概率与数理统计第二次作业

合集下载

概率论与数理统计(二)试题及答案.

概率论与数理统计(二)试题及答案.

全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。

错选错选、、多选或未选均无分选均无分。

1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。

概率论与数理统计习题二答案

概率论与数理统计习题二答案

概1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。

解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=⨯===P X P36261616161)"1,2""2,1(")3(1=⨯+⨯=⋃==P X P363616161616161)"1,3""2,2""3,1(")4(1=⨯+⨯+⨯=⋃⋃==P X P ……2P (X 2=1)=P ("1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃)=36112求X 的分布律。

解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P 3、进行重复独立试验。

设每次试验成功的概率为)10(<<p p(1) 将试验进行到出现一次成功实验为止,以X 表示所需试验的次数,此时称X 服从参数为p 的几何分布。

求X 的分布律。

(2) 将试验进行到出现r 次成功为止,以Y 表示所需试验的次数,此时称Y 服从参数为r 、p 的巴斯卡分布。

求Y 的分布律。

解:(1){},......2,1,)1(1=-==-k p p k X P k (k-1次未成功,最后一次成功)(2){},......1,,)1(11+=-==---r r k p p C k X P rk r r k解:(1)是 (2)不是,因概率之和不为15、(1)设随机变量X 的分布律为{}N k Nak X P .....,2,1,===试确定常数a(2)设随机变量X 的分布律为{}.....2,1,32=⎪⎭⎫⎝⎛⋅==k b k X P k试确定常数b(3)设随机变量X 的分布律为{}0......2,1,0,!>=⋅==λλk k c k X P k为常数,试确定常数c 解:(1){}111====∑∑==a Nak X P Nk Nk , 1=∴a (2){}1231323211==-=⎪⎭⎫⎝⎛⋅==∑∑∞=∞=b b b k X P k kk , 21=∴b(3){}1!==⋅==∑∑∞=∞=λλe c k c k X P k kk , λ-=∴e c6、设随机变量X 的分布律为{}5,4,3,2,1,15===k kk X P 其分布函数为)(x F ,试求:(1)⎭⎬⎫⎩⎨⎧<<2521X P , (2){}21≤≤X P , (3)⎪⎭⎫⎝⎛51F 解:(1){}{}212521=+==⎭⎬⎫⎩⎨⎧<<X P X P X P 51152151=+=(2){}21≤≤X P {}{}21=+==X P X P 51152151=+= (3)⎪⎭⎫⎝⎛51F051=⎭⎬⎫⎩⎨⎧≤=X P7、一大楼装有5个同类型的供水设备。

《概率论与数理统计》在线作业二 15秋解答

《概率论与数理统计》在线作业二 15秋解答

北交《概率论与数理统计》在线作业二一、单选题(共 30 道试题,共 75 分。

)1. 如果X与Y这两个随机变量是独立的,则相关系数为(). 0. 1. 2. 3正确答案:2. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然(). 不独立. 独立. 相关系数不为零. 相关系数为零正确答案:3. 在参数估计的方法中,矩法估计属于()方法. 点估计. 非参数性. 极大似然估计. 以上都不对正确答案:4. 下列哪个符号是表示不可能事件的. θ. δ. Ф. Ω正确答案:5. 设随机变量X~(n,p),已知X=0.5,X=0.45,则n,p的值是()。

. n=5,p=0.3. n=10,p=0.05. n=1,p=0.5. n=5,p=0.1正确答案:6. 假设事件和满足P(∣)=1,则. 、为对立事件. 、为互不相容事件. 是的子集. P()=P()正确答案:7. 进行n重伯努利试验,X为n次试验中成功的次数,若已知X=12.8,X=2.56 则n=(). 6. 8. 16. 24正确答案:8. 有两批零件,其合格率分别为0.9和0.8,在每批零件中随机抽取一件,则至少有一件是合格品的概率为. 0.89. 0.98. 0.86. 0.68正确答案:9. 点估计( )给出参数值的误差大小和范围. 能. 不能. 不一定. 以上都不对正确答案:10. 不可能事件的概率应该是. 1. 0.5. 2. 1正确答案:11. 设X,Y为两个随机变量,已知ov(X,Y)=0,则必有()。

. X与Y相互独立. (XY)=X*Y. (XY)=X*Y. 以上都不对正确答案:12. 一口袋装有6只球,其中4只白球、2只红球。

从袋中取球两次,每次随机地取一只。

采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率(). 4/9. 1/15. 14/15. 5/9正确答案:13. 设,,是两两独立且不能同时发生的随机事件,且P()=P()=P()=x,则x的最大值为()。

概率论与数理统计第2章作业题解(初稿)(精编文档).doc

概率论与数理统计第2章作业题解(初稿)(精编文档).doc

【最新整理,下载后即可编辑】第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式. 解:并且,361)12()2(====X P XP ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。

即36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12) 2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k XP ,得10()1kkk k aea e ∞∞--====∑∑,即1111=---e ae 。

故 1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7 和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P ,两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯=2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求 )31()1(≤≤X P)5.25.0()2(<<X P解:(1)52153152151)31(=++=≤≤X P(2))2()1()5.25.0(=+==<<X P X P X P 51152151=+=2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P}3{)2(≥X P 解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2)(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。

概率论与数理统计(二)试题及答案

概率论与数理统计(二)试题及答案

概率论与数理统计B一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对4.某一随机变量的分布函数为()3xxa be F x e +=+,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = .2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。

设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)概率论与数理统计B 答案一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分 四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为因此,16.310.01011.0811.0509.0417.0203.0139.00)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=⋅ηξE-------10分另解:若ξ与η相互独立,则应有P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2); P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2);因此,)1()0()2,1()2,0()1,1()1,0(============ξξηξηξηξηξP P P P P P但10.012.003.005.0≠,故ξ与η不相互独立。

概率论与数理统计配套习题

概率论与数理统计配套习题

Z
=
1, 0,
如果 X + Y 为零或偶数; 如果 X + Y 为奇数.
第三章 连续型随机变量及其分布 第五次作业
3.1 设随机变量 X 服从二项分布 B(2,0.4) .试求 X 的分布函数,并作出它的图像.
8
学号
专业
姓名
作业号
3.4
cx3, 已知随机变量 X 的密度函数为 f (x) =
0 < x < 1; 确定常数 c 的值,并求出 P(−1 < X < 0.5) 与分布函数.

数为 λ p 的泊松分布.[提示: P(Y= k=) ∑ P( X= n)P(Y= k X= n) .] n=k
7
学号
专业
姓名
作业号
2.26 已知 X 与Y 的联合概率函数如下.(1)分别求U = max{X ,Y},V = min{X ,Y}的概率函数;(2)试
求U 与V 的联合概率函数.
X
Y -2 -1 0 1 4
1.27 已知甲袋中装有 a 只红球, b 只白球;乙袋中装有 c 只红球, d 只白球.试求下列事件的概率:(1)合并 两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红 球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.15 某商店出售晶体管,每盒装 100 只,且已知每盒混有 4 只不合格品.商店采用“缺一赔十”的销售方 式:顾客买一盒晶体管,如果随机地取 1 只发现是不合格品,商店要立刻把 10 只合格品的晶体管放在盒子 中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取 3 只进行测试,试求他发现全是不合格 品的概率.

概率论与数理统计阶段练习2参考答案

概率论与数理统计阶段练习2参考答案

概率论与数理统计阶段练习2参考答案《概率论与数理统计》阶段练习2参考答案1、一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.2、设随机变量X 的概率分布为:0,,2,1,0,!}{>===λλ k k a K X P k.试确定常数a .解依据概率分布的性质:,1}{0}{==≥=∑kk X P k X P 欲使上述函数为概率分布应有,0≥a,1!0==∑∞=k kae K a λλ 从中解得.λ-=e a注: 这里用到了常见的幂级数展开式.!0∑∞==k kK e λλ3、X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F)2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤= ……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤= )(n x x ≥时,1}{)(=≤=x X P x F故 )(x F<=≥<),,m a x (,1),,2,1(),,m i n (,/),,m i n (,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当4、设随机变量X 的概率分布为4/12/14/1421i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<="" {}.32≤≤x="">5、设随机变量X 的密度函数为≤≤--=其它,011,12)(2x x x f π求其分布函数)(x F . 解∞-=≤=xdt t f x X P x F )(}{)(当,1-<="" f="" p="" 当,11≤≤-x="">--∞--+=xdt t dt x F 121120)(π21arcsin 112++-=x x xππ当,1>x ,1)(=x F 故>≤≤-++--<=.1,111,21 arcsin 111,0)(2x x x x x x x F ππ6、设随机变量X 具有概率密度≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<="" 解="">+∞∞-=,1)(dx x f 得,122433=??-+dx x kxdx 解得,6/1=k 于是X 的概率密度为., 043,2230,6)(≤≤-<≤=其它x x x xx f(2) X 的分布函数为)(x F≥<≤??? ??-+<≤<=??4,143,22630,60,03030x x dt t dt tx dt t x x x .4,143,4/2330,12/0,022??≥<≤-+-<≤<=x x x x x x x (3) ?=≤<2/71)(}2/71{dx x f X P ?-+=2/73312261dx x xdx 2/73231242121-+=x x x ,4841= 或)1()2/7(}2/71{F F X P -=≤<.48/41=7、设某项竞赛成绩N X ~(65, 100),若按参赛人数的10%发奖,问获奖分数线应定为多少?解设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=??-Φ-=x即,9.010650=??-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78分.8、在电源电压不超过200伏,在200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2. 假设电源电压X 服从正态分布N (220,252),试求:(1) 该电子元件损坏的概率α;(2) 该电子元件损坏时,电源电压在200~240伏的概率β.解引入事件=1A {电压不超过200 伏},=2A {电压不超过200~240 伏},=3A {电压超过240伏};=B {电子元件损坏}.由条件知),25,220(~2N X 因此-≤-=≤=2522020025220}200{)(1X P X P A P ;212.0)8.0(1)8.0(=Φ-=-Φ=}240200{)(2≤≤=X P A P ?≤-≤-=8.0252208.0X P .576.01)8.0(2=-Φ= }240{1}240{)(3≤-=>=X P X P A P .212.0)8.0(1=Φ-=(1) 由题设条件,,1.0)|(1=A B P ,001.0)|(2=A B P 2.0)|(3=A B P于是由全概率公式, 有.0642.0)|()()(31===∑=i iiA B P A P B P α(2) 由贝叶斯公式, 有.009.0)()|()()|(222≈==B P A B P A P B A P β9、已知某台机器生产的螺栓长度X (单位:厘米)服从参数,05.10=μ06.0=σ的正态分布. 规定螺栓长度在12.005.10±内为合格品, 试求螺栓为合格品的概率.解根据假设),06.0,05.10(~2N X记,12.005.10-=a ,12.005.10+=b 则}{b X a ≤≤表示螺栓为合格品. 于是}{b X a P ≤≤??-Φ-??? ??-Φ=σμσμa b )2()2(-Φ-Φ=)]2(1[)2(Φ--Φ=1)2(2-Φ=19772.02-?=.9544.0=即螺栓为合格品的概率等于0.9544. 10.已知)5.0,8(~2N X ,求(1) );7(),9(F F (2) }105.7{≤≤X P ;(3) };1|8{|≤-X P(4) }.5.0|9{|<-X P11.某种型号电池的寿命X 近似服从正态分布),(2σμN , 已知其寿命在250小时以上的概率和寿命不超过350小时的概率均为92.36%, 为使其寿命在x -μ和x +μ之间的概率不小于0.9, x 至少为多少?12、设)1,0(~N X , 求2X Y =的密度函数. 解记Y 的分布函数为),(x F Y 则}.{}{)(2x X P x Y P x F Y ≤=≤=显然, 当0<="" 时,;0}{)(2="≤=x">当0≥x 时, }{)(2x X P x F Y ≤=.1)(2}{-Φ=<<-=x x X x P从而2X Y =的分布函数为??<≥-Φ=0,00,1)(2)(x x x x F Y于是其密度函数为<≥='=0,00),(1)()(x x x x x F x f Y Y ?.0,00,212/??<≥=-x x e x x π注: 以上述函数为密度函数的随机变量称为服从)1(2χ分布, 它是一类更广泛的分布)(2n χ在1=n 时的特例. 关于)(2n χ分布的细节将在第五章中给出.13、设随机变量X 服从参数为λ的指数分布, 求 }2,m in{X Y = 的分布函数.解根据已知结果, X 的分布函数≤>-=-0,00,1)(x x e x F x X λ Y 的分布函数}}2,{m in{}{)(y X P y Y P y F Y ≤=≤=}}2,{m in{1y X P >-=}.2,{1y y X P >>-=当2-= 当2≥y 时,.1)(=y F Y代入X 的分布函数中可得.2,120,10,0)(??≥<<-≤=-y y e y y F y Y λ注:在本例中, 虽然X 是连续型随机变量, 但Y 不是连续型随机变量, 也不是离散型随机变量, Y 的分布在2=y 处间断.14、设随机变量X 在)1,0(上服从均匀分布, 求X Y ln 2-=的概率密度. 解在区间 (0,1) 上, 函数,0ln -=x y 02<-='xy 于是y 在区间),0(+∞上单调下降, 有反函数2/)(y e y h x -==从而 ??<<=---其它,010,)()()(2/2/2/y y y X Y e dye d ef y f 已知X 在在(0,1)上服从均匀分布,<<=其它,010,1)(x x f X 代入)(y f Y 的表达式中, 得>=-其它, 00,21)(2/y e y f y X即Y 服从参数为1/2的指数分布.15. 设X 的分布列为10/310/110/110/15/12/52101i p X -试求: (1) 2X 的分布律; (2) 2X 的分布律.16. 设随机变量X 的概率密度为<<=.,0,0,/2)(2其它ππx x x f 求X Y sin =的概率密度.。

概率论与数理统计2答案

概率论与数理统计2答案

概率论与数理统计试卷(C )答案一. 单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题共 5小题,每小题 3分,总计 15分 ) 1、B 2、A 3、C 4、A 5、D二. 填空题(将正确答案填在横线上)(本大题共5小题,每小题 3分,总计15 分 )6、0.4 7. 0 8、9 9、10、三. 计算题 (本大题每小题5分,共 25 分 )11解:(1)设B=“取得的一件是不合格品”,A 1=.“取得的一件产品是甲厂生产的”, A 2=.“取得的一件产品是乙厂生产的”, A 3=.“取得的一件产品是丙厂生产的” 3厂的不合格品率分别为0.01,0.12,0.05,即 P(B| A 1)= 0.01,P(B| A 2)= 0.12,P(B| A 3)= 0.05 而P(A 1)=3/6,P(A 2)=1/6,P(A 3)=2/6。

由全概率公式得 313()()(|)...0.066612100101200541724i i i P B P PB A A ===⨯+⨯+⨯=≈∑ (2) 依题意,已知结果B 已发生,求第三个原因发生的概率,则利用Bayes 公式:2933602920161)B (P )|B (P )(P )B (P )B (P )B |(P A A A A 3333=⨯=== 12.解: (1)))))()))))())[))]]))]()122122222222E(Z E(X+Y E(X E(Y E(Z E(X-Y E(X E(Y D(Z E (X+Y E(X+Y E[(X-)+(Y-)E(X-E(Y-2E[(X-)(Y-)αβαβαβμαβαβαβμαβαβαμβμαμβμαβμμαβσ==+=+==-=-=-==++=+同理可得)())]]))[)()][)()]()()cov )))()()()()1222221222222222222222221212122222222222Z ZD(Z E(Z Z E[(X+Y)(X-Y)E[X Y E(X E(Y D(X E X D(Y E Y (Z ,Z E(Z Z E(Z )E(Z αβσαβαβαβαβαβαβσμαβσμαβμαβσρ=+==-=-=+-+=-+=-=-+--=-=()()()()2222222222αβσαβαβσαβ--==++(2)212120,,||||||||,1Z 220Z Z Z Z Z ραβαβαβ=-===当时不相关,即从而,故当时,不相关13.解:(1)据概率密度的性质知:(2)2(,)11()()1002221x y x y f x y dxdy Ae dxdyA e e A A +∞+∞+∞+∞-+-∞-∞-∞-∞--==+∞+∞=⋅-⋅-=⋅⋅=⎰⎰⎰⎰故(2)11(2)1122211,11)211()()()()11P(-1x y xyX Y e dxdyee e e e e -+------<<-<<==-⋅-=-⋅---⎰⎰(3)11(2)011122(1)00211)(,)212()2(1)021P(x y x y x y x x X Y f x y dxdy e dydxxe e dx e e dxe e -++≤-------+≤==-=-=-=-+⎰⎰⎰⎰⎰⎰(4)(2)0222,(,)2()()(1)(1)00(1)(1),0,0(,)0,.F()xyxyx y x y x y f d d e d d x ye e e e e e x y F x y μνμνμνμνμν-+-∞-∞------===-⋅-=--⎧-->>=⎨⎩⎰⎰⎰⎰故其它14.解:由题设,每一位乘客在第i 站下车的概率均为)9,...2,1i (91=。

19春北交《概率论与数理统计》在线作业二答案

19春北交《概率论与数理统计》在线作业二答案

(单选题)1: 设随机变量的数学期望E(ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P(|ξ-μ|≥3σ)}≤()A: 1/9B: 1/8C: 8/9D: 7/8正确答案:(单选题)2: 环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5&permil; 现取5份水样,测定该有害物质含量,得如下数据:0.53&permil;,0.542&permil;,0.510&permil; ,0.495&permil; , 0.515&permil;则抽样检验结果(&nbsp;&nbsp;&nbsp; )认为说明含量超过了规定。

A: 能B: 不能C: 不一定D: 以上都不对正确答案:(单选题)3: 对于任意两个随机变量X和Y,若E(XY)=EX*EY,则()。

A: D(XY)=DX*DYB: D(X+Y)=DX+DYC: X和Y相互独立D: X和Y互不相容正确答案:(单选题)4: 设X,Y为两个随机变量,则下列等式中正确的是A: E(X+Y)=E(X)+E(Y)B: D(X+Y)=D(X)+D(Y)C: E(XY)=E(X)E(Y)D: D(XY)=D(X)D(Y)正确答案:(单选题)5: 设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。

A: n=5,p=0.3B: n=10,p=0.05C: n=1,p=0.5D: n=5,p=0.1正确答案:(单选题)6: 已知随机变量X~N(-3,1),Y~N(2,1),且X与Y相互独立,Z=X-2Y+7,则Z~A: N(0,5)B: N(1,5)C: N(0,4)D: N(1,4)正确答案:(单选题)7: 某门课只有通过口试及笔试两种考试方可结业。

某学生通过口试的概率为80%,通过笔试的概率为65%。

至少通过两者之一的概率为75%,问该学生这门课结业的可能性为()A: 0.6B: 0.7C: 0.3D: 0.5正确答案:(单选题)8: 事件A与B互为对立事件,则P(A+B)=A: 0B: 2坏的概率依次为0.3,0.2,0.1,则电路断路的概率是A: 0.325B: 0.369C: 0.496D: 0.314正确答案:(单选题)10: 进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,DX=2.56 则n=()A: 6B: 8C: 16D: 24正确答案:(单选题)11: 利用样本观察值对总体未知参数的估计称为( )A: 点估计B: 区间估计C: 参数估计D: 极大似然估计正确答案:(单选题)12: 设服从正态分布的随机变量X的数学期望和均方差分别为10和2,则变量X落在区间(12,14)的概率为()A: 0.1359B: 0.2147C: 0.3481D: 0.2647正确答案:(单选题)13: 如果随机变量X和Y满足D(X+Y)=D(X-Y),则下列式子正确的是()A: X与Y相互独立B: X与Y不相关C: DY=0D: DX*DY=0正确答案:(单选题)14: 设A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 ( )A: “甲种产品滞销或乙种产品畅销”;B: “甲种产品滞销”;C: “甲、乙两种产品均畅销”;D: “甲种产品滞销,乙种产品畅销”.正确答案:(单选题)15: 对以往的数据分析结果表明当机器调整得良好时,产品的合格率为 90% , 而当机器发生某一故障时,其合格率为 30% 。

概率论与数理统计第2章作业题解(初稿)

概率论与数理统计第2章作业题解(初稿)

第二章作业题解:2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和,求X 的概率分布,并验证其满足(222)式.解:2 36 ; 436 ;分别用 A i , B i (i 1,2)表示甲乙第一、二次投中,则P(A 2) 0.3,P(BJ P(B 2) 0.4,P(Bj P(B 2) 0.6,两人两次都未投中的概率为:P(A 1A 2B 1 B 2) 0.3 0.3 0.6 0.6 0.0324,两人各投中一次的概率为:P (A 1A 2瓦B 2)P (AX 瓦BJ P (A 2A 1B ^B 2) P (A 1A 2B 2B 1) 4 0.7 0.3 0.4 0.6 0.2016两人各投中两次的概率为:P(A 1A 2B 1B 2) 0.0784。

所以:(1)两人投中次数相同的概率为 0.0324 0.2016 0.0784 0.3124(2) 甲比乙投中的次数多的概率为:2,3,4,5,6,7,8,9,10,11,1。

并且,P(X 2) P(X 12) 36 ; P(X3) P(X 11)P(X4) P(X10) 336 ; P(X5) P(X9)56P(X 6) P(X 8) —;P(X 367)。

36即 P(Xk)6 |7 k| (k =2,3,4,5,6「,7,8,9 =10,11,12)2.2 设离散型随机变量的概率分布为P{X k} ae k , k 1,2 ,试确定常数a.解: 根据k P(X k) 1,得k kaei 1、ka(e )k 01,即ae 11 e 11。

2.3 和0.4 ,今甲、 甲、乙两人投篮时,命中率分别为0.7 (1)两人投中的次数相同;(2)甲比乙投中的次数多乙各投篮两次, 求下列事件的概率:解: P(AJ P(A 2) 0.7,P(A) 由表格知XP(A I A 2B I B 2)P( A 1A 2 B 2 B I ) P( A 1A 2 B 1B 2) P (A 1A 2 Bi B 2) P( A 1A 2 B1B 2)2 0.49 0.4 0.6 0.49 0.362 0.21 0.360.56281 23 2 解:(1)P(1 X 3)15 15 1551 21 (2) P(0.5 X 2.5) P(X 1) P(X 2)15 15512.5设离散型随机变量 X 的概率分布为P{X k} r ,k 1,2,3,,,求2k2.6设事件A 在每次试验中发生的概率均为 0.4 ,当A 发生3次或3次以上时,指示灯发出信号,求下列事件的概率:(1)进行4次独立试验,指示灯发出信号;(2)进行5次独立试验,指示灯发出信号.解: (1)P(X 3) P(X 3) P(X 4)334C 40.4 0.6 0.4 0.1792(2) P(X 3) P(X 3) P(X 4) P(X 5)C ;0.43 0.62 C ;0.440.6 0.450.31744 .2.7某城市在长度为t (单位:小时)的时间间隔内发生火灾的次数 X 服从参数为0.5t 的泊松分布,且与时间间隔的起点无关,求下列事件的概率:(1) 某天中午12时至下午15时未发生火灾; (2) 某天中午12时至下午16时至少发生两次火灾.k1 5解:(1) P(X k) e ,由题意, 0.5 3 1.5,k 0,所求事件的概率为 e ..k!2.4设离散型随机变量 X 的概率分布为P{Xk k} i5,k 1Z3,4,5,求(1) P(1 X 3)(2) P(0.5 X 2.5)(1) P{X 2,4,6 };⑵ P{X 3}解:(1)P{X2,4,62222(1(2) P{X 3}1 P{X1} P{X2}⑵P(X 2) 1 e e 1 e e ,由题意,0.5 4 1.5,所求事件0! 1!的概率为1 3e2.8为保证设备的正常运行,必须配备一定数量的设备维修人员 •现有同类设备180台,且各台设备工作相互独立,任一时刻发生故障的概率都是 0.01,假设一台设备的故障由一人进 行修理,问至少应配备多少名修理人员,才能保证设备发生故障后能得到及时修理的概率不 小于0.99? 解:设应配备 m 名设备维修人员。

概率论与数理统计第二次在线作业

概率论与数理统计第二次在线作业

第二次在线作业1.(2.5分)A、.B、.C、.D、.我的答案:A 2.(2.5分)A、.B、.C、.D、.我的答案:B 3.(2.5分)A、.B、.C、.D、.我的答案:D 4.(2.5分)A、.B、.C、.D、.我的答案:B 5.(2.5分)A、.B、.C、.D、.我的答案:B 6.(2.5分)A、.B、.C、.D、.我的答案:C 7.(2.5分)A、.B、.C、.D、.我的答案:D 8.(2.5分)A、.B、.C、.D、.我的答案:D 9.(2.5分)A、.B、.C、.D、.我的答案:D 10.(2.5分)A、.B、.C、.我的答案:A 11.(2.5分)A、.B、.C、.D、.我的答案:C 12.(2.5分)A、.B、.C、.D、.我的答案:D 13.(2.5分)A、.B、.C、.D、.我的答案:C 14.(2.5分)B、.C、.D、.我的答案:B 15.(2.5分)A、.B、.C、.D、.我的答案:A 16.(2.5分)A、.B、.C、.D、.我的答案:B 17.(2.5分)A、.B、.C、.D、.我的答案:D 18.(2.5分)A、.B、.C、.D、.我的答案:B 19.(2.5分)A、.B、.C、.D、.我的答案:A 20.(2.5分)A、.B、.C、.D、.我的答案:A 21.(2.5分)A、.B、.C、.D、.我的答案:D 22.(2.5分)A、.B、.C、.D、.我的答案:B 23.(2.5分)A、.B、.C、.D、.我的答案:D 24.(2.5分)A、.B、.C、.D、.我的答案:C 25.(2.5分)A、.B、.C、.D、.我的答案:A 26.(2.5分)A、.B、.C、.D、.我的答案:C 27.(2.5分)A、.B、.C、.D、.我的答案:C 28.(2.5分)A、.B、.C、.D、.我的答案:C 29.(2.5分)A、.B、.C、.D、.我的答案:A 30.(2.5分)A、.B、.C、.D、.我的答案:D 31.(2.5分)A、.B、.C、.D、.我的答案:C 32.(2.5分)A、.B、.C、.D、.我的答案:B 33.(2.5分)A、.B、.C、.D、.我的答案:C 34.(2.5分)A、.B、.C、.D、.我的答案:D 35.(2.5分)A、.B、.C、.D、.我的答案:D 36.(2.5分)A、.B、.C、.D、.我的答案:D 37.(2.5分)A、.B、.C、.D、.我的答案:D 38.(2.5分)A、.B、.C、.D、.我的答案:A 39.(2.5分)A、.B、.C、.D、.我的答案:B 40.(2.5分)A、.B、.C、.D、.我的答案:D。

概率论与数理统计第二阶段作业答案

概率论与数理统计第二阶段作业答案

沈阳铁路局学习中心第一部分:必须掌握的重点理论知识习题。

一、填空:1、某人投篮命中率为54,直到投中为止,所用投球数为4的概率为___6254________。

2、已知,31,9)Y (D ,16)X (D X Y =ρ== 则.___36___)Y 2X (D =- 3、设总体X 服从正态分布),,0(2σN 从总体中抽取样本,,,,4321X X X X 则统计量24232221X X X X ++服从_______)2,2(F ______________分布。

4、设总体X 服从正态分布),1,(μN 其中μ为未知参数,从总体X 中抽取容量为16的样本,样本均值,5=X 则总体均值μ的%95的置信区间为____(4.51,5.49)____。

(96.1975.0=u )5、若),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,则Y X Z +=服从______),(222121σσμμ++N ______分布。

6、设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___0.45___.7、甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为____1/2___.8、设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___5/4____.9、 设两位化验员A ,B 独立地对某中聚合物含氯两用同样的方法各做10次测定,其测定值的样本方差依次为2222,.6065.0,5419.0B A B A σσS S 设==分别为A ,B 所测定的测定值总体的方差,设总体均为正态的。

北交《概率论与数理统计》在线作业二

北交《概率论与数理统计》在线作业二

北交《概率论与数理统计》在线作业二一、单选题(共30道试题,共75分。

)得分:751.设离散型随机变量X的取值是在2次独立试验中事件A发生的次数,而在每次试验中事件A发生的概率相同并且已知,又设EX=1.2。

则随机变量X的方差为()A. 0.48B. 0.62C. 0.84D. 0.96正确答案:A满分:2.5分得分:2.52.200个新生儿中,男孩数在80到120之间的概率为(),假定生男生女的机会相同A. 0.9954B. 0.7415C. 0.6847D. 0.4587正确答案:A满分:2.5分得分:2.53.如果X与Y这两个随机变量是独立的,则相关系数为()A. 0B. 1C. 2D. 3正确答案:A满分:2.5分得分:2.54.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A 不发生的概率相等,则P(A)=A. 1/4B. 1/2C. 1/3D. 2/3正确答案:D满分:2.5分得分:2.55.参数估计分为( )和区间估计A. 矩法估计B. 似然估计C. 点估计D. 总体估计正确答案:C满分:2.5分得分:2.56.已知随机事件A 的概率为P(A)=0.5,随机事件B的概率P(B)=0.6,且P(B︱A)=0.8,则和事件A+B的概率P(A+B)=()A. 0.7B. 0.2C. 0.5D. 0.6正确答案:A满分:2.5分得分:2.57.已知P(A)=0.3,P(B)=0.4,P(AB)=0.2,则P(B|A)=________.A. 1/3B. 2/3C. 1/2D. 3/8正确答案:B满分:2.5分得分:2.58.如果随机变量X服从标准正态分布,则Y=-X服从()A. 标准正态分布B. 一般正态分布C. 二项分布D. 泊淞分布正确答案:A满分:2.5分得分:2.59.某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,则同时订两种报纸的住户的百分比是A. 20%B. 30%C. 40%D. 15%正确答案:B满分:2.5分得分:2.510.设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y()A. 不相关的充分条件,但不是必要条件B. 独立的充分条件,但不是必要条件C. 不相关的充分必要条件D. 独立的充要条件正确答案:C满分:2.5分得分:2.511.对于任意两个事件A与B,则有P(A-B)=().A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(AB)正确答案:C满分:2.5分得分:2.512.设P(A)=a,P(B)=b,P(A+B)=C,则B的补集与A相交得到的事件的概率是A. a-bB. c-bC. a(1-b)D. a(1-c)正确答案:B满分:2.5分得分:2.513.电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通A. 59B. 52C. 68D. 72正确答案:C满分:2.5分得分:2.514.下列哪个符号是表示必然事件(全集)的A. θB. δC. ФD. Ω正确答案:D满分:2.5分得分:2.515.事件A={a,b,c},事件B={a,b},则事件AB为A. {a}B. {b}C. {c}D. {a,b}正确答案:D满分:2.5分得分:2.516.设随机变量X和Y独立,如果D(X)=4,D(Y)=5,则离散型随机变量Z=2X+3Y的方差是()A. 61B. 43C. 33D. 51正确答案:A满分:2.5分得分:2.517.甲乙两人投篮,命中率分别为0.7,0.6,每人投三次,则甲比乙进球数多的概率是A. 0.569B. 0.856C. 0.436D. 0.683正确答案:C满分:2.5分得分:2.518.某门课只有通过口试及笔试两种考试方可结业。

概率论与数理统计习题2参考答案

概率论与数理统计习题2参考答案

P( X ≥ 3) = P( X = 3) + P( X = 4) = C 40.4 30.61 + C 40.440.60 = 0.1792
(2)设 X 表示 5 次独立试验中 A 发生的次数,则 X ~B(5,0.4)
P ( X ≥ 3) = P ( X = 3) + P ( X = 4) + P( X = 5) = C 50.4 30.6 2 + C 50.4 40.6 1 + C 50.4 50.6 0 = 0.31744
解得 K 的取值范围为 [−∞,−1] ∪ [3,+∞ ] ,又随机变量 K~U(-2,4),则有实根的概率为
2
2
p=
[−1 − (−2) + 4 − 3] 1 = 4 − (−2) 3 1 ) 200
1 1 1 x − x 100 − 1 − 200 e dx = − e 200 | = 1 − e 2 0 200
4
P{ X = 2} = 1 − P{ X = 0} − P{ X = 1} = 1 −
12 32 3 − = 19 95 95
2.17 解:X 的可能取值为 1,2,3。因为 P( X = 1) =
C 42 6 = = 0.6 ; 3 C 5 10
P( X = 3) =
1 1 = = 0.1,P( X = 2) = 1 − 0.6 − 0.1 = 0.3 ; 3 C5 10
= Φ (0.83) − Φ (−0.83) = 2Φ (0.83) − 1 = 2 × 0.7967 − 1 = 0.5934 2.15 解:设车门的最低高度应为 a 厘米,已知 X~N(170,62)。由题意可 a − 170 P{ X ≥ a} = 1 − P{ X ≤ a} ≤ 0.01即 P{ X ≤ a} = Φ ( ) ≥ 0.99 , 6 查表得

数理统计与概率论习题二答案.ppt

数理统计与概率论习题二答案.ppt
09728则xb408则所求概率为可编辑ppt15211某车间有20部同型号机床每部机床开动的概率为08若假定各机床是否开动彼此独立每部机床开动时消耗的电能为15个单位求这个车间消耗电能不少于270个单位的概率18px19201819202020200802080208设x为20部机床开动的台数0206则xb2008由于每部机床开动时消耗的电能为15个单位则要使车间消耗电能不少于270个单位则至少要开动2701518台机床故所求概率为可编辑ppt16213设x服从泊松分布且已知px1px2求px2pxpx可编辑ppt17215由历史销售记录分析表明某专销店的月销售量件服从参数为8的泊松分布
P(X 2) 1( P X 0 ) P ( X 1 )
1 C 0 . 80 . 2 C 0 . 8 0 . 2
0 4 0 4 1 4 3
0 .9 7 2 8
2.11 某车间有20部同型号机床,每部机床开动的概率 为0.8,若假定各机床是否开动彼此独立,每部机床开动 时消耗的电能为15个单位,求这个车间消耗电能不少于 270个单位的概率 解 设X为20部机床开动的台数, 则X~B(20,0.8) 由于每部机床开动时消耗的电能为15个单位 则要使车间消耗电能不少于270个单位,则至少要 开动270/15=18台机床 故所求概率为
x0 d x , 解 x 0 0 d x + x d x, 0 (2 )F (x ) 0 1 x 0 d x + x d x (2x ) d x, 0 1 1 2 x 00 x + d x (2x ) d x 0 d x , d 0 x 1 2 x0 0x1 1x2 x2
1 ) 由 规 范 性 得 1 () d 解( fxx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》练习作业
一、计算题
2、从5双不同的鞋子中任取4只,这4只鞋子中至少有两只鞋子配成一双的概率是多少?
答:设A 表示事件“4只鞋中至少有2只配成一双”,则- A 表示“4只鞋中没有2只能配成一双”,有利于-
A 的情形共有(10*8*6*4)/4!种(因为不考虑取4只鞋的次序,所以被4!除),所以P(-
A )=8/21,故P(A)=1-P(-
A )≈0.619
3、已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从男女人数相等的人群中随机的挑选一人,恰好是色盲患者,问此人是男性的概率。

答:色盲是在X性染色体上隐性遗传的,男的只要一条隐性就可以得色盲,而女的要2条隐性基因才能得,所以男的比女的多,这也就是0.05*0.05=0.0025的原因。

4、某种产品的商标为“MAXAM”,其中有2个字母脱落,有人捡起随意放回,求放回后仍为“MAXAM”的概率。

答:当两个字母相同时,放回单词的概率为1,当两个字母不同时,放回后单词不变的概率为1/2.所以P=4/20+16/20*1/2=3/5.
5、假设某家庭有三个孩子,在已知至少有一个女孩的条件下,求这个家庭中至少有一个男孩的概率?
答:
14、某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4,如果现在有一个20岁的这种动物, 问它能活到25岁以上的概率是多少?
答:某种动物由出生算起活到10岁的概率为0.9,活到15岁的概率为0.3,现有一个10岁的这种动物,则它能活到15岁的概率是1/3.。

相关文档
最新文档