和校准技能实验原理示波器是一种用于观察和测量电信号的电子仪器。

它通过将电信号的变化转换成屏幕上的图形来表示电信号随时间的变化规律。

示波器通常由控制电路、放大器、水平和竖直偏转电路、阴极射线示波管组成。

实验步骤1.连接线路:将电路连接到示波器上,注意观察正负极的接线。

2.打开示波器电源:拨动示波器电源开关,此时示波器打开并发出高压声,屏幕上出现了一个亮点。

3.调节幅度:按照实验要求,选择合适的电压档和时间档,调节幅度,使信号在示波器屏幕上显示出来。

4.调节时间:同样选择合适的时间档,调节时间,使信号的周期在示波器屏幕上显示出来。

5.观察信号:根据示波器传送到屏幕上的信号,可以观察到电信号的频率、振幅、波形等特征。

实验结果通过示波器测量,我们得出下面的实验结果: - 电路产生的电压信号是一个正弦波,振幅为2V,频率为50Hz - 改变电路传输的电压信号,示波器会显示不同的电压波形实验结论本实验通过测量电路的电压信号,我们学会了使用示波器的基本方法。

我们可以利用示波器观察电信号的波形、幅度等特征,为后续研究提供了基础。

实验注意事项•实验时应仔细阅读仪器的说明书,并正确使用连线和接头。

•操作时要轻拿轻放,以免损坏示波器。

•注意安全,不要接触高压部分,防止触电。

实验设备•示波器•信号发生器•电阻、电容等元件•小型电路板以上就是关于大学物理实验实验报告-示波器的使用的全部内容。

在进行示波器的使用时,一定要注意操作方法,并积极发现问题、解决问题。

实验拓展除了基本的示波器使用,我们还可以通过一些拓展实验来深入了解示波器的应用:1.观察不同波形的频谱分布:利用示波器和频谱仪,可以观察不同频率的信号在频谱上的分布情况。

这对于信号处理和分析十分重要。

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告大学物理实验示波器的使用实验报告引言:示波器是大学物理实验中常用的一种仪器,用于观察和测量电信号的波形和特性。

本次实验旨在通过使用示波器,掌握其基本操作和原理,以及学习如何正确连接电路和调节参数,从而实现准确的波形观测和测量。

实验目的:1. 理解示波器的基本原理和操作方法;2. 学会正确连接电路和示波器,实现准确的波形观测;3. 掌握示波器的参数调节,如时间、电压和触发等。

实验仪器和材料:1. 示波器2. 功能发生器3. 电阻、电容、电感等元件4. 电源5. 连接线等实验步骤:1. 将示波器和功能发生器依次连接到电源上,确保电路连接正确。

2. 打开示波器电源,并调节亮度、对比度等参数,使屏幕显示清晰。

3. 调节示波器的时间基准,选择合适的时间量程,使观测到的波形在屏幕上适合观察。

4. 调节示波器的垂直灵敏度,选择合适的电压量程,使波形的振幅适合观察。

5. 设置示波器的触发方式和触发电平,确保波形稳定显示。

6. 调节功能发生器的频率和幅度,观察波形的变化。

7. 通过连接不同的电路和元件,观察并记录波形的变化情况。

8. 根据实验结果,分析波形的特点和规律。

实验结果与分析:在实验中,我们通过连接不同的电路和元件,观察到了不同形态的波形。

例如,当连接一个正弦信号的源和示波器时,我们观察到了典型的正弦波形。

通过调节功能发生器的频率和幅度,我们可以观察到波形的变化,如频率越高,波形周期越短;振幅越大,波形的峰值越高。

此外,我们还观察到了其他类型的波形,如方波、三角波和脉冲波等。

通过连接不同的电路和元件,我们可以改变波形的形态和特性。

例如,当连接一个RC 电路时,我们观察到了典型的RC衰减波形,波形的振幅随时间的增加而逐渐减小。

通过实验结果的分析,我们可以得出以下结论:1. 示波器可以准确地显示电信号的波形和特性。

2. 波形的形态和特性受到电路和元件的影响,通过连接不同的电路和元件,我们可以实现不同形态的波形观测。

大学物理实验示波器实验报告

大学物理实验示波器实验报告

大学物理实验示波器实验报告实验目的,通过实验了解示波器的基本原理和使用方法,掌握示波器的使用技巧,加深对波形的理解。

实验仪器,示波器、信号发生器、示波器探头、电源线等。

实验原理,示波器是一种用来观察电压随时间变化的仪器,可以显示出电压随时间的波形。

示波器的工作原理是利用电子束在示波管内偏转,将电压信号转换成屏幕上的波形。

信号发生器是用来产生各种波形信号的仪器,可以产生正弦波、方波、三角波等不同形式的信号。

实验步骤:1. 将示波器和信号发生器接通电源,并调节示波器的控制按钮,使屏幕上显示出稳定的水平基准线。

2. 将信号发生器的输出端与示波器的输入端连接,调节信号发生器的频率和幅度,观察示波器屏幕上显示的波形变化。

3. 利用示波器探头测量不同电路中的电压信号,并观察波形的变化。

4. 调节示波器的触发电平和触发方式,观察波形的触发效果。

5. 尝试利用示波器测量不同频率和幅度的信号,观察波形显示的效果。

实验结果与分析:通过本次实验,我们成功掌握了示波器的基本使用方法,并对波形的观察和测量有了更深入的理解。

在实验中,我们发现当信号发生器输出的频率增加时,示波器屏幕上显示的波形周期变短,频率增加;当信号发生器输出的幅度增加时,示波器屏幕上显示的波形振幅增大。

同时,我们还观察到了不同波形信号的显示效果,如正弦波、方波、三角波等,这些波形在示波器屏幕上显示出不同的特点,进一步加深了我们对波形的理解。

实验总结:本次实验通过实际操作,使我们更加深入地了解了示波器的原理和使用方法,对信号发生器的工作原理也有了更清晰的认识。

同时,通过观察不同波形信号的显示效果,加深了我们对波形特性的理解。

通过本次实验,我们不仅掌握了示波器的基本使用技巧,还对波形的观察和测量有了更深入的认识,为今后的物理实验打下了坚实的基础。

实验中遇到的问题及解决方法:在实验中,我们遇到了示波器屏幕上波形显示不清晰的问题,经过检查发现是示波器探头连接不良导致的,及时重新连接探头后问题得以解决。

示波器实验报告总结(共8篇)

示波器实验报告总结(共8篇)

篇一:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g 双踪示波器, ee1641b型函数信号发生器实验原理和内容: 1. 示波器基本结构示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。

示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。

电子枪的作用是释放并加速电子束。

其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。

通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。

偏转系统由x、y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。

荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。

不同荧光粉的发光颜色与余辉时间都不同。

放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。

扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。

扫描开始的时间由触发系统控制。

2. 示波器的显示波形的原理如果只在竖直偏转板加上交变电压而x偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在y偏转板和x偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示:3. 扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。

示波器的使用实验报告

示波器的使用实验报告

课程名称:大学物理实验(一)实验名称:示波器的使用图3 不加信号时显示图图6 触发扫描示意图李萨如图形原理:两个相互垂直的振动的合成X=A cos(ωt+φ) (1)图2 任意波形发生器四、实验内容与步骤、在用通道1或2观察频率为1KHz的正弦,方波、三角波波形型函数信号发生器的output线连接到示波器中的CH1orX或CH2orY或CH2,以及内部触发选择开关中的CH1或CH2;在示波器上显示出占满屏幕上80%范围一个完整图形。

将波形分别画在准备好的坐标绘图纸上记录示波器的扫描频率f x和扫描时间。

)将待测信号输入通道CH1或CH2;(2)按下AUTO按件,示波器将自动使波形显示达到最佳状态。

可调节垂直、水平档位,直至波形显示符合要求。

、自动测量信号的电压有效值按键,在屏的右侧可显示自动测量菜单;图1 扫描周期为0.1ms/div时频率为1kHz的正弦波图像图2 扫描周期为0.1ms/div时频率为1kHz的方波图像图3 扫描周期为0.1ms/div时频率为1kHz的三角波图像=1(kHz)=110×0.1×0.001此时扫描频率与信号频率相等,故当扫描频率等于信号频率时,示波器上正好显示一个周期的信号。

和正弦波形画在坐标纸上,并记录示波器扫描时间:1/2个) 0.05ms/div,扫描周期(2个) 0.2ms/div图4 扫描周期0.05ms/div时频率为1kHz的正弦波图像图5 扫描周期0.2ms/div时频率为1kHz的正弦波图像1 T1=110×0.05×0.001=2(kHz)1 T2=110×0.2×0.001=0.5(kHz)可见,当扫描频率是信号频率的两倍时,示波器只显示半个周期的信号;当扫描频率是信号频率的一半时,示波器显示两个周期的信号。

、画出频率比为1:1、2:1和1:2的李萨如图形(2V)并记录相应的信号频率::f x= 1 kHz ,(2:1)f x = 4 kHz ,(1:2个)f x= 1 kHz ,f y= 1 kHz f y = 2 kHz , f y = 2 kHz ,图6 频率比为1:1的李萨如图形图7 频率比为2:1的李萨如图形图8 频率比为1:2的李萨如图形可知当频率为f xf y=1时,李萨如图形与x轴的交点只有一个,与y轴的交点也只有一个,即可知当频率为f xf y=2时,李萨如图形与x轴的交点只有一个,与y轴的交点有两个,即可知当频率为f xf y =12时,李萨如图形与x轴的交点有四个,与y轴的交点只有两个,即2V)的有效电压:500mv/div,信号所占格数:4 div,11李萨如图形是由两个正交的简谐运动合成的,其中一个运动的频率是水平方向的频率,率是垂直方向的频率;当两个频率不相等时,李萨如图形会发生变化,运动的相位差会不断变化,导致合成的李萨如图形的形态也会不断变化,从而在屏幕上呈现出旋转的效果。

大学物理实验示波器实验报告

大学物理实验示波器实验报告

示波器的运用【1 】【试验简介】示波器是用来显示被不雅测旌旗灯号的波形的电子测量仪器,与其他测量仪器比拟,示波器具有以下长处:可以或许显示出被测旌旗灯号的波形;对被测体系的影响小;具有较高的敏锐度;动态规模大,过载才能强;轻易构成分解测试仪器,从而扩展运用规模;可以描写出任何两个周期量的函数关系曲线.从而把本来异常抽象的.看不见的电变更进程转换成在屏幕上看得见的真实图像.在电子测量与测试仪器中,示波器的运用规模异常普遍,它可以表征的所有参数,如电压.电流.时光.频率和相位差等.若配以恰当的传感器,还可以对温度.压力.密度.距离.声.光.冲击等非电量进行测量.准确运用示波器是进行电子测量的前提.第一台示波器由一只示波管,一个电源和一个简略的扫描电路构成.成长到今天已经由通用示波器到取样示波器.记忆示波器.数字示波器.逻辑示波器.智能化示波器等近十大系列,示波器普遍运用在工业.科研.国防等很多范畴中.Karl Ferdinand Braun生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun于1897年创造世界上第一台阴极射线管示波器,至今很多德国人仍称CRT为布朗管(Braun Tube).图8-1 Karl Ferdinand Braun【试验目标】1、懂得示波器的构造和工作道理,熟习示波器和旌旗灯号产生器的根本运用办法.2、学惯用示波器不雅察电旌旗灯号的波形和测量电压.周期及频率值.3、经由过程不雅察李沙如图形,学会一种测量正弦波旌旗灯号频率的办法.【试验仪器】VD4322B型双踪示波器.EM1643型旌旗灯号产生器.衔接线及小喇叭等图8-2 VD4322型双踪示波器板面图1.电源开关2.电源指导灯3.聚焦旋钮4.亮度调节旋钮5.Y1(X)旌旗灯号输进口6.Y2旌旗灯号输进口7.8.入耦合开关(AC-GND-DC )9.10.垂直偏转因数选择开关(V/格)11.1Y 位移旋钮12.2Y 位移旋钮13.工作方法选择开关(1Y .2Y .瓜代.断续)14.扫描速度(时光/格)选择开关15.扫描微调掌握旋钮16.程度位移旋钮17.电平调节旋钮【试验道理】一.示波器的构造及简略工作道理示波器一般由5个部分构成,如图8-3所示:(1)示波管;(2)旌旗灯号放大器和衰减器(3)扫描产生器;(4)触发同步电路;(5)电源.下面分离加以简略解释.1、 示波管示波管重要包含电子枪.偏转体系和荧光屏三部分,全都密封在玻璃外壳内,里面抽成高真空.如图8-4荧 光 屏内+-外触发扫 描 产生器 放 大 或衰减触 发 同 步 放 大 或衰减X 轴输入Y 轴输入亮度 聚焦 帮助聚焦电源 YXHKGA 1A 2电子枪图8-3 电路构造图电源Y X 图8-4 示波管示意图所示,下面分离解释各部分的感化.(1)荧光屏:它是示波器的显示部分,当加快聚焦后的电子打到荧光上时,屏上所涂的荧光物资就会发光,从而显示出电子束的地位.当电子停滞感化后,荧光剂的发光需经一准时光才会停滞,称为余辉效应.(2)电子枪:由灯丝H .阴极K .掌握栅极G .第一阳极A 1.第二阳极A 2五部分构成.灯丝通电后加热阴极.阴极是一个概况涂有氧化物的金属筒,被加热后发射电子.掌握栅极是一个顶端有小孔的圆筒,套在阴极外面.它的电位比阴极低,对阴极发射出来的电子起掌握感化,只有初速度较大的电子才干穿过栅极顶端的小孔然后在阳极加快下奔向荧光屏.示波器面板上的“亮度”调剂就是经由过程调节电位以掌握射向荧光屏的电子流密度,从而转变了屏上的光斑亮度.阳极电位比阴极电位高很多,电子被它们之间的电场加快形成射线.当掌握栅极.第一阳极.第二阳极之间的电位调节适合时,电子枪内的电场对电子射线有聚焦感化,所以第一阳极也称聚焦阳极.第二阳极电位更高,又称加快阳极.面板上的“聚焦”调节,就是调第一阳极电位,使荧光屏上的光斑成为通亮.清楚的小圆点.有的示波器还有“帮助聚焦”,现实是调节第二阳极电位.(3)偏转体系:它由两对互相垂直的偏转板构成,一对垂直偏转板Y ,一对程度偏转板X .在偏转板上加以恰当电压,电子束经由过程时,其活动偏向产生偏转,从而使电子束在荧光屏上的光斑地位也产生转变.轻易证实,光点在荧光屏上偏移的距离与偏转板上所加的电压成正比,因而可将电压的测量转化为屏上光点偏移距离的测量,这就是示波器测量电压的道理. 2.旌旗灯号放大器和衰减器示波管本身相当于一个多量程电压表,这一感化是靠旌旗灯号放大器和衰减器实现的.因为示波管本身的X 及Y 轴偏转板的敏锐度不高(约—1mm/V ),当加在偏转板的旌旗灯号过小时,要预先将小的旌旗灯号电压加以放大后再加到偏转板上.为此设置X 轴及Y 轴电压放大器.衰减器的感化是使过大的输入旌旗灯号电压变小以顺应放大器的请求,不然放大器不克不及正常工作,使输入旌旗灯号产生畸变,甚至使仪器受损.对一般示波器来说,X 轴和Y 轴都设置有衰减器,以知足各类测量的须要. 3.扫描体系(扫描产生器)扫描体系也称时基电路,用来产生一个随时光作线性变更的扫描电压,这种扫描电压随时光变更的关系如同锯齿,故称锯齿波电压,如图8-5所示,这个电压经X 轴放大器放大后加到示波管的程度偏转板上,使电子束产生程度扫描.如许,屏上的程度坐标变成时光坐标,Y 轴输入的被测旌旗灯号波形就可以在时光轴上睁开.扫描体系是示波器显示被测电压波形必须的重要构成部分. 一、 示波器显示波形的道理假如只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变更在竖直偏向往返活动,假如电压频率较高,则看到的是一条竖直亮线,如图8-6所示.要能显示波形,必须同时在程度偏转板上加一扫描电压,使电子束的亮点沿程度偏向拉开.这种扫描电压的特色是电压随时光成线性关系增长到最大值,最后忽然回到最小,此后再反复地变更.这种扫描电压即前面所说的“锯齿波电压”,如图8-5所示.当只有锯齿波电压加在程度偏转板上时,假如频率足够高,则荧光屏上只显示一条程度亮线.假如在竖直偏转板上(简称Y 轴)加正弦电压,同时在程度偏转板上(简称X 轴)加锯齿波电压,电子受竖直.程度两个偏向的力的感化,电子的活动就是两互相垂直的活动的合成.当锯齿波电压比正弦电压变更周期稍大时,在荧光屏大将能显示出完全周期的所加正弦电压的波形图.三.触发同步的概念—8点之间的曲线段,起点在4处;第三周期内,显示8—11点之间的曲线段,起点在8处.如许,屏上显示的波形每次都不重叠,仿佛波形在向右移动.同理,假如T x 比T y 稍大,则仿佛在向左移动.以上描写的情况在示波器运用进程中经常会消失.其原因是扫描电压的周期与被测旌旗灯号的周期不相等或不成整数倍,乃至每次扫描开端时波形曲线上的起点均不一样所造成的.为了使屏上的图形稳固,必须使T x /T y =n (n =1,2,3,…),n 是屏上显示完全波形的个数.为了获得必定命量的波形,示波器上设有“扫描时光”(或“扫描规模”).“扫描微调”旋钮,用来调节锯齿波电压的周期T x (或频率f x ),使之与被测旌旗灯号的周期T y (或频率f y )成适合的关系,从而在示波器屏上得到所需数量标完全的被测波形.输入Y 轴的被测旌旗灯号与示波器内部的锯齿波电压是互相自力的.因为情况或其它身分的影响,它们的周期(或频率)可能产生渺小的转变.这时,固然可经由过程调节扫描旋钮将周期调到整数倍的关系,但过一会儿又变了,波形又移动起来.在不雅察高频旌旗灯号时这种问题尤为凸起.为此示波器内装有扫描同步装配,让锯齿波电压的扫描起点主动跟着被测旌旗灯号转变,这就称为整步(或同步).有的示波器中,须要让扫描电压与外部某一旌旗灯号同步,是以设有“触发选择”键,可选择外触发工作状况,响应设有“外触发”旌旗灯号输入端. 四. 示波器的运用1.示波器不雅察电旌旗灯号波形.将待不雅察旌旗灯号从1Y 或2Y 端接入加到Y 偏转板,X 偏转板加上扫描电压旌旗灯号,调节辉度旋钮.集合旋钮.x.y 位移旋钮,调节电压偏转因数旋钮和扫描时光旋钮,再调节同步触发电平旋钮,即看到待不雅察旌旗灯号波形.2.测量电压运用示波器可以便利测出电压值,现实上示波器所做的任何测量都归结为电压的测量.其道理基于被测量的电压使电子束产生与之成正比的偏转.盘算公式为 ()y U t yk (8-1)式中,y 为电子束沿y 轴偏向的偏转量,用格数(DIV )暗示;y k 为示波器y 轴的电压偏转因数(V/DIV )即(伏/格).3.测量频率 (1)周期换算法周期换算法所根据的道理是频率与周期成倒数关系:Tf 1=(8-2)旌旗灯号的周期可以用扫描速度值乘以被测旌旗灯号波形的又一个周期在荧光屏上的程度偏转距离而求得T t x =⋅(T=扫描速度×一个周期程度距离),故旌旗灯号的频率即可以算出.(2)李萨如图形法 设将未知频率f y 的电压U y 和已知频率f x 的电压U x(均为正弦电压),分离送到示波器的Y 轴和X 轴,则因为两个电压的频率.振幅和相位的不合,在荧光屏大将显示各类不合图8-8 李莎如图波形,一般得不到稳固的图形,但当两电压的频率成简略整数比时,将消失稳固的关闭曲线,称为李萨如图形.根据这个图形可以肯定两电压的频率比,从而肯定待测频率的大小.图8列出各类不合的频率比在不合相位差时的李萨如图形,不难 得出:所以未知频率 x yxy f N N f =(8-3) yx xy N N f X f Y 点数垂直直线与图形相交的点数水平直线与图形相交的轴电压的频率加在轴电压的频率加在=【试验内容及请求】1.示波器:辉度.聚焦.水温和竖直位移通道选择.触发.电平.幅度因子.扫描因子;2.旌旗灯号源:频率.旌旗灯号幅度.波形选择.3.衔接旌旗灯号源与示波器:旌旗灯号源输出正弦波旌旗灯号.调节示波器,消失稳固的正弦波,根据波形和幅度因子算出电压有用值,波形和扫描因子算出旌旗灯号频率.4.将示波器置非扫描档,外接两个旌旗灯号源合成利萨如图.【试验数据记载与处理】Hz测定正弦波电压和频率的表格f=理论利萨如图表格【思虑题】1. 示波器为什么能显示被测旌旗灯号的波形?2. 荧光屏上无光点消失,有几种可能的原因?如何调节才干使光点消失?3. 荧光屏上波形移动,可能是什么原因引起的【附EM1643型函数产生器介绍】(1)电源开关(POWER):按入开. (2)功效开关(FUNCTION):波形选择正弦波 方波和脉冲波 三角波和锯齿波(3)频率微调旋钮FREQV AR :频率复盖规模10倍. (4)分档开关(RANGE-HZ) :(10HZ-2MHZ 分六档选择). (5)衰减器按钮(ATT):开关按入时衰减低30Db. (6)电压幅度调节旋钮(AMPLITUDE);幅度可调. (7)直流偏移调节(DC OFF SET):当开关拉出时:直流电平为-10~+10V 持续可调,当开关按入时:直流电平为零. (8)占空比调节(PAMP/PULSE): 当开关按如时:占空比为本50%~50%; 当开关拉出时:占空比为10%~90%内持续可调; 频率为指导值÷10.(9)旌旗灯号输出(OUTPUT):波形输出端.1 4325678 910111213 1415 图8-9 函数产生器图(10)TTL OUT:TTL电平输出端. (11)VCF:掌握电压输入端. (12)IN PUT:外测频率输入端. (13)OUT SIDE:测频方法(内/外). (14)SPSS:单次脉冲开关. (15)OUT SPSS:单次脉冲输出.第11页,共11页。

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告一、实验目的。

本实验旨在通过使用示波器,掌握示波器的基本使用方法,了解示波器的工作原理,学习使用示波器测量电压、频率和波形等基本物理量。

二、实验仪器。

1. 示波器。

2. 信号发生器。

3. 直流电源。

4. 电阻、电容等元件。

5. 示波器探头。

三、实验原理。

示波器是一种用来观察电压随时间变化的仪器,它可以显示电压随时间的波形图像。

示波器的工作原理是利用电子束在示波管内的偏转来显示电压信号的变化。

当外加电压信号作用于示波器的输入端时,示波器会将这个信号转换成屏幕上的波形图像。

四、实验步骤。

1. 连接示波器,首先将信号发生器的输出端与示波器的输入端连接,然后将示波器的地线接地。

2. 调节示波器,打开示波器,调节示波器的时间/电压刻度,使得屏幕上可以清晰地显示出信号波形。

3. 测量直流电压,将直流电源的正负极分别连接到示波器的输入端,通过示波器可以测量直流电压的大小。

4. 测量交流电压,将信号发生器的正负极分别连接到示波器的输入端,通过示波器可以测量交流电压的大小。

5. 测量频率,调节信号发生器的频率,通过示波器可以观察到频率随时间的变化情况。

6. 测量波形,通过改变信号发生器的波形,可以观察到不同波形在示波器上的显示情况。

五、实验结果与分析。

通过本次实验,我们成功地掌握了示波器的基本使用方法,了解了示波器的工作原理,并且学会了使用示波器测量电压、频率和波形等基本物理量。

在实验过程中,我们发现示波器对电压信号的显示非常直观,可以清晰地观察到电压随时间的变化情况,这对于电路分析和故障排除非常有帮助。

六、实验总结。

本次实验通过使用示波器,使我们对示波器有了更深入的了解,掌握了示波器的基本使用方法。

在今后的物理实验和工程实践中,我们将能够更加熟练地运用示波器进行电路分析和故障排除,为我们的实验和工程工作提供更加可靠的数据支持。

七、参考文献。

1. 《电子技术基础》。

2. 《示波器使用手册》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示波器的使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。

从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。

在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。

若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。

正确使用示波器是进行电子测量的前提。

第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。

发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。

Karl Ferdinand Braun 生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun 于1897年发明世界上第一台阴极射线管示波器,至今许多德国人仍称CRT 为布朗管(Braun Tube)。

【实验目的】1、 了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。

2、 学习用示波器观察电信号的波形和测量电压、周期及频率值。

3、 通过观察李沙如图形,学会一种测量正弦波信号频率的方法。

【实验仪器】VD4322B 型双踪示波器、EM1643型信号发生器、连接线及小喇叭等图8-2 VD4322图8-1 Karl Ferdinand Braun171 234569101112 13 1415161、电源开关2、电源指示灯3、聚焦旋钮4、亮度调节旋钮5、Y1(X)信号输入口6、Y2信号输入口7、8、入耦合开关(AC-GND-DC )9、10、垂直偏转因数选择开关(V/格)11、1Y 位移旋钮12、2Y 位移旋钮13、工作方式选择开关(1Y 、2Y 、交替、断续)14、扫描速度(时间/格)选择开关15、扫描微调控制旋钮16、水平位移旋钮17、电平调节旋钮【实验原理】一、示波器的结构及简单工作原理示波器一般由5个部分组成,如图8-3所示:(1)示波管;(2)信号放大器和衰减器(3)扫描发生器;(4)触发同步电路;(5)电源。

下面分别加以简单说明。

1、 示波管示波管主要包括电子枪、偏转系统和荧光屏三部分,全都密封在玻璃外壳内,里面抽成高真空。

如图8-4所示,下面分别说明各部分的作用。

(1)荧光屏:它是示波器的显示部分,当加速聚焦后的电子打到荧光上时,屏上所涂的荧光物质就会发光,从而显示出电子束的位置。

当电子停止作用后,荧光剂的发光需经一定时间才会停止,称为余辉效应。

(2)电子枪:由灯丝H 、阴极K 、控制栅极G 、第一阳极A 1、第二阳极A 2五部分组成。

灯丝通电后加热阴极。

阴极是一个表面涂有氧化物的金属筒,被加热后发射电子。

控制栅极是一个顶端有小孔的圆筒,套在阴极外面。

它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。

示波器面板上的“亮度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。

阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。

当控制栅极、第一阳极、第二阳极之间的电位调节合适时,电子枪内的电场对电子射线有聚焦作用,所以第一阳极也称聚焦阳极。

第二阳极电位更高,又称加速阳极。

面板上的“聚焦”荧 光 屏内+-外触发扫 描 发生器 放 大或衰减触 发 同 步 放 大 或衰减X 轴输入Y 轴输入亮度 聚焦 辅助聚焦电源 YXHKGA 1A 2电子枪图8-3 电路结构图电源Y X 图8-4 示波管示意图调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。

有的示波器还有“辅助聚焦”,实际是调节第二阳极电位。

(3)偏转系统:它由两对相互垂直的偏转板组成,一对垂直偏转板Y ,一对水平偏转板X 。

在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上的光斑位置也发生改变。

容易证明,光点在荧光屏上偏移的距离与偏转板上所加的电压成正比,因而可将电压的测量转化为屏上光点偏移距离的测量,这就是示波器测量电压的原理。

2、信号放大器和衰减器示波管本身相当于一个多量程电压表,这一作用是靠信号放大器和衰减器实现的。

由于示波管本身的X 及Y 轴偏转板的灵敏度不高(约0.1—1mm/V ),当加在偏转板的信号过小时,要预先将小的信号电压加以放大后再加到偏转板上。

为此设置X 轴及Y 轴电压放大器。

衰减器的作用是使过大的输入信号电压变小以适应放大器的要求,否则放大器不能正常工作,使输入信号发生畸变,甚至使仪器受损。

对一般示波器来说,X 轴和Y 轴都设置有衰减器,以满足各种测量的需要。

3、扫描系统(扫描发生器)扫描系统也称时基电路,用来产生一个随时间作线性变化的扫描电压,这种扫描电压随时间变化的关系如同锯齿,故称锯齿波电压,如图8-5所示,这个电压经X 轴放大器放大后加到示波管的水平偏转板上,使电子束产生水平扫描。

这样,屏上的水平坐标变成时间坐标,Y 轴输入的被测信号波形就可以在时间轴上展开。

扫描系统是示波器显示被测电压波形必需的重要组成部分。

一、示波器显示波形的原理如果只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变化在竖直方向来回运动,如果电压频率较高,则看到的是一条竖直亮线,如图8-6所示。

要能显示波形,必须同时在水平偏转板上加一扫描电压,使电子束的亮点沿水平方向拉开。

这种扫描电压的特点是电压随时间成线性关系增加到最大值,最后突然回到最小,此后再重复地变化。

这种扫描电压即前面所说的“锯齿波电压”,如图8-5所示。

当只有锯齿波电压加在水平偏转板上时,如果频率足够高,则荧光屏上只显示一条水平亮线。

如果在竖直偏转板上(简称Y 轴)加正弦电压,同时在水平偏转板上(简称X 轴)加锯齿波电压,电子受竖直、水平两个方向的力的作用,电子的运动就是两相互垂直的运动的合成。

当锯齿波电压比正弦电压变化周期稍大时,在荧光屏上将能显示出完整周期的所加正弦电压的波形图。

三、触发同步的概念如果正弦波和锯齿波电压的周期稍微不同,屏上出现的是一移动着的不稳定图形。

这种情形可用图8-7说明。

设锯齿波电压的周期T x 比正弦波电压周期T y 稍小,比方说T x /T y =7/8。

在第一扫描周期内,屏上显示正弦信号0—4点之间的曲线段;在第二周期内,显示4—8点之间的曲线段,起点在4处;第三周期内,显示8—11点之间的曲线段,起点在8处。

这样,屏上显示的波形每次都不重叠,好象波形在向右移动。

同理,如果T x 比T y 稍大,则好象在向左移动。

以上描述的情况在示波器使用过程中经常会出现。

其原因是扫描电压的周期与被测信号的周期不相等或不成整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。

为了使屏上的图形稳定,必须使T x /T y =n (n =1,2,3,…),n 是屏上显示完整波形的个数。

为了获得一定数量的波形,示波器上设有“扫描时间”(或“扫描范围”)、“扫描微调”旋钮,用来调节锯齿波电压的周期T x (或频率f x ),使之与被测信号的周期T y (或频率f y )成合适的关系,从而在示波器屏上得到所需数目的完整的被测波形。

输入Y 轴的被测信号与示波器内部的锯齿波电压是互相独立的。

由于环境或其它因素的影响,它们的周期(或频率)可能发生微小的改变。

这时,虽然可通过调节扫描旋钮将周期调到整数倍的关系,但过一会儿又变了,波形又移动起来。

在观察高频信号时这种问题尤为突出。

为此示波器内装有扫描同步装置,让锯齿波电压的扫描起点自动跟着被测信号改变,这就称为整步(或同步)。

有的示波器中,需要让扫描电压与外部某一信号同步,因此设有“触发选择”键,可选择外触发工作状态,相应设有“外触发”信号输入端。

四、 示波器的应用1、示波器观察电信号波形。

将待观察信号从1Y 或2Y 端接入加到Y 偏转板,X 偏转板加上扫描电压信号,调节辉度旋钮、聚集旋钮、x 、y 位移旋钮,调节电压偏转因数旋钮和扫描时间旋钮,再调节同步触发电平旋钮,即看到待观察信号波形。

2、测量电压利用示波器可以方便测出电压值,实际上示波器所做的任何测量都归结为电压的测量。

其原理基于被测量的电压使电子束产生与之成正比的偏转。

计算公式为 ()y U t yk (8-1)式中,y 为电子束沿y 轴方向的偏转量,用格数(DIV )表示;y k 为示波器y 轴的电压偏转因数(V/DIV )即(伏/格)。

3、测量频率(1)周期换算法周期换算法所依据的原理是频率与周期成倒数关系:Tf 1=(8-2)信号的周期可以用扫描速度值乘以被测信号波形的又一个周期在荧光屏上的水平偏转距离而求得T t x =⋅(T=扫描速度×一个周期水平距离),故信号的频率便可以算出。

(2)李萨如图形法 设将未知频率f y 的电压U y 和已知频率f x 的电压U x (均为正弦电压),分别送到示波器的Y 轴和X 轴,则由于两个电压的频率、振幅和相位的不同,在荧光屏上将显示各种不同波形,一般得不到稳定的图形,但当两电压的频率成简单整数比时,将出现稳定的封闭曲线,称为李萨如图形。

根据这个图形可以确定两电压的频率比,从而确定待测频率的大小。

图8列出各种不同的频率比在不同相位差时的李萨如图形,不难 得出:所以未知频率x yxy f N N f =(8-3) 【实验内容及要求】1、示波器:辉度、聚焦、水平和竖直位移通道选择、触发、电平、幅度因子、扫描因子;2、信号源:频率、信号幅度、波形选择。

3、连接信号源与示波器:信号源输出正弦波信号、调节示波器,出现稳定的正弦波,根据yx xy N N f X f Y 点数垂直直线与图形相交的点数水平直线与图形相交的轴电压的频率加在轴电压的频率加在=图8-8 李莎如图波形和幅度因子算出电压有效值,波形和扫描因子算出信号频率。

4、将示波器置非扫描档,外接两个信号源合成利萨如图。

【实验数据记录与处理】Hz测定正弦波电压和频率的表格f=理论【思考题】1. 示波器为什么能显示被测信号的波形?2. 荧光屏上无光点出现,有几种可能的原因?怎样调节才能使光点出现?3. 荧光屏上波形移动,可能是什么原因引起的【附EM1643型函数发生器介绍】(1)电源开关(POWER):按入开。

(2)功能开关(FUNCTION):波形选择正弦波 方波和脉冲波 三角波和锯齿波(3)频率微调旋钮FREQVAR :频率复盖范围10倍。

相关文档
最新文档