高三第一学期期末数学理科试卷

合集下载

高三上册数学理科期末试题及答案

高三上册数学理科期末试题及答案

高三上册数学理科期末试题及答案第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。

1.已知平面向量,,且,则实数的值为A.B.C.D.2.设集合,,若,则实数的值为A.B.C.D.3.已知直线平面,直线,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:.若复数满足,则等于A.B.C.D.5.函数在处的切线方程是A.B.C.D.6.某程序框图如右图所示,现输入如下四个函数,则可以输出的函数是A.B.C.D.7.若函数的图象(部分)如图所示,则和的取值是A.B.C.D.8.若函数的零点与的零点之差的绝对值不超过,则可以是A.B.C.D.9.已知,若方程存在三个不等的实根,则的取值范围是A.B.C.D.10.已知集合,。

若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是A.0B.1C.2D.无数个第二卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡上.11.已知随机变量,若,则等于******.12.某几何体的三视图如下右图所示,则这个几何体的体积是******.13.已知抛物线的准线与双曲线相切,则双曲线的离心率******.14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.15.已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是******.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)证明:.17.(本小题满分13分)已知向量(Ⅰ)求的解析式;(Ⅱ)求由的图象、轴的正半轴及轴的正半轴三者围成图形的面积。

2021-2022年高三上数学理科期末考试题及答案

2021-2022年高三上数学理科期末考试题及答案

2021年高三上数学理科期末考试题及答案考试时间 120分钟 郭振亮一. 选择题:本大题共12个小题,每小题5分,满分60分)1.设集合22{|10},{|log 0}A x x B x x =->=>,则A ∩B 等于A. B. C. D.2.下列命题中,真命题的是A.2cos sin ],2,0[≥+∈∃x x x πB., C . D.3.已知中,,,则角等于A .B .C .D .4.已知各项均不为零的数列,定义向量,,. 下列命题中真命题是A. 若总有成立,则数列是等差数列B. 若总有成立,则数列是等比数列C. 若总有成立,则数列是等差数列D. 若总有成立,则数列是等比数列5.设为坐标原点,,若点满足⎪⎩⎪⎨⎧≤≤≤≤≥+--+.21,21,012222y x y x y x则取得最小值时,点的个数是A.1B.2C. 3D.无数个6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产年的累计产量为吨,但如果年产量超过吨,会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是(A )5年 (B )6年 (C )7年 (D )8年7.将一张坐标纸折叠一次,使点(10,0)与(-6,8)重合,则与点(-4,2)重合的点是A.(4,-2) B .(4,-3) C .(3, ) D .(3,-1)8.已知点P 在曲线上移动,在点P 处的切线倾斜角为 ,则 的 取值范围是A. B. C. D.9. 在同一个坐标系中画出函数的部分图象,其中,则下列所给图象中可能正确的是10. 过点可作圆0322222=-++-+a a ax y x 的两条切线,则实数的取值范围为A .或B .C .D .或11.当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 A .2 B.23 C .4 D.4312.已知直线与抛物线相交于两点,为的焦点,若.则A. B. C. D. 第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题;每小题5分,共20分.13.设向量)cos 3,2(),3,sin 4(αα==,且∥,则锐角为______.14.双曲线的渐近线方程为,则双曲线的离心率是 。

高三理科数学第一学期期末质量评估测试试题及答案

高三理科数学第一学期期末质量评估测试试题及答案

山东省聊城一中—上学期高三年级期末综合测试数 学 试 题(理)一.选择题(12⨯5=60)1. 设全集是(){}(){},2|,,,|,+==∈=x y y x A R y x y x U (),124|,⎭⎬⎫⎩⎨⎧=--=x y y x B 则=B C A U( )A. φB. (2,4)C. BD.(){}4,22. 函数()2)1(22+-+=x a x x f 在区间(4,∞-)上是减函数,那么实数a 的取值范围是( )A. )[+∞,3B. (]3,-∞-C. {}3-D. (5,∞-)3. 已知不等式012≥--bx ax 的解集是⎥⎦⎤⎢⎣⎡--31,21,则不等式02<--a bx x 的解集是 ( ) A. (2,3)B. ()(),32,+∞∞-C. (21,31)D. () ⎝⎛∞+⎪⎭⎫∞-,2131,4. 关于函数),(33)(R x x f xx ∈-=-下列三个结论正确的是 ( )(1) )(x f 的值域为R; (2) )(x f 是R 上的增函数;(3) 0)()(,=+-∈∀x f x f R x 成立.A. (1)(2)(3)B. (1)(3)C. (1)(2)D. (2)(3)5. 若数列{}n a 满足),0(*N n q q a n n ∈>=,以下命题正确的是( )(1) {}n a 2是等比数列; (2) ⎭⎬⎫⎩⎨⎧n a 1是等比数列;(3) {}n a lg 是等差数列; (4) {}2lg n a 是等差数列;A. (1)(3)B. (3)(4)C. (1)(2)(3)(4)D.(2)(3)(4) 6. 已知=+++=)2007()2()1(,3sin)(f f f n n f π( )A.3 B.23 C. 0 D. --237. 设βα,为钝角,=+-==βαβα,10103cos ,55sin ( )A .π43 B. π45 C. π47 D. π45或π478. 已知函数)0)(3sin()(>+=ωπωx x f 的最小正周期为π,则该函数图象( )A. 关于点)0,3(π对称; B. 关于直线4π=x 对称; C. 关于点)0,4(π对称; D. 关于直线3π=x 对称;9. 已知向量,夹角为︒60=-⊥+==m m ),()53(,23 ( ) A.2332B. 4229C. 4223D. 294210. 不等式组⎪⎩⎪⎨⎧>-<-1)1(log ,2222x x 的解集为( )A. )3,0(B. )2,3(C. )4,3(D. (2,4) 11. 已知点A(2,3),B(--3,--2).若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k的取值范围是 ( ) A. 43≥k B. 243≤≤k C. 2≥k 或43≤k D. 2≤k 12. 设21,F F 分别是双曲线1922=-y x 的左右焦点。

高三理科上学期期末考试及答案

高三理科上学期期末考试及答案

汕头市金山中学高三上学期期末考试高三理科数学试卷一﹑选择题(每小题5分,共40分)1.已知集合⎭⎬⎫⎩⎨⎧≥-=0)1(3x xx M ,{}R x x y y N ∈+==,132,则M ⋂N = A. ∅ B. {}1≥x x C. {}1>x x D. {}01<≥x x x 或 2.若)(x f 为奇函数且在+∞,0()上递增,又0)2(=f ,则0)()(>--xx f x f 的解集是A.)2,0()0,2(⋃-B.)2,0()2,(⋃-∞C.),2()0,2(+∞⋃-D.),2()2,(+∞⋃--∞3.已知向量a ,b 满足4,1==b a ,且2=⋅b a ,则a 与b 的夹角为A.6πB.4πC.3πD.2π4.已知2tan sin 3,0,cos()26ππαααα⋅=-<<-则的值是 A .0 B .32 C .1 D .125.在等差数列中,21232a a +=,则的值是A. 24B. 48C. 96D. 无法确定6.在O 点测量到远处有一物体在做匀速直线运动,开始时该物体位于P 点,一分钟后,其位置在Q,点且∠POQ =90°,再过二分钟后,该物体位于R 点,且∠QOR =60°,则tan 2∠OPQ 的值等于A .427B .239C .49D .以上均不正确7.已知函数()223a bx ax x x f +++=在1=x 处有极值为10,则()2f 的值等于A.9B.11C.18D. 11或188.已知x 1是方程2010lg =x x 的根,x 2是方程201010=⋅x x 的根,则x 1·x 2=A .22010B .C . 22011D .二﹑填空题(每小题5分,共30分)9.已知等比数列{}n a ,前n 项和为c S nn +=3,其中c 是常数,则数列通项=n a *** . ⒑ 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则a = *** . ⒒如图中的三个直角三角形是一个体积为20cm 3的几何体的三视图,则h = *** cm .}{n a 1532a a +OM12π56πxy12.如图是函数在一个 周期内的图象,、分别是最大、最小值点,且,则= *** , A= *** . 13.设b 3是a -1和a +1的等比中项,则b a 3+的最大值是 *** .⒕已知函数)(x f 满足:),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==, 则=)2010(f *** .三、解答题(共80分)15. 在ABC ∆中,内角,,A B C 的对边分别为c b a ,,,3π=B, 4cos ,5A b ==。

高三理科数学第一学期期末联考试卷

高三理科数学第一学期期末联考试卷

高三理科数学第一学期期末联考试卷高三数学第一学期期末联考试卷(理科)第I卷(选择题,共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设A.B为两个非空子集,定义:,若A={0,2,5}, B={1,2,6},则A+B子集的个数是( )A.29B.28C.27D.262.是虚数单位,复数等于( )A. B. C. D.3.将的图象按向量,)平移,则平移后所得图象的解析式为( ).A. B.C. D.4.已知直线.及平面,下列命题中的真命题是( )A.若,,则∥B.若∥,,则∥C.若∥,∥,则∥D.若,,则∥5.若以连续掷两次骰子分别得到的点数.作为点P的横.纵坐标,则点P在直线下方的概率是( )A. B.C. D.6._年8月在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,的值等于( )A.1B.C. D.-7.函数的图象大致是()8.在的展开式中含有常数项,则正整数的最小值是( )A.4B.5C.6D.79.椭圆(>>)的离心率为,右焦点为F(,),方程的两个实根分别为,,则点( )A.必在圆内B.必在圆上C.必在圆外D.以上三种情形都有可能10.定义运算:,如,则函数的值域为()A.B. C. D.第II卷(非选择题100分)二.填空题:本大题共7小题,每小题4分,共28分.把答案填在题目中横线上.11.若已知随机变量§的分布列为§1234p0.10.20.30.1则=E§=12.若,,(,4 ),∥,则的值是.13.在数列中,若,,则该数列的通项=.14.在的二面角内,放一个半径为10cm的球切两半平面于A.B两点,那么两切点在球面上的最短距离是.15.双曲线(>0,>)的离心率为2,有一个焦点与抛物线的焦点重合,则的值为 .16. 在小时候,我们就用手指练习过数数. 一个小朋友按如图所示的规则练习数数,数到_时对应的指头是.(填出指头的名称,各指头的名称依次为大拇指.食指.中指.无名指.小指).17.任取集合,,,,……,14}中的三个不同数,,,且满足≥3,≥2,则选取这样的三个数方法种数共有.(用数字作答)三.解答题:本大题共5小题,共72分,写出文字说明,证明或演算步骤.18.(本小题满分14分)已知:A.B.C是△ABC的三个内角,向量,),,),且.(1)求角A.(2)若,求.19.(本小题满分14分)右图是一个直三棱柱(以为底面),被一平面所截得的几何体,截面为ABC.已知,∠,,,(I)设点O是AB的中点,证明:∥平面(II)求AB与平面所成角的大小.20. (本小题满分14分)已知函数(a为实常数).(1) 当a =0时,求函数的最小值;(2) 若函数在上是单调函数,求a的取值范围.21.(本小题满分15分)如图,P是抛物线:上一点,直线过点P且与抛物线C交于另一点Q.(1)若直线与过点的切线垂直,求线段PQ中点M的轨迹方程.(2)若直线不过原点且与轴交于点,与轴交于点,试求的取值范围.22.(本小题满分15分)已知函数满足,,;且使成立的实数只有一个.(Ⅰ)求函数的表达式;(Ⅱ)若数列满足,,,,证明:数列是等比数列,并求出的通项公式; (Ⅲ)在(Ⅱ)的条件下,证明:,.数学答题卷(理科)一.选择题(每题5分,共50分)题号12345678910答案二.填空题(每题4分,共28分)11.12.13.14.15.16.17.三.解答题(本大题共有5小题)18.(本小题满分14分)已知:A.B.C是△ABC的三个内角,向量,),,),且.(1)求角A.(2)若,求.19.(本小题满分14分)右图是一个直三棱柱(以为底面),被一平面所截得的几何体,截面为ABC.已知,∠,,,(I)设点O是AB的中点,证明:∥平面(II)求AB与平面所成角的大小.20.(本小题满分14分)已知函数(a为实常数).(1)当a =0时,求函数的最小值;(2)若函数在上是单调函数,求a的取值范围.21.(本小题满分15分)如图,P是抛物线:上一点,直线过点P且与抛物线C交于另一点Q.(1)若直线与过点的切线垂直,求线段PQ中点M的轨迹方程.(2)若直线不过原点且与轴交于点,与轴交于点,试求的取值范围.22.(本小题满分15分)已知函数满足,,;且使成立的实数只有一个. (Ⅰ)求函数的表达式;(Ⅱ)若数列满足,,,,证明:数列是等比数列,并求出的通项公式; (Ⅲ)在(Ⅱ)的条件下,证明:,.参考答案1.B 2.A3.A 4.D5.C 6.D7.D 8.B9.A 10.C11.0.3 2.112.13.14. cm 15.16.食指17.16518.解:(1)∵,且,∴…………………………(3分)∴即……………………………………(5分)∵∴………………………………………………(7分)(2)由题意,得∴即∴………………………………………………10分∵∴………………………………14分19.解: (Ⅰ)证明:作交于,连.则,因为是的中点,所以.则是平行四边形,因此有,平面,且平面则面.……………….7分(Ⅱ)解:如图,过作截面面,分别交,于,, 作于,因为平面平面,则面.连结,则就是与面所成的角.因为,,所以.与面所成的角为.……………….14分解法二:(Ⅰ)证明:如图,以为原点建立空间直角坐标系,则,,,因为是的中点,所以, ,易知,是平面的一个法向量.由且平面知平面.……………….7分(Ⅱ)设与面所成的角为.求得,.设是平面的一个法向量,则由得,取得:.又因为所以,,则.所以与面所成的角为.……………….14分20.解:(1)a = 0时,…………………………………..2分当0<_<1时,当_>1时,…………………………………………..5分∴…………………………………………….7分(2)当a≥0时,在[2,+∞)上恒大于零,即,符合要求;…… 10分当a<0时,令,g (_)在[2,+∞)上只能恒小于零故△=1+4a≤0或,解得:a≤∴a的取值范围是……………………………………………14分21.解:(1)设,,,依题意,,,由已知可得①.......................................2分∴过点P的切线的斜率,∵,∴直线的斜率,∴直线的方程为②.........................4分[解法一] 联立①②消去,得.............................5分∵M是PQ的中点,∴,消去,得,∴PQ中点M的轨迹方程为........................7分[解法二]由,,,得...............5分则, ∴,将上式代入②并整理,得,∴PQ中点M的轨迹方程为........................7分(2)设直线,依题意,则.分别过P.Q作轴,轴,垂足分别为P'.Q',则.由消去_,得③.....................11分[解法一] ∴≥=.∵y1.y2可取一切不相等的正数,∴的取值范围是(2,+)............................... 15分[解法二]∴==.当b>0时,>;当b<0时,.又由方程③有两个相异实根,得△,于是,即.∴.∵当时,可取一切正数,∴的取值范围是(2,+).∴的取值范围是(2,+)..............................15分22.(解:(Ⅰ)由,,,得.………1分由,得.……………………………………………………………2分由只有一解,即,也就是只有一解,∴∴.…………………………………………………………………………………4分∴.故.……………………………………………………………5分(Ⅱ)∵,,∴,,,……………………………6分猜想,.……………………………………………………………7分下面用数学归纳法证明:10 当n=1时,左边=,右边=,∴命题成立. ……………………8分20 假设n=k时,命题成立,即;当n=k+1时,,∴当n=k+1时,命题成立. (10)分由10,20可得,当时,有.∵,∴∴是首项为,公比为的等比数列,其通项公式为.……………11分(Ⅲ)∵,∴…………………………13分.………………………………15分温八中刘洪钊。

高三上学期期末考试(数学理)(附答案)

高三上学期期末考试(数学理)(附答案)

上海市崇明县高三上学期期末考试试卷 高三数学(理科)(满分150分,答题时间120分钟 编辑:刘彦利)注意:在本试卷纸上答题无效,必须在答题纸上的规定位置按照要求答题. 一、填空题(每小题4分,共56分)1、设}5,4,3,2,1{=U ,{}1)43(log 22=+-=x x x M ,那么=M C U .2、若函数)(x f y =是函数x y a log =(1,0≠>a a )的反函数, 且2)1(=-f ,则=)(x f .3、一个三阶行列式按某一列展开等于22113311332232 ba b a ba b a ba ba ++,那么这个三阶行列式可能是 .(答案不唯一) 4、已知6π-=x 是方程3)tan(3=+αx 的一个解,)0(,πα-∈,则=α .5、右图是一个算法的流程图,最后输出的 =W .6、若圆锥的侧面积为π20,且母线与底面所成的角的余弦值为54,则该圆锥的体积为.7、已知二项展开式5522105)1(x a x a x a a ax +⋯+++=-中,803=a ,则5210a a a a +⋯+++等于 .8、复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a .9、已知nS 是数列{}n a 前n 项和,2,111+==+n n a a a (*N n ∈),则limnn n na S →∞=。

10、定义在R 上的函数)(x f 满足⎩⎨⎧---=+)1()()4(log )1(2x f x f x x f 0,0,>≤x x ,计算)2010(f 的值等于 .11、如图,在半径为3的球面上有A 、B 、C 三点,︒=∠90ABC ,BC BA =,球心O 到平面ABC 的距离是223,则B 、C 两点的球面距离是 .12、若命题p :34-x ≤1;命题q :)2)((---m x m x ≤0,且p 是q 的充分不必要条件,则实数m 的取值范围是 .13、给定两个长度为1的平面向量OA 和OB ,它们的夹角为︒120.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若OB y OA x OC +=,其中R y x ∈,,则y x + 的取值范围是 . 14、已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 .二、选择题(每小题4分,共16分)15、公差不为零的等差数列{}n a 的前n 项和为n S . 若31-=a 且4a 是3a 与7a 的等比中项, 则10S 等于 …………………………………………………………………………………( ) (A )18(B )24(C )60(D )9016、函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=4cos 12sin 2ππx x y 的最大值、最小值分别为 …………………………( ) (A )2,2-(B )21,23-(C )21,23(D )23,21- 17、投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数))((mi n ni m -+为实数的概率为 …………………………………………………………………………………………( )((A )31(B )41(C )61(D )12118、定义在R 上的偶函数)(x f 满足:对任意的]0,(,21-∞∈x x )(21x x ≠,有0))()()((1212>--x f x f x x 恒成立. 则当*N n ∈时,有……………………………( )(A ))1()()1(-<-<+n f n f n f (B ))1()()1(+<-<-n f n f n f (C ))1()1()(+<-<-n f n f n f(D ))()1()1(n f n f n f -<-<+三、解答题(本大题共有5题,满分78分,解答下列各题必须写出必要的步骤) 19、(本题满分14分,第1小题6分,第2小题8分) 设函数xx x f 2sin )32cos()(++=π.(1)求函数)(x f 的最大值和最小正周期;(2)设C B A ,,为∆ABC 的三个内角,41)2(-=C f ,且C 为锐角,35=∆ABC S ,4=a , 求c 边的长.20、(本题满分14分,第1小题6分,第2小题8分)如图,在直四棱柱D C B A ABCD ''''-中,底面ABCD 为等腰梯形,AB ∥CD ,4=AB , 2==CD BC ,21=AA ,E 、F 、G 分别是棱11B A 、AB 、11D A 的中点.(1)证明:直线GE ⊥平面1FCC ; (2)求二面角C FC B --1的大小.ABF CDEGA1D1 C1B121、(本题满分16分,第1小题3分,第2小题5分,第3小题8分)某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。

高三数学上学期期末考试试卷 理含解析 试题

高三数学上学期期末考试试卷 理含解析 试题

实验2021-2021学年度上学期期末考试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日高三理科数学试题第一卷选择题〔一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的〕1.集合A=,B=,那么A B中元素的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,根据直线与圆的位置关系,即可求解集合中元素的个数,得到答案。

【详解】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又由圆与直线相交于两点,那么中有两个元素,应选C.【点睛】求集合的根本运算时,要认清集合元素的属性(是点集、数集或者其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.,是虚数单位,假设,,那么〔〕A. 1或者B. 或者C.D.【答案】A【解析】由得,所以,应选A.【名师点睛】复数的一共轭复数是,据此结合条件,求得的方程即可.3.某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图复原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,那么AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.应选:.4.函数的最小正周期为〔〕A. B. C. D.【答案】C【解析】分析:根据正弦函数的周期公式直接求解即可.详解:由题函数的最小正周期应选C.点睛:此题考察正弦函数的周期,属根底题.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为,那么展开式中含的项为,展开式中含的项为,故的系数为,选C.【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项一共有几项,进展相加即可.这类问题的易错点主要是未能分析清楚构成这一项的详细情况,尤其是两个二项展开式中的不同.6.椭圆的离心率是A. B. C. D.【答案】D【解析】【分析】根据椭圆的方程求得,得到,再利用离心率的定义,即可求解。

高三理科数学第一学期期末考试

高三理科数学第一学期期末考试

高三理科数学第一学期期末考试数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前;考生务必将自己的姓名、准考证号、考试科目、试卷类型用铅笔涂写在答题卡上。

2.第小题选出答案后;用铅笔把题答卡上对应题目的答案标号涂黑。

如需改动;用橡皮擦干净后;再选涂其他答案标号。

一、选择题:本大题共12小题;每小题5分;共60分。

在每小题给出的四个选项中;只有一项是符合题目要求的。

1.已知集合A C xy x A R U U 则集合},11|{,-=== ( )A .}10|{<≤x xB .}10|{≥<x x x 或C .}1|{≥x xD .}0|{<x x2.已知向量b a b a n b a ⋅=+==||),,2(),1,1(若;则n= ( )A .-3B .-1C .1D .33.有关命题的说法错误的是( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则” B .“x=1”是“0232=+-x x ”的充分不必要条件 C .若q p ∧为假命题;则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ;则01,:2≥++∈∀⌝x x R x p 均有4.三视图如右图的几何体的全面积是 ( )A .22+B .21+C .32+D .31+5.已知函数]4,3[)0(sin 2)(ππωω->=在区间x x f上的最大值是2;则ω的最小值等于( )A .32 B .23C .2D .36.设a,b 是两个实数;且a ≠b ;①,322355b a b a b a +>+②)1(222--≥+b a b a ;③ 2>+abb a 。

上述三个式子恒成立的有 ( )A .0个B .1个C .2个D .3个7.各项都是正数的等比数列}{n a 的公比1≠q ;且132,21,a a a 成等差数列;则5443a a a a ++的值为( )A .251- B .215+ C .215- D .215+或215- 8.设)()(,)()(x f y x f y x f x f '=='和将的导函数是函数的图象画在同一个直角坐标系 中;不可能正确的是( )9.已知}02,0,4|),{(},0,0,6|),{(≥-≥≤=≥≥≤+=Ωy x y x y x A y x y x y x ;若向区域Ω上随机投一点P ;则点P 落入区域A 的概率为 ( )A .92B .32 C .31 D .91 10.6个人分乘两辆不同的汽车;每辆车最多坐4人;则不同的乘法方法数为( )A .40种B .50种C .60种D .70种11.已知抛物线1)0(222222=->=by a x p px y 与双曲线有相同的焦点F ;点A 是两曲线的交点;且AF ⊥x 轴;则双曲线的离心率为 ( )A .215+ B .13+ C .12+D .2122+ 12.一次研究性课堂上;老师给出函数)(||1)(R x x xx f ∈+=;甲、乙、丙三位同学在研究此函数时分别给出命题:甲:函数)1,1()(-的值域为x f ; 乙:若21x x ≠则一定有)()(21x f x f ≠;丙:若规定*||1)()),(()(),()(11N n x n xx f x f f x f x f x f n n n ∈+===-对任意则恒成立你认为上述三个命题中正确的个数有( )A .3个B .2个C .1个D .0个第Ⅱ卷(非选择题;共90分)注意事项:1.用0.5mm 的中性笔答在答题纸相应的位置内。

高三理科数学上册期末试卷及答案解析

高三理科数学上册期末试卷及答案解析

高三理科数学上册期末试卷及答案解析参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={x|1A.{1}B.{2,3}C.{0,1}D.{2,3,4}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,找出M与N的交集即可.【解答】解:由N中不等式变形得:log22=1解得:0∵M={0,1,2,3,4},MN={1},故选:A.2.已知aR,则|a﹣1|+|a|1是函数y=ax在R上为减函数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出不等式|a﹣1|+|a|1的解集,结合指数函数的性质判断充分必要性即可.【解答】解:a0时:|a﹣1|+|a|=1﹣a﹣a1,解得:a0,无解,0a1时:|a﹣1|+|a|=1﹣a+1=1,成立,a1时:|a﹣1|+|a|=2a﹣11,解得:a1,无解,故不等式的解集是a[0,1],若函数y=ax在R上为减函数,则a(0,1),故|a﹣1|+|a|1是函数y=ax在R上为减函数的必要不充分条件.3.已知向量=(2,3),=(﹣1,2),若﹣2 与非零向量m +n 共线,则等于()A.﹣2B.2C.﹣D.【考点】平面向量共线(平行)的坐标表示.【分析】先求出﹣2 和m +n ,再由向量共线的性质求解.【解答】解:∵向量=(2,3),=(﹣1,2),﹣2 =(2,3)﹣(﹣2,4)=(4,﹣1),m +n =(2m﹣n,3m+2n),∵ ﹣2 与非零向量m +n 共线,,解得14m=﹣7n,=﹣ .故选:C.4.如图是一个几何体的三视图,则这个几何体的表面积是()A.84B.C.D.【考点】由三视图求面积、体积.【分析】几何体为侧放的五棱柱,底面为正视图中的五边形,棱柱的高为4. 【解答】由三视图可知几何体为五棱柱,底面为正视图中的五边形,高为4. 所以五棱柱的表面积为(44﹣)2+(4+4+2+2+2 )4=76+48 .故选B.5.已知平面与平面交于直线l,且直线a,直线b,则下列命题错误的是()A.若,ab,且b与l不垂直,则alB.若,bl,则abC.若ab,bl,且a与l不平行,则D.若al,bl,则【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面平行或垂直以及平面和平面平行或者垂直的性质和判定定理进行判断即可.【解答】解:A.若,ab,且b与l不垂直,则al,正确B.若,bl,则b,∵a,ab,正确C.∵a与l不平行,a与l相交,∵ab,bl,b,则正确.D.若al,bl,不能得出,因为不满足面面垂直的条件,故D错误,故选:D6.已知函数f(x)=sin(2x+),其中为实数,若f(x)|f()|对xR恒成立,且f()f(),则f(x)的单调递增区间是()A.[k﹣,k+ ](kZ)B.[k,k+ ](kZ)C.[k+ ,k+ ](kZ)D.[k﹣,k](kZ)【考点】函数y=Asin(x+)的图象变换.【分析】由若对xR恒成立,结合函数最值的定义,我们易得f()等于函数的值或最小值,由此可以确定满足条件的初相角的值,结合,易求出满足条件的具体的值,然后根据正弦型函数单调区间的求法,即可得到答案.【解答】解:若对xR恒成立,则f()等于函数的值或最小值即2 +=k+ ,kZ则=k+ ,kZ又即sin0令k=﹣1,此时= ,满足条件令2x [2k﹣,2k+ ],kZ解得x故选C7.已知实数列{an}是等比数列,若a2a5a8=﹣8,则+ + ()A.有值B.有最小值C.有值D.有最小值【考点】等比数列的通项公式.【分析】先求出a5=﹣2,再由+ + =1+ + ,利用均值定理能求出+ + 有最小值 .【解答】解:∵数列{an}是等比数列,a2a5a8=﹣8,,解得a5=﹣2,+ + = + + =1+ + 1+2 =1+2 =1+2 = ,+ + 有最小值 .故选:D.8.已知F1,F2分别是双曲线C:﹣=1(a0,b0)的左、右焦点,其离心率为e,点B的坐标为(0,b),直线F1B与双曲线C的两条渐近线分别交于P、Q两点,线段PQ的垂直平分线与x轴,直线F1B的交点分别为M,R,若△RMF1与△PQF2的面积之比为e,则双曲线C的离心率为()A. B. C.2 D.【考点】双曲线的简单性质.【分析】分别求出P,Q,M的坐标,利用△RMF1与△PQF2的面积之比为e,|MF2|=|F1F2|=2c,可得3c=xM= ,即可得出结论.【解答】解:由题意,|OB|=b,|O F1|=c.kPQ= ,kMR=﹣ .直线PQ为:y= (x+c),与y= x.联立得:Q(,);与y=﹣x.联立得:P(,).PQ的中点为(,),直线MR为:y﹣=﹣(x﹣),令y=0得:xM= ,又△RMF1与△PQF2的面积之比为e,|MF2|=|F1F2|=2c,3c=xM= ,解之得:e2= ,e=故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知loga2=m,loga3=n,则a2m+n= 12 ,用m,n表示log46为. 【考点】对数的运算性质.【分析】利用指数、对数的性质、运算法则和换底公式求解.【解答】解:∵loga2=m,loga3=n,am=2,an=3,a2m+n=(am)2an=223=12,log46= = = .故答案为:12, .10.已知抛物线x2=4y的焦点F的坐标为(0,1),若M是抛物线上一点,|MF|=4,O为坐标原点,则MFO= 或.【考点】抛物线的简单性质.【分析】利用抛物线的方程与定义,即可得出结论.【解答】解:抛物线x2=4y的焦点在y轴上,且p=1,焦点坐标为(0,1);∵M是抛物线上一点,|MF|=4,M(2 ,3),M(2 ,3),kMF= = ,MFO=M(﹣2 ,3),kMF=﹣=﹣,MFO=故答案为:(0,1),或 .11.若函数f(x)= 为奇函数,则a= 0 ,f(g(﹣2))= ﹣25 .【考点】函数奇偶性的性质;函数的值.【分析】利用分段函数,结合函数的奇偶性,即可得出结论.【解答】解:由题意,a=f(0)=0.设x0,则﹣x0,f(﹣x)=x2﹣2x+1=﹣f(x),g(2x)=﹣x2+2x﹣1,g(﹣2)=﹣4,f(g(﹣2))=f(﹣4)=﹣16﹣8﹣1=﹣25.故答案为:0,﹣25.12.对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)f(a﹣x)=1对任意实数xR恒成立,则称f(x)为关于a的倒函数.已知定义在R上的函数f (x)是关于0和1的倒函数,且当x[0,1]时,f(x)的取值范围为[1,2],则当x[1,2]时,f(x)的取值范围为[ ,1] ,当x[﹣2016,2016]时,f(x)的取值范围为[ ,2] .【考点】抽象函数及其应用.【分析】根据倒函数的定义,建立两个方程关系,根据方程关系判断函数的周期性,利用函数的周期性和函数的关系进行求解即可得到结论.【解答】解:若函数f(x)是关于0和1的倒函数,则f(x)f(﹣x)=1,则f(x)0,且f(1+x)f(1﹣x)=1,即f(2+x)f(﹣x)=1,即f(2+x)f(﹣x)=1=f(x)f(﹣x),则f(2+x)=f(x),即函数f(x)是周期为2的周期函数,若x[0,1],则﹣x[﹣1,0],2﹣x[1,2],此时1f(x)2∵f(x)f(﹣x)=1,f(﹣x)= [ ,1],∵f(﹣x)=f(2﹣x)[ ,1],当x[1,2]时,f(x)[ ,1].即一个周期内当x[0,2]时,f(x)[ ,2].当x[﹣2016,2016]时,f(x)[ ,2].故答案为:[ ,1],[ ,2].13.已知关于x的方程x2+ax+2b﹣2=0(a,bR)有两个相异实根,若其中一根在区间(0,1)内,另一根在区间(1,2)内,则的取值范围是. 【考点】一元二次方程的根的分布与系数的关系.【分析】由题意知,从而转化为线性规划问题求解即可.【解答】解:令f(x)=x2+ax+2b﹣2,由题意知,,作其表示的平面区域如下,,的几何意义是点A(1,4)与阴影内的点的连线的斜率,直线m过点B(﹣3,2),故km= = ;直线l过点C(﹣1,1),故kl= = ;结合图象可知,的取值范围是;故答案为: .14.若正数x,y满足x2+4y2+x+2y=1,则xy的值为.【考点】基本不等式.【分析】由题意和基本不等式可得1=x2+(2y)2+x+2y2x2y+2 ,解关于的一元二次不等式可得.【解答】解:∵正数x,y满足x2+4y2+x+2y=1,1=x2+4y2+x+2y=x2+(2y)2+x+2y2x2y+2 ,当且仅当x=2y时取等号.变形可得2()2+2 ﹣10,解得,结合0可得0 ,平方可得2xy()2= ,xy ,即xy的值为,故答案为:15.在△ABC中,BAC=10,ACB=30,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1,则在所有旋转过程中,直线B1C与直线AC1所成角的取值范围为[10,50] .【考点】异面直线及其所成的角.【分析】平移CB1到A处,由已知得B1CA=30,B1AC=150,0C1AC20,由此能求出直线B1C与直线AC1所成角的取值范围.【解答】解:∵在△ABC中,BAC=10,ACB=30,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1,如图,平移CB1到A处,B1C绕AC旋转,B1CA=30,B1AC=150,AC1绕AB旋转,0C1AC2CAB,0C1AC20,设直线B1C与直线AC1所成角为,则B1AC﹣C1ACB1AC+C1AC,∵130B1AC﹣C1AC150,150B1AC+C1AC170,1050或130170(舍).故答案为:[10,50].三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA= . (Ⅰ)若满足条件的△ABC有且只有一个,求b的取值范围;(Ⅱ)当△ABC的周长取值时,求b的值.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由条件利用三角恒等变换求得cosA 和sinA 的值,结合满足条件的△ABC有且只有一个可得a=bsinA 或ab,由此求得b的范围.(Ⅱ)△ABC的周长为a+b+c,利用余弦定理、基本不等式求得周长2+b+c 值为2+2 ,此时,b= =c.【解答】解:(Ⅰ)△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA= ,2 +sinA= ,即2 +sinA= ,cosA﹣sinA= ,平方可得sin2A= ,cosA+sinA= = ,求得cosA= ,sinA= (,),结合满足条件的△AB C有且只有一个,A(,). 且a=bsinA,即2= b,即b= ;或ab,即0(Ⅱ)由于△ABC的周长为a+b+c,由余弦定理可得22=b2+c2﹣2bc =(b+c)2﹣bc(b+c)2﹣= (b+c)2,b+c =2 ,当且仅当b=c时,取等号,此时,三角形的周长为2+b+c为2+2 ,故此时b= .17.如图,在多面体EF﹣ABCD中,ABCD,ABEF均为直角梯形,,DCEF为平行四边形,平面DCEF平面ABCD.(Ⅰ)求证:DF平面ABCD;(Ⅱ)若△ABD是等边三角形,且BF与平面DCEF所成角的正切值为,求二面角A﹣BF﹣C的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出AB平面BCE,AB∥CD∥EF,从而CD平面BCE,进而CDCE,由CE∥DF,得CDDF,由此能证明DF平面ABCD.(Ⅱ)法1:过C作CHBE交BE于H,HKBF交BF于K,推导出HKC为C﹣BF﹣E的平面角,由此能求出二面角A﹣BF﹣C的平面角的余弦值.(Ⅱ)法2:以C为原点,CD,CB,CE所在直线为x,y,z轴,建立空间直角坐标系.不妨设CD=1,利用向量法能求出二面角A﹣BF﹣C的平面角的余弦值.【解答】证明:(Ⅰ)因为,所以AB平面BCE,又EF∥CD,所以EF∥平面ABCD,从而有AB∥CD∥EF,所以CD平面BCE,从而CDCE,又CE∥DF,所以CDDF,又平面DCEF平面ABCD,所以DF平面ABCD.解:(Ⅱ)解法1:过C作CHBE交BE于H,HKBF交BF于K,因为AB平面BCE,所以CHAB,从而CH平面ABEF,所以CHBF,从而BF平面CHK,所以BFKH即HKC为C﹣BF﹣E的平面角,与A﹣BF﹣C的平面角互补.因为BCDCEF,所以BF与平面DCEF所成角为BFC.由,所以2CB2=CD2+CE2,由△ABD是等边三角形,知CBD=30,所以令CD=a,所以, .所以, .所以二面角A﹣BF﹣C的平面角的余弦值为 .(Ⅱ)解法2:因为CB,CD,CE两两垂直,以C为原点,CD,CB,CE所在直线为x,y,z轴,如图建立空间直角坐标系.不妨设CD=1.因为BCDCEF,所以BF与平面DCEF所成角为BFC.由,所以2CB2=CD2+CE2,由△ABD是等边三角形,知CBD=30,所以,,平面ABF的一个法向量,平面CBF的一个法向量则,且取则 .二面角A﹣BF﹣C的平面角与的夹角互补.所以二面角A﹣BF﹣C的平面角的余弦值为 .18.已知函数f(x)=x2﹣1.(1)对于任意的1x2,不等式4m2|f(x)|+4f(m)|f(x﹣1)|恒成立,求实数m的取值范围;(2)若对任意实数x1[1,2].存在实数x2[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.【考点】函数恒成立问题;二次函数的性质.【分析】(1)由题意可得4m2(|x2﹣1|+1|4+|x2﹣2x|,由1x2,可得4m2 ,运用二次函数的最值的求法,可得右边函数的最小值,解不等式可得m的范围;(2)f(x)在[1,2]的值域为A,h(x)=|2f(x)﹣ax|的值域为B,由题意可得AB.分别求得函数f(x)和h(x)的值域,注意讨论对称轴和零点,与区间的关系,结合单调性即可得到值域B,解不等式可得a的范围.【解答】解:(1)对于任意的1x2,不等式4m2|f(x)|+4f(m)|f(x﹣1)|恒成立,即为4m2(|x2﹣1|+1|4+|x2﹣2x|,由1x2,可得4m2 ,由g(x)= =4(+ )2﹣,当x=2,即= 时,g(x)取得最小值,且为1,即有4m21,解得﹣m ;(2)对任意实数x1[1,2].存在实数x2[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,可设f(x)在[1,2]的值域为A,h(x)=|2f(x)﹣ax|的值域为B,可得AB.由f(x)在[1,2]递增,可得A=[0,3];当a0时,h(x)=|2x2﹣ax﹣2|=2x2﹣ax﹣2,(1x2),在[1,2]递增,可得B=[﹣a,6﹣2a],可得﹣a036﹣2a,不成立;当a=0时,h(x)=2x2﹣2,(1x2),在[1,2]递增,可得B=[0,6],可得0036,成立;当01(负的舍去),h(x)在[1,]递减,[ ,2]递增,即有h(x)的值域为[0,h(2)],即为[0,6﹣2a],由0036﹣2a,解得0当2即有h(x)的值域为[0,h(2)],即为[0,a],由003a,解得a=3;当3由2a﹣603a,无解,不成立;当4由2a﹣6032a,不成立;当6由a032a,不成立;当a8时,h(x)在[1,2]递增,可得B=[a,2a﹣6],AB不成立.综上可得,a的范围是0a 或a=3.19.已知F1,F2为椭圆的左、右焦点,F2在以为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.(Ⅰ)求椭圆C1的方程;(Ⅱ)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围. 【考点】椭圆的简单性质.【分析】(Ⅰ)圆C2的方程为,由此圆与x轴相切,求出a,b的值,由此能求出椭圆C1的方程.(Ⅱ)设l1:x=t(y﹣1),则l2:tx+y﹣1=0,与椭圆联立,得(t2+2)y2﹣2t2y+t2﹣4=0,由此利用弦长公式、点到直线距离公式,结合已知条件能求出△MAB面积的取值范围.【解答】(本题满分15分)解:(Ⅰ)圆C2的方程为,此圆与x轴相切,切点为,即a2﹣b2=2,且,又|QF1|+|QF2|=3+1=2a.a=2,b2=a2﹣c2=2椭圆C1的方程为 .(Ⅱ)当l1平行x轴的时候,l2与圆C2无公共点,从而△MAB不存在;设l1:x=t(y﹣1),则l2:tx+y﹣1=0.由,消去x得(t2+2)y2﹣2t2y+t2﹣4=0,则 .又圆心到l2的距离,得t21.又MPAB,QMCDM到AB的距离即Q到AB的距离,设为d2,即 .△MAB面积令则 .△MAB面积的取值范围为 .20.对任意正整数n,设an是方程x2+ =1的正根.求证:(1)an+1an;(2)+ ++ 1+ + ++ .【考点】数列的应用.【分析】(1)解方程可得an= ,再由分子有理化,结合,在nN*上递减,即可得证;(2)求出= ,分析法可得,累加并运用不等式的性质即可得证.【解答】解:(1)an是方程x2+ =1的正根,解得an= ,由分子有理化,可得an== ,由,在nN*上递减,可得an为递增数列,即为an+1an;(2)证明:由an= ,可得= ,由2n﹣11+4n2﹣4n1+4n2﹣4n0,显然成立,即有+ ++ 1+ + ++1+ + ++ .。

高三数学上学期期末理试卷新人教A版

高三数学上学期期末理试卷新人教A版

莆田一中-上学期期末试卷高三 数学(理科)一、选择题:(本大题共10个小题,每小题5分,共50分;每题只有一个正确答案)1. 函数f(x)=的零点所在的一个区间是( )(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)2. 设{a n }是由正数组成的等比数列,为其前n 项和。

已知a 2a 4=1, , 则( )(A ) (B) (C) (D)3. 设点M 是线段BC 的中点,点A 在直线BC 外, 则( )(A )8 (B )4 (C ) 2 (D )14. 设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为( ) (A) (B)(C) (D)5. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则( )(A)(B) (C) (D)6.根据上表可得回归方程中的为9,据此模型预报广告费用为6万元时销售额为( )A .63.5万元B .64.5万元C .67.5万元D .71.5万元 7.在中,下列说法不正确的是( )23xx +n S 37S =5S =152314334172216,BC AB AC AB AC =∣+∣=∣-∣,AM ∣∣=121221tan ECF ∠=16272334ˆˆˆybx a =+ˆb ABC ∆(A) 是的充要条件 (B) 是的充要条件(C) 的必要不充分条件是为钝角三角形 (D) 是为锐角三角形的充分不必要条件8.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.B.C.D.9. 已知、为双曲线C:的左、右焦点,点P 在C 上,∠P =,则P 到x 轴的距离为( ) (A)(B) (C) (D) 10. 直线:y=与圆心为D 的圆:交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( ) (A)(B) (C) (D)二、填空题:(本大题共5个小题,每小题4分,共20分。

请把答案填在答题纸的相应位置)11.若为R 上的增函数,则的取值范围是 。

第一学期高三年级期末理科数学试题与答案

第一学期高三年级期末理科数学试题与答案

第一学期高三年级期末理科数学试题与答案数学试卷【理科】第Ⅰ卷【选择题 共40分】一、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 【1】若集合{}2,1,0,1,2Α=--.{}2|1Βx x =>.则=ΑΒA .{|11}x x x <->或B .{}2,2-C .{}2 D .{0}(2) 下列函数中.在区间(0,)+∞上为增函数的是A.y =1y x =C. 1()2x y =D. 12log y x =(3) 已知两点(0,0),(2,0)O A -.以线段OA 为直径的圆的方程是A .22(1)4x y -+=B .22(1)4x y ++= C .22(1)1x y -+= D .22(1)1x y ++= (4) 在ABC ∆中.3,2,3a c B π===.则b =A .19B .7C .⑸ 某三棱锥的三视图如图所示.则该三 棱锥四个面的面积中最大的是B. 3C.D.【6】已知函数f (x ) 的部分对应值如表所示. 数列{}n a 满足11,a =且对任意*n ∈N .点1(,)n n a a +都在函数()f x 的图象上.则2016a 的值为x1 2 3 4 ()f x3124A . 1 B.2 C. 3 D.4俯视图侧(左)视图正(主)视图⑺ 若,x y 满足0,30,30,y x y kx y ≥⎧⎪-+≥⎨⎪-+≥⎩且2z x y =+的最大值为4.则k 的值为A .32-B . 32C .23-D .23【8】某大学进行自主招生时.需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:逻辑思维成绩排名总成绩排名200200O 甲乙下列叙述一定正确的是A .甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中.甲同学更靠前D .乙同学的总成绩排名比丙同学的总成绩排名更靠前第Ⅱ卷【非选择题 共110分】二、填空题【本大题共6小题.每小题5分.共30分】【9】在261(2)x x -的展开式中.常数项是 【用数字作答】.【10】双曲线22:1916x y C -=的渐近线方程为__________________;某抛物线的焦点与双曲线C 的右焦点重合.则此抛物线的标准方程为____________.【11】执行如图所示的程序框图.逻辑思维成绩排名200200阅读表达成绩排名O 丙输出的S 值为_______.【12】将序号为1.2.3.4的四张电影票全部分给3人.每人至少一张. 要求分给同一人的两张电影票连号.那么不同的分法种数为________________.【用数字作答】 【13】如图.在矩形ABCD 中.3DP PC =.若,PB mAB nAD =+则m =______;n =_________.【14】已知函数2()|3|,.f x x x x =-∈R 若方程()|1|0f x a x -+=恰有4个互异的实数根.则实数a的取值范围是_____________________.三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) 【15】【本小题满分13分】已知函数2()3sin(π)cos cos f x x x x --.【I 】 求函数()f x 的最小正周期; 【II 】求函数()f x 的单调递减区间.(16)【本小题满分13分】小王为了锻炼身体.每天坚持“健步走”, 并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图【图1】及相应的消耗能量数据表【表1】如下.频数(天)319181716PDCBA图1 表1【Ⅰ】求小王这8天 “健步走”步数的平均数;【Ⅱ】从步数为16千步.17千步.18千步的几天中任选2天.设小王这2天通过健步走消耗的“能量和”为X .求X 的分布列.【17】【本小题满分14分】在四棱锥P ABCD -中.平面PAD ⊥平面ABCD .PAD ∆为等边三角形,12AB AD CD==,AB AD ⊥,//AB CD ,点M 是PC 的中点.【I 】求证://MB 平面PAD ; 【II 】求二面角P BC D --的余弦值; 【III 】在线段PB 上是否存在点N .使得DN ⊥平面PBC ?若存在,请求出PNPB的值;若不存在,请说明理由.【18】【本小题满分13分】已知函数()()2ln 1f x x =+.【Ⅰ】若函数()f x 在点()()00P x f x ,处的切线方程为2y x =.求切点P 的坐标;【Ⅱ】求证:当[0,e 1]x ∈-时.()22f x x x ≥-;【其中e 2.71828=⋅⋅⋅】【Ⅲ】确定非负实数a 的取值范围.使得()()220,x f x x a x ∀≥≥-成立.P MD CBA【19】【本小题满分13分】已知椭圆C 2222:1(0)x y a b a b +=>>的离心率为2,点1)2在椭圆C 上.直线l 过点(1,1).且与椭圆C 交于A .B 两点.线段AB 的中点为M .【I 】求椭圆C 的方程;【Ⅱ】点O 为坐标原点.延长线段OM 与椭圆C 交于点P .四边形OAPB 能否为平行四边形?若能.求出此时直线l 的方程.若不能.说明理由.【20】【本小题满分14分】对于任意的*n ∈N .记集合{1,2,3,,}n E n =⋅⋅⋅.,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭.若集合A 满足下列条件:①nA P ⊆;②12,x x A ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.则称A 具有性质Ω.如当2n =时.2{1,2}E =.2{1,P =.122,x x P ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.所以2P 具有性质Ω.(Ⅰ) 写出集合35,P P 中的元素个数.并判断3P 是否具有性质Ω.【Ⅱ】证明:不存在,A B 具有性质Ω.且A B =∅.使15E A B =.【Ⅲ】若存在,A B 具有性质Ω.且A B =∅.使n P A B=.求n 的最大值.昌平区2015-2016学年第一学期高三年级期末质量抽测数学试卷参考答案及评分标准 【理科】 2016.1二、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 题号 1 2 3 4 5 6 7 8 答案 BA D D CB A C二、填空题【本大题共6小题.每小题5分.共30分】【9】60 【10】24;203y x y x=±= 【11】 52 【12】18 【13】1;14- 【14】 (0,1)(9,)+∞三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) (15)【本小题满分13分】 解:【I 】2()3sin cos cos f x x x x-311sin 2cos 222x x --π1sin(2)62x --所以 最小正周期2π2ππ.2Tω …………………………..7分(II) 由ππ3π2π22π,,262k x k k ≤≤∈Z得π5πππ,.36k x k k ≤≤∈Z ………………………11分所以函数()f x 的单调递减区间是π5π[π,π],.36k k k ∈Z ……………13分(16)【本小题满分13分】解: (I) 小王这8天 “健步走”步数的平均数为16317218119217.258⨯+⨯+⨯+⨯=【千步】. …………………………..4分【II 】X 的各种取值可能为800.840.880.920.23261(800)5C P X C ===,1132262(840),5C C P X C ===112312264(880),15C C C P X C +=== 1121262(920),15C C P X C === X 的分布列为:X800 840880 920 P 1525 415 215…………………………..13分 【17】【本小题满分14分】【Ⅰ】证明:取PD 中点H ,连结,MH AH . 因为 M 为PC 中点 ,所以 1//,2HM CD HM CD=.因为1//,2AB CD AB CD=.所以//AB HM 且AB HM =. 所以四边形ABMH 为平行四边形,所以 //BM AH .因为 BM PAD ⊄平面,AH ⊂平面PAD ,所以//BM 平面PAD . …………………………..4分【Ⅱ】 取AD 中点O ,连结.PO因为 PA PD =, 所以PO AD ⊥.因为 平面PAD ⊥平面ABCD , 平面PAD平面ABCD AD =,PO ⊂平面PAD ,所以PO ABCD ⊥平面.取BC 中点K ,连结OK ,则//.OK AB 以O 为原点,如图建立空间直角坐标系, 设2,AB = 则(1,0,0),(1,2,0),(1,4,0),(1,0,0),A B C D P --(2,2,0),(1,2,BC PB =-=-. 平面BCD 的法向量(0,0,OP =,设平面PBC 的法向量(,,)n x y z =,由0,0,BC n PB n ⎧⋅=⎪⎨⋅=⎪⎩得220,20.x y x y -+=⎧⎪⎨+-=⎪⎩令1x =.则(1,1,3)n =.15cos ,5||||OP n OP n OP n ⋅<>==.C由图可知.二面角P BC D --是锐二面角.所以二面角P BC D --的余弦值为5. …………………………..9分【Ⅲ】 不存在.设点(,,)N x y z ,且 ,[0,1]PNPB λλ=∈ ,则,PN PB λ=所以(,,(1,2,x y z λ-=.则,2,.x y z λλ⎧=⎪=⎨⎪=⎩所以(,2)N λλ, (1,2)DN λλ=+.若 DN PBC ⊥平面,则//DN n ,即12λλ+==.此方程无解,所以在线段PB 上不存在点N ,使得DN PBC ⊥平面. …………………………..14分【18】【本小题满分13分】 【Ⅰ】解:定义域为(1,)-+∞.()2'1f x x =+.由题意.()0'2f x =.所以()00,00x f ==.即切点P 的坐标为(0,0). ………3分【Ⅱ】证明:当[0,e 1]x ∈-时.()22f x x x ≥-.可转化为当[0,e 1]x ∈-时.()220f x x x -+≥恒成立.设()2()2g x f x x x =-+.所以原问题转化为当[0,e 1]x ∈-时.()min 0g x ≥恒成立.所以2242'()2211xg x x x x -=-+=++. 令'()0g x =.则1x =【舍】.2x =所以()g x .'()g x 变化如下:x1)-e 1-'()g x + 0 - ()g x(0)g↗极大值↘(e 1)g -因为()(0)000g f =-=.2(e 1)2(e 1)2(e 1)2(e 1)(3e)0g -=--+-=+-->.所以min ()0g x =.当[0,e 1]x ∈-时.()22f x x x ≥-成立. ………………..8分【Ⅲ】解:()()20,2x f x a x x ∀≥≥-.可转化为当0x ≥时.()()220f x a x x --≥恒成立.设()()2()2h x f x a x x =--.所以222(1)'()2211ax a h x a ax x x +-=-+=++.⑴当0a =时.对于任意的0x ≥.2'()01h x x =>+.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==.所以命题成立.当0a >时.令'()0h x =.则210ax a +-=.⑵当10a -≥.即01a <≤时.对于任意的0x ≥.'()0h x >.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==. 所以命题成立.⑶当10a -<.即1a >时.则1x =【舍】.20x =>. 所以()h x .'()h x 变化如下:x0 2(0,)x 2x 2(,)x +∞'()h x- 0 + ()h x↘ 极小值↗因为()min2()()00h x h x h =<=.所以.当0x ≥时.命题不成立.综上.非负实数a 的取值范围为[0,1]. …………………………..13分【19】【本小题满分13分】解:【I】由题意得22222311,4.c e a ab a bc ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩ 解得224,1a b ==. 所以椭圆C 的方程为22 1.4x y += …………………………..5分【Ⅱ】四边形OAPB 能为平行四边形.法一:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意; 【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41kmkm k m x x k -=-+->+=+故1224241M x x kmx k +==-+.241M M m y kx m k =+=+.于是直线OM 的斜率14M OM M y k x k ==-.即14OM k k ⋅=-. 由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-.因此24(1)41M k k x k -=+.OM 的方程为14y xk =-.设点P 的横坐标为P x .由221,41,4y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩得2221641Pk x k =+.即P x =. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2P Mx x =24(1)241k k k -=⨯+.由0k ≠.得35,.88k m ==满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . ………………………….13分 法二:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意;【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41km km k m x x k -=-+->+=+ 故1224241M x x km x k +==-+. 241M M my kx m k =+=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2,2.P M P M x x y y =⎧⎨=⎩. 则2222()()82114441km m k k -++=+.由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-. 则2222(164)(1))1(41k k k +-+=.则2(41)(83)0k k +-= . 则35,.88k m == 满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . …………………………..13分【20】【本小题满分14分】(Ⅰ) 解:集合35,P P 中的元素个数分别为9.23.3P 不具有性质Ω. ……………..6分【Ⅱ】证明:假设存在,A B 具有性质Ω.且AB =∅.使15E A B =.其中15{1,2,3,,15}E =⋅⋅⋅. 因为151E ∈.所以1A B ∈.不妨设1A ∈.因为2132+=.所以3A ∉.3B ∈.同理6A ∈.10B ∈.15A ∈.因为21154+=.这与A 具有性质Ω矛盾.所以假设不成立.即不存在,A B 具有性质Ω.且A B =∅.使15E A B =.…..10分【Ⅲ】因为当15n ≥时.15n E P ⊆.由【Ⅱ】知.不存在,A B 具有性质Ω.且A B =∅.使n P A B =.若14,n =当1b =时.1414x x a E E ⎧⎫=∈=⎨⎬⎩⎭.取{}11,2,4,6,9,11,13A =.{}13,5,7,8,10,12,14B =.则11,A B 具有性质Ω.且11A B =∅.使1411E A B =.当4b =时.集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合为13513{,,,,}2222⋅⋅⋅.令215911{,,,}2222A =.23713{,,}222B =.则22,A B 具有性质Ω.且22A B =∅.使2213513{,,,,}2222A B ⋅⋅⋅=.当9b =时.集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合12457810111314{,,,,,,,,,}3333333333.令31451013{,,,,}33333A =.32781114{,,,,}33333B =.则33,A B 具有性质Ω.且33A B =∅.使3312457810111314{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数.它与14P 中的任何其他数之和都不是整数.因此.令123A A A A C =.123B B B B =.则A B =∅.且14P A B =.综上.所求n 的最大值为14. ……………..14分。

高三上学期期末考试数学(理科)试题含解析

高三上学期期末考试数学(理科)试题含解析

高三(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设全集,集合,,则( )A. B. C. D.【答案】C【解析】,,,所以,故选择C.2.已知复数满足,则()A. B. C. D.【答案】D【解析】试题分析:∵复数z满足,则,故选D.考点:复数运算.3.已知中,,,则等于A. B. C. 或 D. 或【答案】A【解析】【分析】由正弦定理列出关系式,把a,b,的值代入求出的值,结合大边对大角的性质即可确定出B的度数.【详解】中,,,,由正弦定理得:,,,则.故选:A.【点睛】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.已知随机变量服从正态分布则A. 0.89B. 0.78C. 0.22D. 0.11【答案】D【解析】本题考查正态分布和标准正态分布的转化及概率的计算方法.故选D5.已知向量,,若,则与的夹角为()A. B. C. D.【答案】D【解析】依题意,,即解得,故,则与的夹角的余弦值,故.选D.6.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=( )A. 3B. 4C. 5D. 6【答案】C【解析】∵{a n}是等差数列∴S m==0a1=-a m=-(S m-S m-1)=-2,又=-=3,∴公差=-=1,∴3==-,∴=5,故选C.视频7. 如图所示的程序框图,输出的S的值为( )A. B. 2 C. -1 D. -【答案】A【解析】k=1时,S=2,k=2时,S=,k=3时,S=-1,k=4,S=2,……所以S是以3为周期的循环.故当k=2 012时,S=.8.如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A. B. C. D.【答案】C【解析】试题分析:几何体为一个四棱锥,外接球球心为底面正方形(边长为4)中心,所以半径为,表面积为,选C.考点:三视图,外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.视频9.我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则此人第一天走的路程为()A. 192里B. 96里C. 63里D. 6里【答案】A【解析】设第一天走了里,则是以为首项,以为公比的等比数列,根据题意得:解得故选10.函数在区间,内是增函数,则实数的取值范围是A. ,B. ,C.D.【答案】B【解析】【分析】对函数进行求导,根据函数单调递增易得在内恒成立,即,解出即得结果.【详解】∵,∴,∵函数在区间内是增函数,∴在内恒成立,即,∴,故选B.【点睛】本题考查利用导数研究函数的单调性,将函数单调递增转化为是解题的关键,属于中档题.11.已知抛物线的准线过双曲线的左焦点且与双曲线交于、两点,为坐标原点,且的面积为,则双曲线的离心率为A. B. 4 C. 3 D. 2【答案】D【解析】试题分析:抛物线的准线方程为,所以双曲线的左焦点,从而,把代入得,所以的面积为,解得,所以离心率,故选D.考点:抛物线的方程、双曲线的几何性质.【方法点晴】本题主要考查了抛物线的方程、双曲线的简单几何性质,属于基础题.正确运用双曲线的几何性质是本题解答的关键,首先根据抛物线方程求出准线方程即得双曲线的焦点坐标,求出的值,由双曲线标准方程求得弦的长,表示出的面积,从而求得值,最后由离心率的定义求出其值.12.已知函数,,为的零点,为图象的对称轴,且在,上单调,则的最大值为A. 11B. 9C. 7D. 5【答案】B【解析】,则,得,又,则,得,当时,则,则,所以,在不单调;当,则,则,所以,在单调递减。

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

准考证号姓名(在此卷上答题无效)萍乡市2022-2023学年度高三期末考试试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.3.考试结束后,监考员将试题卷、答题卡一并收回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2A =-,{}2,x B y y x A ==∈,则A B = A .{}1,2B .1,22⎡⎤⎢⎥⎣⎦C .[)1,2-D .{}12.已知i 为虚数单位,则复数11i+的实部与虚部之和为A .1-B .0C .1D .23.在各项均为正数的等差数列{}n a 中,23=a ,若235,1,3++a a a 成等比数列,则公差=d A .1-或2B .2C .1或2-D .14.已知m 和n 是空间中两条不同的直线,α和β是两个不重合的平面,下列命题正确的是A .若⊥m n ,n ⊂α,则α⊥m B .若m ⊂α,n ⊂β, αβ,则m n P C .若m αP ,⊥m n ,则α⊥n D .若α⊥m ,m β,则αβ⊥5.关于某校运动会5000米决赛前三名选手甲、乙、丙有如下命题:“甲得第一”为命题p ;“乙得第二”为命题q ;“丙得第三”为命题r .若∨p q 为真命题,∧p q 为假命题,()⌝∧q r 为假命题,则下列说法一定正确的为A .甲不是第一B .乙不是第二C .丙不是第三D .根据题设能确定甲、乙、丙的顺序6.在二项式6(2)-a x 的展开式中,若3x 的系数为160,则=aA .1-B .1C D .7.函数=y kx 与ln =y x 的图象有且只有一个公共点,则实数k 的取值范围为A .1=k B .1e=k C .1e=k 或0≤k D .1=k 或0≤k 8.分形是由混沌方程组成,其最大的特点是自相似性:当我们拿出图形的一部分时,它与整体的形状完全一样,只是大小不同.谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,它的构造方法是:将一个正方形均分为9个小正方形,再将中间的正方形去掉,称为一次迭代;然后对余下的8个小正方形做同样操作,直到无限次,如右上图.进行完二次迭代后的谢尔宾斯基地毯如右下图,从正方形ABCD 内随机取一点,该点取自阴影部分的概率为A .19B .1781C .29D .3179.已知()f x 是定义在R 上的奇函数,()'f x 是其导函数.当0≥x 时,()20'->f x x ,且()23=f ,则()()3113≥+f x x 的解集是A .[)2,+∞-B .[]2,2-C .[)2,+∞D .(],2∞--10.下列关于函数1()sin 2cos =+f x x x有关性质的描述,正确的是A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线2π=x 对称C .函数()f x 的最小正周期为πD .函数()f x 的图象关于直线=πx 对称11.点M 为抛物线28=y x 上任意一点,点N 为圆22430+-+=x y x 上任意一点,P 为直线10---=ax y a 的定点,则+MP MN 的最小值为A .2B C .3D .2+12.已知函数()ln f x ax a =+,()e ln x g x x x =+-,若关于x 的不等式()()f x g x >在区间(0,)+∞内有且只有两个整数解,则实数a 的取值范围为A .(2e,e ⎤⎦B .2e (e,]2C .(23e ,e ⎤⎦D .23e e (,]23萍乡市2022-2023学年度高三期末考试试卷理科数学第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22,23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,角α的顶点在坐标原点,始边与x 轴的非负半轴重合,已知角α终边过点(2,1)-P ,则sin 2α=__________.14.在平面直角坐标系中,向量,a b 满足()()1,1,231,5=+=- a a b ,则⋅= a b __________.15.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若∆ABC 的周长为7,面积为,且828ab c +=,则=c __________.16.已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则⋅PA PB 的取值范围为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)记n S 为数列1⎧⎫⎨⎬⎩⎭n a 的前n 项和,已知11=a ,()21⋅=-n n a S n n .(1)求数列{}n a 的通项公式;(2)求数列1321+⎧⎫⋅⎪⎪⎨⎬+⎪⎪⎩⎭n n a n 的前n 项和n T .18.(本小题满分12分)如图,在五面体ABCDE 中,ABC ∆为等边三角形,平面ABC ⊥平面ACDE ,且222AC AE ED ===,90∠=∠=︒DEA EAC ,F 为边BC 的中点.(1)证明: DF 平面ABE ;(2)求EF 与平面ABE 所成角的正弦值.19.(本小题满分12分)甲、乙两人参加某知识竞赛对战,甲答对每道题的概率均为12,乙答对每道题的概率均为(01)<<p p ,两人答每道题都相互独立.答题规则:第一轮每人三道必答题,答对得10分,答错不加分也不扣分;第二轮为一道抢答题,每人抢到的概率都为12,若抢到,答对得10分,对方得0分,答错得0分,对方得5分.(1)若乙在第一轮答题中,恰好答对两道必答题的概率为()f p ,求()f p 的最大值和此时乙答对每道题的概率0p ;(2)以(1)中确定的0p 作为p 的值,求乙在第二轮得分X 的数学期望.20.(本小题满分12分)已知椭圆E 的中心在原点,周长为8的∆ABC 的顶点()A 为椭圆E 的左焦点,顶点,B C 在E 上,且边BC 过E 的右焦点.(1)求椭圆E 的标准方程;(2)椭圆E 的上、下顶点分别为,M N ,点(),2P m (),0R ≠∈m m ,若直线,PM PN 与椭圆E 的另一个交点分别为点,S T ,求证:直线ST 过定点,并求该定点坐标.21.(本小题满分12分)已知函数()1ln e +-=x xf x a x.(1)若0=a ,求()f x 的极值;(2)若()1≥f x 恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题做答,只能做所选定的题目.如果多做,则按所做的第一个题记分.做答时用2B 铅笔在答题卡上把所选题号后方框涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线()()0100,,0:πθθθρ=∈≥C 与曲线22:4sin 30ρρθ-+=C 相交于,P Q 两点.(1)写出曲线2C 的直角坐标方程,并求出0θ的取值范围;(2)求11+OP OQ的取值范围.23.(本小题满分10分)选修4—5:不等式选讲已知函数()()10,0=--+>>f x a x b a b 的图象与x 轴围成的封闭图形的面积为1.(1)求实数,a b 满足的关系式;(2)若对任意R ∈x ,不等式()2<-f x x ab恒成立,求实数b 的取值范围.萍乡市2022—2023学年度高三期末考试理科数学参考答案及评分标准一、选择题(12×5=60分):ABBDC ;ACBCC ;AD .二、填空题(4×5=20分):13.45-;14.0;15.3;16.10,3⎡⎤⎢⎥⎣⎦.三、解答题(共70分):17.(1)由(21)n n a S n n =-得,(21)n n n n S a -=,当11(1)(23)2,n n n n n S a ----≥=,………(1分)两式相减得:11(21)(1)(23)n n n n n n n a a a ----=-,化简得:12123n n a n a n -+=-,………………(2分)21234211233212121239754112325275313n n n n n n n a a a a a a n n n n a a a a a a a a n n n -----+---=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=--- ,…(4分)当1n =时,2141113a ⋅-==,符合上式,………………………………………………(5分)故2413n n a -=;……………………………………………………………………………(6分)(2)由(1)知13=(21)321n n n a n n +⋅-⋅+,………………………………………………………(7分)1231133353(23)3(21)3n nn T n n -=⨯+⨯+⨯++-⨯+-⨯ 23413133353(23)3(21)3n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,……………………………(9分)两式相减得1234121323232323(21)3n n n T n +-=⨯+⨯+⨯+⨯++⨯--⨯ 21113(13)32(21)362(1)313n n n n n -++⨯-=+⨯--⨯=-+-⨯-,……………(11分)故13(1)3n n T n +=+-⋅.………………………………………………………………………(12分)18.(1)证明:取AB 的中点为M ,连接ME ,MF ,…………………………………(1分)因为F 为边BC 的中点,所以MF AC ,1=2MF AC ,……………………………………(2分)又DE AC ,12DE AC =,所以MF DE ,且MF DE =,即四边形EDFM 为平行四边形,所以DF EM ,………………………………………(4分)又EM ABE ⊂平面,DF ABE ⊄平面,所以DF ABE 平面;………………………(6分)【用面面平行性质得到线面平行同样给分】(2)平面ABC ⊥平面ACDE ,ABC 平面平面ACDE AC =,EA AC ⊥,EA ⊂平面ACDE ,则EA ⊥平面ABC ,…………………………………(8分)过点F 作FN AB ⊥于N ,则FN EA ⊥,且EA AB A = ,则FN ABE ⊥平面,连接EN ,则EF 与平面ABE 所成角为FEN ∠,………………………………………(10分)由题知,在直角FNE ∆中,有2FN EN EF =,则sin4FN FEN EF ∠=即EF 与平面ABE .…………………(12分)【建立空间直角坐标系求解同样给分】19.(1)由题知,22233()(1)33f p C p p p p =⋅⋅-=-,…………………………………(2分)2()693(23)f p p p p p '=-=-,则()f p 在2(0,)3单调递增,在2(,1)3单调递减,……(4分)故()f p 的最大值为24(39f =,此时,023p =;…………………………………………(6分)(2)由题知,X 的所有可能取值为0,5,10,……………………………………………(7分)11115(0)232212P X ==⨯+⨯=,111(5)224P X ==⨯=,121(10)233P X ==⨯=,……(9分)则X 的分布列为:………………………………………………………………………………………………(10分)乙在第二轮得分X 的数学期望51155()0510124312E X =⨯+⨯+⨯=.…………………(12分)20.(1)根据椭圆定义可知48a =,2a =,……………………………………………(2分)c =,1b ==,…………………………………………………………………(3分)故椭圆E 的标准方程为2214x y +=;………………………………………………………(4分)(2)由题知,(0,1)M ,(0,1)N -,………………………………………………………(5分)直线:1xPM y m =+,与椭圆方程联立、化简得:22(4)80m x mx ++=,则284S m x m -=+,2244S m y m -=+,……………………………………………………………(7分)同理可得22436T m x m =+,223636T m y m -=+,…………………………………………………(8分)()()()22423212121441216192161612T S STT S m m y y m m k x x m m m m m -+---====-++,………………………(9分)直线222221284121:(1644162m m m m ST y x x m m m m ---=⋅++=⋅+++,………………………(11分)故直线ST 过定点1(0,)2.…………………………………………………………………(12分)X 0510P512141321.(1)0a =,1ln ()xf x x -=,22ln ()0x f x x-+'==,得2x e =,…………………(1分)则()()20,,()0,x e f x f x '∈<单调递减;()()2,,()0,x e f x f x '∈+∞>单调递增,……(3分)故()f x 的极小值为221()f e e =-,无极大值;……………………………………………(4分)(2)【法一】由题知,1ln x axe x x +-≥,0x >,令()1ln x g x axe x x =+--,则()1'()1x g x x ae x ⎛⎫=+- ⎪⎝⎭,…………………………………(5分)①当0a ≤时,'()0g x <,(1)0g ae =≤,则1x >时,()(1)0g x g <≤,不合题意;…(7分)②当0a >时,设0x 满足001x ae x =,则()g x 在()00,x 单调递减,在()0,x +∞单调递增,则min 0000()()ln 1x g x g x ax e x x ==--+,……………………………………………………………(9分)001x ae x = ,00001,ln ln x ax e a x x ∴=+=-,………………………………………………(10分)故min 000()()1ln 1ln 20g x g x x a x a ==-+++=+≥,解得21a e≥,…………………………(11分)综上所述,实数a 的取值范围为21[,)e +∞.………………………………………………(12分)【法二】由题知,ln 1xx x a xe +-≥,0x >,………………………………………………(5分)令ln 1()x x x g x xe+-=,则()21(2ln )'()x x x x g x x e+--=,…………………………………………(6分)设0x 满足002ln x x =+,则()g x 在()00,x 单调递增,在()0,x +∞单调递减,…………(8分)故0000max 000ln 11()()x x x x g x g x x e x e +-===,…………………………………………………(9分)002ln x x =+ ,020x x e -∴=,故0max 2011()x g x x e e ==,即21a e ≥,……………………(11分)综上所述,实数a 的取值范围为21[,)e+∞.………………………………………………(12分)【法三】由题知,ln 1xaxe x x ≥+-,即ln ln 1x x ae x x +≥+-,…………………………(6分)令ln t x x =+,t R ∈,即1t ae t ≥-,即1()t t a g t e-≥=,………………………………(8分)2'()t tg t e-= ,()g t ∴在(),2-∞单调递增,在()2,+∞单调递减,…………………(10分)故max 21()(2)a g t g e ≥==,即实数a 的取值范围为21[,)e+∞.…………………………(12分)22.(1)曲线2C 的直角坐标方程为2243x y y +-=-,即()2221x y +-=,……(2分)当02πθ=时,曲线1:0C x =与曲线2C 有两个交点,符合题意,………………………(3分)当02πθ≠时,曲线1C 的直角坐标方程为:0tan y x θ=,设()20,2C 到曲线1C 的距离为d ,则1d r ==,得0tan θ0tan θ<4分)又0(0,)θπ∈ ,02,33ππθ⎛⎫∴∈⎪⎝⎭;…………………………………………………………(5分)(2)将0θθ=代入2C 的极坐标方程得:204sin 30ρθρ-+=,…………………………(6分)设,P Q 两点对应的极径分别为12,ρρ,则120124sin ,3ρρθρρ+==,…………………(7分)1212124sin 111103OP OQ θρρρρρρρ+≥∴+=+== ,……………………………………………(9分)由(1)知02,33ππθ⎛⎫∈ ⎪⎝⎭,则04sin 11433OP OQ θ⎤+=∈⎥⎝⎦.………………………………(10分)23.(1)(),11,1ax a b x f x a x b ax a b x -+≤⎧=--+=⎨-++>⎩,…………………………………………(1分)()y f x = 与x 轴交点坐标分别为1,0,1,0b b a a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,顶点坐标为()1,b ,……………(3分)21212b b S b a a∴=⨯⨯==,即2b a =;……………………………………………………(5分)(2)对于x R ∀∈,不等式左边=2221()121b x b f x x x b b b b--+==--+<-恒成立,……(6分)即对于x R ∀∈,121x x b b<-+-恒成立,…………………………………………………(7分)222111x x x x b b b-+-≥--+=- …………………………………………………………(8分)∴121b b <-,即211bb->或211b b-<-,…………………………………………………(9分)又0b > ,()()0,13,b ∴∈+∞ .…………………………………………………………(10分)命题:胡斌(市教研室)欧阳丽(芦溪中学)徐敏(莲花中学)江敏(萍乡三中)刘晓君(湘东中学)吕鋆(上栗中学)彭仕海(萍乡中学)审核:胡斌。

高三上学期期末考试数学(理)试卷及答案解析

高三上学期期末考试数学(理)试卷及答案解析

高三级上学期·期末考理科数学试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卷上。

2.用2B铅笔将选择题答案在答题卷对应位置涂黑;答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;不准使用铅笔或涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁。

一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应位置.)1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}2.复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i3.已知向量=(1,2),=(a,﹣1),若⊥,则实数a的值为()A.﹣2 B.﹣C.D.24.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m5.下列函数中,在其定义域内既是奇函数又是增函数的是()A.y= B.y=x2C.y=x3D.y=sinx6.要得到函数y=sin2x的图象,只要将函数y=sin(2x﹣)的图象()A.向左平行移动个单位B.向左平行移动个单位C.向右平行移动个单位D.向右平行移动个单位7.不等式组,所表示的平面区域的面积等于()A. B.C. D.8.执行如图所示的程序框图,则输出s的值等于()A.1 B. C.0 D.﹣9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.96 B. C. D.10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱 C.钱D.钱11.设F1,F2分别为椭圆C1: +=1(a>b>0)与双曲线C2:﹣=1(a1>0,b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e=,则双曲线C2的离心率e1为()A.B.C. D.12.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx﹣2在x=1处有极值,则ab的最大值()A.2 B.3 C.6 D.9二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡相应题中的横线上. 13.已知等比数列{a n }的公比q 为正数,且a 3a 9=2a 52,则q= .14.已知函数f (x )=lnx ﹣ax 2,且函数f (x )在点(2,f (2))处的切线的斜率是,则a= . 15.在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .16.下列四个命题:①一个命题的逆命题为真,则它的否命题一定为真;②等差数列{a n }中,a 1=2,a 1,a 3,a 4成等比数列,则公差为﹣; ③已知a >0,b >0,a+b=1,则+的最小值为5+2;④在△ABC 中,若sin 2A <sin 2B+sin 2C ,则△ABC 为锐角三角形. 其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三.解答题(共6题,共70分) 17.(本题满分12分)设数列{a n }的前n 项和为S n ,已知ba n ﹣2n =(b ﹣1)S n (Ⅰ)证明:当b=2时,{a n ﹣n •2n ﹣1}是等比数列; (Ⅱ)求{a n }的通项公式.18.(本题满分12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证: (1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .19.(本题满分12分)某学校高三年级800名学生在一次百米测试中,成绩全部在12秒到17秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,如图是根据上述分组得到的频率分布直方图.(1)若成绩小于13秒被认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计本年级800名学生中,成绩属于第三组的人数;(3)若样本中第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取1名学生组成一个实验组,求所抽取的2名同学中恰好为一名男生和一名女生的概率.20.(本题满分12分)如图,已知椭圆+y2=1的四个顶点分别为A1,A2,B1,B2,左右焦点分别为F1,F2,若圆C:(x﹣3)2+(y﹣3)2=r2(0<r<3)上有且只有一个点P满足=.(1)求圆C的半径r;(2)若点Q为圆C上的一个动点,直线QB1交椭圆于点D,交直线A2B2于点E,求的最大值.21.(本题满分12分)已知函数f(x)=﹣,(x∈R),其中m>0(Ⅰ)当m=2时,求曲线y=f(x)在点(3,f(3))处的切线的方程;(Ⅱ)若f(x)在()上存在单调递增区间,求m的取值范围(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2且x1<x2,若对任意的x∈,f(x)>f(1)恒成立.求m的取值范围【选做题】请考生从22、23题中任选一题作答,共10分22.(选修4-4.坐标系与参数方程)在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.23.(选修4-5.不等式选讲)已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(Ⅰ)求实数m的值;(Ⅱ)若α,β>1,f(α)+f(β)=2,求证: +≥.普宁市华侨中学2017届高三级上学期·期末考理科数学参考答案1.B. 2.B. 3.D. 4.B . 5.C. 6.B. 7.C. 8.A. 9.C. 10.B. 11.B. 12.D.13.. 14. 15.. 16.①③.17.解:(Ⅰ)当b=2时,由题意知2a1﹣2=a1,解得a1=2,且ba n﹣2n=(b﹣1)S nba n+1﹣2n+1=(b﹣1)S n+1两式相减得b(a n+1﹣a n)﹣2n=(b﹣1)a n+1即a n+1=ba n+2n①(3分)当b=2时,由①知a n+1=2a n+2n于是a n+1﹣(n+1)•2n=2a n+2n﹣(n+1)•2n=2(a n﹣n•2n﹣1)又a1﹣1•20=1≠0,所以{a n﹣n•2n﹣1}是首项为1,公比为2的等比数列.(6分)(Ⅱ)当b=2时,由(Ⅰ)知a n﹣n•2n﹣1=2n﹣1,即a n=(n+1)2n﹣1当b≠2时,由①得==因此=即(10分)所以.(12分)18.(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(6分)(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.(12分)19.(1)由频率分布直方图,得成绩小于13秒的频率为0.06,∴该样本在这次百米测试中成绩优秀的人数为:0.06×50=3(人).(3分)由频率分布直方图,得第三组[14,15)的频率为0.38,∴估计本年级800名学生中,成绩属于第三组的人数为:800×0.38=304(人).(6分)(2)由频率分布直方图,得第一组的频率为0.06,第五组的频率为0.08,∴第一组有50×0.06=3人,第五组有50×0.08=4人,∵样本中第一组只有一名女生,第五组只有一名男生,∴第一组中有1名女生2名男生,第五组中有3名女生1名男生,现从第一、第五组中各抽取1名学生组成一个实验组,所抽取的2名同学中恰好为一名男生和一名女生,包含的基本事件个数m==7,(10分)∴所求概率为p=.(12分)20.(1)由椭圆+y2=1可得F1(﹣1,0),F2(1,0),设P(x,y),∵=,∴=,化为:x2﹣3x+y2+1=0,即=.又(x﹣3)2+(y﹣3)2=r2(0<r<3),∵圆C上有且只有一个点P满足=.∴上述两个圆外切,∴=r+,解得r=.(4分)(2)直线A2B2方程为:,化为=.设直线B1Q:y=kx﹣1,由圆心到直线的距离≤,可得:k∈.联立,解得E.(6分)联立,化为:(1+2k2)x2﹣4kx=0,解得D.(7分)∴|DB1|==.|EB1|==,∴===|1+|,(9分)令f(k)=,f′(k)=≤0,因此函数f(k)在k∈上单调递减.(10分)∴k=时, =|1+|=取得最大值.(12分)21.(Ⅰ)当m=2时,f(x)=x3+x2+3x,∴f′(x)=﹣x2+2x+3,故k=f′(3)=0,又∵f(3)=9,∴曲线y=f(x)在点(3,f(3))处的切线方程为:y=9,(3分)(Ⅱ)若f(x)在()上存在单调递增区间,即存在某个子区间(a,b)⊂(, +∞)使得f′(x)>0,∴只需f′()>0即可,f′(x)=﹣x2+2x+m2﹣1,由f′()>0解得m<﹣或m>,由于m>0,∴m>.(6分)(Ⅲ)由题设可得,∴方程有两个相异的实根x1,x2,故x1+x2=3,且解得:(舍去)或,(8分)∵x1<x2,所以2x2>x1+x2=3,∴,若 x1≤1<x2,则,而f(x1)=0,不合题意.若1<x1<x2,对任意的x∈,有x>0,x﹣x1≥0,x﹣x2≤0,则,于是对任意的x∈,f(x)>f(1)恒成立的充要条件是,解得;(10分)综上,m的取值范围是.(12分)22.(1)∵在直角坐标系xOy中,直线l的参数方程为,∴t=x﹣3,∴y=,整理得直线l的普通方程为=0,∵,∴,∴,∴圆C的直角坐标方程为:.(5分)(2)圆C:的圆心坐标C(0,).∵点P在直线l: =0上,设P(3+t,),则|PC|==,∴t=0时,|PC|最小,此时P(3,0).(5分)23.(I)解:∵|x﹣m|+|x|≥|x﹣m﹣x|=|m|,∴要使|x﹣m|+|x|<2有解,则|m|<2,解得﹣2<m<2.∵m∈N*,∴m=1.(5分)(II)证明:α,β>0,f(α)+f(β)=2α﹣1+2β﹣1=2,∴α+β=2.∴+==≥=,当且仅当α=2β=时取等号.(10分)。

高三数学第一学期期末高三数学理科测试试题

高三数学第一学期期末高三数学理科测试试题

第一学期期末考试 高三数学理科测试试题满分150分:完卷时间为120分钟:答案请写在答题纸上一、填空题(每小题4分:共44分)1、已知集合P ={x |x 2–9<0}:Q ={y |y=2x :x ∈Z }:则P ∩Q = 。

2、若复数i iaz ++=1为实数:则实数=a 。

3、函数f (x )=1+log 2 x (x ≥2)的反函数f –1(x ) = 。

4、函数xx y 4+=:x ∈[4,6]的最小值 。

5、若方程16422=++-ky k x 表示椭圆:则k 的取值范围是 。

6、方程sin x+cos x = –1在[0,π]内的解为 。

7、向量→a 与→b 的夹角为150:3||=→a :4||=→b :则=+→→|2|b a 。

8、直线3x +y –23=0截圆x 2+y 2=4得的劣弧所对的圆心角的大小为 。

9、在实数等比数列{a n }中a 1+a 2+a 3=2:a 4+a 5+a 6=16:则a 7+a 8+a 9= 。

10、定义在R 上的偶函数f (x ):满足f (2+x ) = f (2–x ):且当x ∈[0,2]时:f (x )=24x -:则f (20)= 。

11、正数数列{a n }中:对于任意n ∈N *:a n 是方程(n 2+n )x 2+(n 2+n –1)x –1=0的根:S n 是正数数列{a n }的前n 项和:则=∞→n n S lim 。

二、选择题(每小题4分:共16分) 12、在复平面内:复数z =i-21对应的点位于 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 13、命题:“对任意的R x ∈:0322≤--x x ”的否定是 ( )(A )不存在R x ∈:0322≤--x x : (B )存在R x ∈:0322≤--x x : (C )存在R x ∈:0322>--x x : (D )对任意的R x ∈:0322>--x x .14、已知A (1,0)、B (7,8):若点A 和点B 到直线l 的距离都为5:且满足上述条件的直线l 共有n 条:则n 的值是 ( ) (A ) 1 (B ) 2 (C ) 3 (D ) 415、 已知直线l :(m+1)x –my +2m –2=0与圆C :x 2+y 2=2相切:且满足上述条件的直线l 共有n 条:则n 的值为 ( ) (A ) 0 (B ) 1 (C ) 2 (D ) 以上答案都不对 三、解答题(本大题满分90分) 16、(本大题12分)设函数f (x )=)2sin()42cos(21ππ+-+x x :(1)化简f (x )的表达式:求f (x )的定义域:并求出f (x )的最大值和最小值:(2)若锐角α满足cos α=54:求f (α)的值。

高三上学期理科数学期末试卷及答案

高三上学期理科数学期末试卷及答案

2021高三上册理科数学期末试卷及答案【】大家把理论知识复习好的同时,也应该要多做题,从题中找到自己的缺乏,及时学懂,下面是查字典数学网小编为大家整理的高三上册数学期末试卷及答案,希望对大家有帮助。

第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项符合题目要求。

1.设全集,集合 ,那么 ( )A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}2.假设复数是纯虚数,那么实数 ( )A.1B.C.0D.13. 为等比数列,假设,那么 ( )A.10B.20C.60D.1004.设点是线段BC的中点,点A在直线BC外, ,,那么 ( )A.2B.4C.6D.85.右图的算法中,假设输入A=192,B=22,输出的是( )A.0B.2C.4D.66.给出命题p:直线互相平行的充要条件是 ;命题q:假设平面内不共线的三点到平面的间隔相等,那么∥ 。

对以上两个命题,以下结论中正确的选项是( )A.命题p且q为真B.命题p或q为假C.命题p且┓q为假D.命题p且┓q为真7.假设关于的不等式组表示的区域为三角形,那么实数的取值范围是( )A.(-,1)B.(0,1)C.(-1,1)D.(1,+)8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有一样标号的盒子中,那么不同的方法有( )A.36种B.45种C.54种D.84种9.设偶函数的局部图像如下图,为等腰直角三角形,=90,| |=1,那么的值为( )A. B. C. D.10.点 ,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,那么P点的轨迹方程为( )A. B.C. D.11.函数有且只有两个不同的零点,那么b的值为( )A. B. C. D.不确定12.三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,假设点P到△ABC的三个顶点的间隔相等,那么三棱锥P-ABC的体积为( )A.5B.10C.20D.30第二卷二、填空题:本大题共4小题,每题5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省金华十校—高三第一学期期末考试数 学 试 题(理科)注意事项: 1.考试时间为2小时,试卷总分为150分。

2.全卷分“试题卷”和“答题卷”各一张,本卷答案必须做在答题卷的指定位置上。

3.答题前请在“答题卷” 的密封线内填写学校、班级、姓名、学号、座位号。

一、选择题:本大题共10小题,每小题5分,满分共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知""""},,|{},,01|{2Q x R x R x x x x Q R x x xx P ∈∈∈>=∈<-=是则的 ( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .不充分也不必要条件2.已知)(),1(,2)()(2)1(*N x f x f x f x f ∈+=+猜想)(x f 的表达式为( )A .224)(+=x x fB .12)(+=x x fC .11)(+=x x fD .122)(+=x x f3.给定性质:①最小正周期为π,②图象关于直线3π=x 对称,则下列四个函数中,同时具有性质①②的是( )A .)62sin(π+=x y B .)62sin(π+=x yC .||sin x y =D .)62sin(π-=x y4.若函数22)(23--+=x x x x f 的一个正数零点附近的函数值的参考数据如下:那么方程02223=--+x x x 的一个近似根(精确到0.1)为( )A .1.2B .1.3C .1.4D .1.5 5.给出右边的程序框图,那么输出的数是( )A .2450B .2550C .5050D .49006.已知随机变量,44.1,4.2),(~==ξξξD E p n B 且则参数p n ,的值为 ( )A .6.0,4==p nB .6.0,6==p nC .4.0,6==p nD .1.0,24==p n7.对于集合M 、N ,定义M M x x N ∈=-|{).()(},M N N M N M N x -⋃-=⊕∉且设y y B R x x x y y A |{},,3|{2=∈-===⊕∈-=B A R x x 则},,2 ( )A .]0,49(-B .)0,49[-C .),0[)49,(+∞⋃--∞D .),0(]49,(+∞⋃--∞8.如图,在BC BD AB BC AD BC AB ABC ⋅=⊥⊥∆2,,,则若中;类似地有命题:在三棱锥A—BCD 中,⊥AD 面ABC ,若A 点在BCD 内的射影为M ,则有BCD BCM ABC S S S ∆∆∆⋅=2。

上述命题是 ( )A .真命题B .增加条件“AC AB ⊥”才是真命题C .增加条件“BCD M ∆为的垂心”才是真命题D .增加条件“三棱锥A —BCD 是正三棱锥”才是真命题9.P 为椭圆1162522=+y x 上的一点,F 1,F 2为左、右焦点,6021=∠PF F °,则21F PF ∆的面积为( ) A .316 B .38 C .3316 D .338 10.已知点),(b a P 与点Q (1,0)在直线0132=+-y x 的两侧,则下列说法中:①;0132>+-b a②aba ,0时≠有最小值,无最大值; ③M b a M >+>∃22,0使恒成立;④1,0,10->≠>a bb a a 时且的取值范围),32()31,(+∞⋃--∞,正确的应该是( )A .①②B .②③C .①④D .③④二、填空题:本大题共7小题,每小题4分,共28分。

11.复数10)11(ii +-的值是 。

12.已知a a a 则且角的终边经过点,0sin ,0cos )1,82(22>≤--ααα的取值范围是 。

13.已知数列=⎩⎨⎧∈≥-==∈-2009*3*,)7()6,5,4,3,2,1(:)}({a N n n a n n a N n a n n n 则且满足 。

14.设二面角βα--l 的大小为60°,n m ,为异面直线,且βα⊥⊥n m ,,则n m ,所成角的大小为 。

15.已知y x y x z y x y x 42,31)2()2(2222+++=⎩⎨⎧≤+≤-+-则的最大值为 。

16.多项飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次。

一运动员在进行训练时,每一次射击命中碟靶的概率P 与运动员离碟靶的距离S (米)成反比,现有一碟靶抛出后S (米)与飞行时间t (秒)满足S=15(t+1),(0≤t ≤4)。

假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击,则他命中此碟靶的概率为 。

17.对正整数n ,设曲线2)1(=-=x x x y n在处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n的前n 项和的公式是 。

三、解答题:本大题共5小题,18—20题每题14分,21—22题每题15分,共72分。

解答应写出文字说明,证明过程或演算步骤。

18.(本题满分14分)已知向量).0,1(),cos ,cos (),sin ,(cos -=-==c x x b x x a(I )若c a x ,,6求向量π=的夹角; (II )当]89,2[ππ∈x 时,求函数12)(+⋅=b a x f 的最大值19.(本题满分14分) 甲、乙两人独立解某一道数学题,已知甲独立解出的概率为0.6,且两人中至少有一人解出的概率为0.92(I )求该题被乙独立解出的概率;(II )求解出该题的人数ξ的分布列与数学期望。

20.(本题满分14分)如图,多面体ABCDS 中面ABCD 为矩形,),0(,,>=⊥⊥a a AD AB SD AD SD 且.3,2AD SD AD AB ==(I )求多面体ABCDS 的体积;(II )求AD 与SB 所成角的余弦值。

(III )求二面角A —SB —D 的余弦值。

21.(本题满分15分)已知离心率为)0(15522222>>=+b a by a x 的椭圆上的点P 到左焦点F 的最短距离为.25-(I )求椭圆的方程;(II )如图,过椭圆的左焦点F 任作一条与两坐标轴都不垂直的弦AB ,若点M 在x 轴上,且使得MF 为AMB ∆的一条内角平分线,则称点M 为该椭圆的“左特征点”,求椭圆的“左特征点”M 的坐标。

22.(本小题满分15分)设.ln )1()1(2)(),0(ln )(2x x x x g a xa x x x f +--=>--=其中(I )已知),1[)()(+∞在和x g x f 上单调性一致,求a 的取值范围; (II )设1>b ,证明不等式.11ln 122bb b b <-<+参考答案一、选择题;本大题有10小题,每小题5分,共50分。

1—5ABDCA 6—10CCACD二、填空题:本大题共7小题,每小题4分,共28分。

11.-1 12.]2,1()1,2[⋃-- 13.5 14.60° 15.15 16.0.92 17.221-+n三、解答题:本大题共5小题,18—20题每题14分,21—22题每题15分。

共72分。

18.解:(I )当时6π=x ,6cos cos 0)1(sin cos cos ||||,cos 2222π-=-=+-⨯+-=⋅⋅>=<x x x x c a c a c a65cosπ=…………4分.65,,,0ππ>=∴<>≤≤c a c a …………7分 (II ))1cos 2(cos sin 21)cos sin cos (212)(22--=++-=+⋅=x x x x x x b a x f x x 2cos 2sin -=)42sin(2π-=x …………10分]89.2[ππ∈x]2,43[42πππ∈-∴x ,故]22,1[)42sin(-∈-πx …………12分.1)(,2,4342max ===-∴x f x x 时即当πππ…………14分 19.解:(I )设甲、乙分别解出此题的事件为A ,B ,则P (A )=0.6 92.0)(4.01)(1=⋅-=⋅-=B P B A P P …………3分解得8.0)(,2.0)(=∴=B P B P …………7分(II )08.02.04.0)()()0(=⨯=⋅==B P A P P ξ…………8分 44.0)()()()()(=⋅+⋅==B P A P B P A P P ξ…………9分48.0)()()2(=⋅==B P A P P ξ…………10分ξ∴的分布列:ξ0 1 2 P0.080.440.484.148.0244.0108.00=⨯+⨯+⨯=∴ξE …………14分 20.解:(I )多面体ABCDS 的体积即四棱锥S —ABCD 的体积。

所以.3323231||313a a a a SD S V ABCD ABCDS =⨯⨯⨯=⨯=- …………4分 (II )由题可知DA 、DA 、DC 两两互相垂直,∴如图建立空间直角坐标系 )0,0,0(),2,0,0(),2,,0(),0,,0(),0,0,3(D a C a a B a A a S ∴)2,,3(),0,,0(a a a a -=-=∴42||||,cos -=⋅>=<∴SB AD∴AD 与SB 所成的角的余弦为.42…………9分 (III ))2,,0(),0,0,3(a a a ==设面SBD 的一个法向量为),,(z y x n =),1,2,0(020360-=⇒⎩⎨⎧=-=⇔⎪⎩⎪⎨⎧=⋅=⋅∴n az ax a n n 又)0,,3(),2,0,0(a a a -==∴设面SAB 的一个法向量为),,(z y x m =),0,3,1(030200=⇒⎩⎨⎧=+-=⇔⎪⎩⎪⎨⎧=⋅=⋅∴m ay ax az SA m m …………11分 515||||,cos =⋅⋅>=<∴n m n m n m , 所以所求的二面角的余弦为515…………14分解法二:(I )同解法一=(II ) 矩形ABCD ,∴AD//BC ,即BC=a , ∴要求AD 与SB 所成的角,即求BC 与SB 所成的角。

…………6分 在SBC ∆中,由(1)知⊥SD 面ABCD 。

a a a SC SDC Rt 7)2()3(,22=+=∆∴中∴CD 是CS 在面ABCD 内的射影,且,CD BC ⊥BC SC ⊥∴,77tan ===∠aaCB SC SBC ∴BC 与SB 所成的角的余弦为,42从而SB 与AD 的成的角的余弦为,42…………9分 (III ),,AB SD AD SD SAD ⊥⊥∆且中 ⊥∴SD 面ABCD 。

相关文档
最新文档