八年级数学平行四边形的性质1

合集下载

(1)平行四边形的性质(边角的特征)课件人教版数学八年级下册

(1)平行四边形的性质(边角的特征)课件人教版数学八年级下册
的面积为 . 10
E
D
第3题图
C
A
B
第4题图
当堂训练 平行四边形的边、角特征 查漏补缺
5.已知在平行四边形ABCD中,DE平分∠ADC,BF平分∠ABC.求证:AE=CF.
证明:∵四边形ABCD是平行四边形,
DF
C
∴AB∥CD,AD=BC.
∴∠CDE=∠DEA,∠CFB=∠FBA.
∵DE,BF分别平分∠ADC,∠ABC, AECF ∴∠CDE=∠ADE,∠CBF=∠FBA, ∴∠DEA=∠ADE,∠CFB=∠CBF,
∴△ABD中AB边上的高为6cm.
课堂小结 平行四边形的边、角特征 知识梳理
定 义 两组对边分别平行的四边形
平行 四边形
性质
两组对边分别平行,相等 两组对角分别相等,邻角互补
两条平行线间的距离相等, 两条平行线间的平行线段也相等
当堂训练 平行四边形的边、角特征 查漏补缺
1.在□ABCD中,M是BC延长线上的一点,若∠A=135º,则∠MCD的度数是( A )
A.45° B.55° C.65° D.75°
A
D
2.判断题(对的在括号内填“√”,错的填“×”):
(1)平行四边形两组对边分别平行且相等. (2)平行四边形的四个内角都相等.
( √ )B
( ×)
CM
(3)平行四边形的相邻两个内角的和等于180º ( √ )
(4)如果平行四边形相邻两边长分别是2和3,那么周长是10.( √ )
∴∠BAD=∠BCD.
同理可得∠A=∠C.
知识点二 平行四边形的边、角的特征
平行四边形的性质除了对边互相平行以外,还有:
平行四边形的对边相等.

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件

10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线

人教版初中数学八年级下册教学课件 第十八章 平行四边形 平行四边形的性质 (第1课时)

人教版初中数学八年级下册教学课件 第十八章 平行四边形 平行四边形的性质 (第1课时)
新课标 人
数学
8年级/下
八年级数学·下 新课标[人]
第十八章 平行四边形
18.1.1 平行四边形的性质
(第1课时)
学习新知
检测反馈
观察思考
观察下图中的小区的伸缩门,庭院的竹篱笆和 载重汽车的防护栏,它们是什么几何图形的形象?
学习新知
你知道什么样的图形叫做平行四边形吗? 两组对边分别平行的四边形叫做平行四
边形.说明定义的两方面作用:既可以作为性 质,又可以作为判定平行四边形的依据.
平行四边形如何好记好读呢?
平行四边形用“□”表示,平行四边形ABCD,
记作“□ABCD”.
如右图所示 对边:AD与BC,AB与DC; 对角:∠A与∠C,∠B与∠D.
总结:四边形中不相邻的边,也就是没有公共 顶点的边叫做对边;没有公共边的角,叫做对角.
的对角线.(1)请你说出图中的相等的角、相等的线段;
AB=CD,AD=BC, ∠DAB=∠BCD,∠B=∠D.
(2)对角线AC需添加一个什么条件,能使平行四边形 ABCD的四条边相等?
添加AC平分∠DAB.
请同学们拿出方格纸,在方格纸上画两条互相平行 的直线,在其中一条直线上任取若干点,过这些点作另一 条直线的垂线.请同学们用刻度尺量一下方格纸上两平 行线间的所有垂线段的长度,你发现了什么现象?
3.如图所示,在□ ABCD中,AD=2AB,CE平分∠BCD交
AD边于点E,且AE=3,则AB的长为 A.4 B.3 C.5 D.2
2
(B)
解析:∵四边形ABCD是平行四边 形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE, ∵CE平分∠DCB,∴∠DCE=∠BCE, ∴∠DEC=∠DCE,∴DE=DC=AB, ∵AD=2AB=2CD,CD=DE,∴AD=2DE, ∴AE=DE=3,∴DC=AB=DE=3.故选B.

22,1 平行四边形的性质 第一课时八年级数学下册课件(冀教版)

22,1 平行四边形的性质 第一课时八年级数学下册课件(冀教版)

如图,四边形ABCD 是平行四边形,记作 “□ABCD ”,读作“平行四边形ABCD ”.线段AC, BD 为□ABCD 的两条对角线,点O 为它的中心.
1. 定义:两组对边分别平行的四边形叫做平行四边形.
2. 表示方法:平行四边形用符号“▱ ”表示,如图,平
行四边形ABCD 记作“▱ABCD ”,
这样我们证明了平行四边形具有以下性质: 平行四边形的对边相等.
1. 边的性质:平行四边形对边平行;平行四边形对边相等. 2. 数学表达式:如图,
∵四边形ABCD 是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
例3 如图,在▱ABCD 中,BM 是∠ABC 的平分线, 交CD 于点M,且MC=2,▱ABCD 的周长是14, 则DM 等于( C )
2 如图,▱ABCD 中,EF∥GH∥BC,MN∥AB,则图中平行四
边形的个数是( D ) A.13 B.14 C.15 D.18
知识点 2 平行四边形的中心对称性
1. 如图,在半透明的纸上画一个▱ABCD,再复制一个.将两个图形
完全重合,用大头针钉在中心处.使下面的图形不动,将上面的图
形绕中心O 旋转180°.这两个图形能完全重合?平行四边形是不是
分别平行”外,它的边之间还有什么关系? 通过观察和度量,我们猜想:平行四边形的对边相等;
下面我们对它进行证明.
证明:如图,连接AC. ∵AD//BC,AB//CD,
∴∠1=∠2,∠3=∠4.
又AC 是△ABC 和△CDA 的公共边, ∴ △ABC ≌△CDA. ∴AD =CD,AB =CD.
归纳
中心对称图形?如果是中心对称图形,哪个点是它的对称中心?
被对角线分成的三角形中,关于点O 成中心对称的三角形有几对?

初二数学下册:平行四边形知识点

初二数学下册:平行四边形知识点

初二数学下册:平行四边形知识点1、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”;要点诠释:平行四边形基本元素:边、角、对角线相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条。

2、平行四边形的性质边的性质:平行四边形两组对边平行且相等;角的性质:平行四边形邻角互补,对角相等;对角线性质:平行四边形的对角线互相平分;平行四边形是中心对称图形,对角线的交点为对称中心。

要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系。

(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择。

(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决。

3、平行四边形的判定两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法;(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据。

4、三角形的中位线连接三角形两边中点的线段叫做三角形的中位线;定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系;(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的;(3)三角形的中位线不同于三角形的中线。

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

平行四边形及其性质【学习目的】1.理解平行四边形的概念,掌握平行四边形的性质定理和断定定理.2.能初步运用平行四边形的性质进展推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 理解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等〞。

“夹在两条平行线间的垂线段相等〞.【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD〞,读作“平行四边形ABCD〞.要点诠释:平行四边形的根本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:〔1〕平行四边形的性质定理中边的性质可以证明两边平行或者两边相等;角的性质可以证明两角相等或者两角互补;对角线的性质可以证明线段的相等关系或者倍半关系.〔2〕由于平行四边形的性质内容较多,在使用时根据需要进展选择.〔3〕利用对角线互相平分可解决对角线或者边的取值范围的问题,在解答时应联络三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的间隔:〔1〕定义:两条平行线中,一条直线上的任意一点到另一条直线的间隔,叫做这两条平行线间的间隔 .注:间隔是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1.如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即〔AO+OB+AB〕-〔BO+OC+BC〕=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC =4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2.平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,假如△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD 的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2〔AD+CD〕=2×40=80〔cm〕.∴平行四边形ABCD的周长为80cm.【总结升华】此题考察了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD的对角线AC.BD相交于点O,EF过点O且与AB.CD分别相交于点E.F,连接EC.〔1〕求证:OE=OF;〔2〕假设EF⊥AC,△BEC的周长是10,求平行四边形ABCD的周长.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△FDO和△EBO中∵OD OBFOD EOFDO EBBO ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO≌△EBO〔AAS〕,∴OE=OF;〔2〕解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD的周长=2〔BC+AB〕=20.3.如图,口ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,口ABCD的周长比△ABD的周长多10cm.∠BDE=35°.〔1〕求∠C的度数;〔2〕求AB和AD的长.〔1〕由于DE是AB边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,【思路点拨】根据平行四边形的性质得到∠C=55°;〔2〕由DE是AB边的垂直平分线,得到DA=DB,根据平行四边形的性质得到AD=BC,AB=DC,由于口ABCD的周长为52,于是得到AB+AD=26,根据口ABCD的周长比△ABD的周长多10,得到BD=16,AD=16〔cm〕,于是求出结论.【答案与解析】解:〔1〕∵DE是AB边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD,∴∠C=∠A=55°;〔2〕∵DE是AB边的垂直平分线,∴DA=DB,∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣〔AB+AD+BD〕=10,∴BD=16,∴AD=16〔cm〕,∴AB=26﹣16=10〔cm〕.【总结升华】此题主要考察了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4.如图1,P为Rt△ABC所在平面内任一点〔不在直线AC上〕,∠ACB=90°,M为AB 的中点.操作:以PA.PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.〔1〕请你猜测与线段DE有关的三个结论,并证明你的猜测;〔2〕假设将“Rt△ABC〞改为“任意△ABC〞,其他条件不变,利用图2操作,并写出与线段DE有关的结论〔直接写答案〕.【思路点拨】〔1〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;〔2〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可.【答案与解析】DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB〔SAS〕,∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.〔2〕解:DE∥BC,DE=BC.【总结升华】此题考察了平行四边形性质和断定,全等三角形的性质和断定,平行线的性质和断定的综合运用.举一反三:【变式】:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.〔1〕求证:∠ADE=∠CDF;〔2〕假如∠B=120°,求证:△DMN是等边三角形.【答案】证明:〔1〕∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.〔2〕证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5.如图1,直线m∥n,点A.B在直线n上,点C.P在直线m上;〔1〕写出图1中面积相等的各对三角形:△CAB与△PAB.△BCP与△APC.△ACO与△BOP__________________;〔2〕如图①,A.B.C为三个顶点,点P在直线m上挪动到任一位置时,总有__________△PAB 与△ABC的面积相等;〔3〕如图②,一个五边形ABCDE,你能否过点E作一条直线交BC〔或者延长线〕于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】〔1〕找出图①中同底等高的三角形,这些三角形的面积相等;〔2〕因为两平行线间的间隔是相等的,所以点C.P到直线n间的间隔相等,也就是说△ABC 与△PAB的公一共边AB上的高相等,所以总有△PAB与△ABC的面积相等;〔3〕只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:〔1〕∵m∥n,∴点C.P到直线n间的间隔与点A.B到直线m间的间隔相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB.△BCP与△APC,△ACO与△BOP;〔2〕∵m∥n,∴点C.P到直线n间的间隔是相等的,∴△ABC与△PAB的公一共边AB上的高相等,∴总有△PAB与△ABC的面积相等;〔3〕连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】此题主要考察了三角形的面积及平行线的性质,利用平行线间的间隔相等得到同底等高的三角形是解题的关键.创作人:历恰面日期:2020年1月1日。

第一课时平行四边形的性质1-八年级数学下册课件(人教版)

第一课时平行四边形的性质1-八年级数学下册课件(人教版)

课堂练习
8.如图,在▱ABCD 中,∠B=120°,DE⊥AB 于点 E,DF⊥BC 于点 F,则∠ADE=______3_0_°______,∠EDF=_____6__0_°______, ∠FDC=______3_0_°______.
课堂练习
9.如图,已知 BD 是△ABC 的角平分线,点 E,F 分别在边 AB,BC 上,ED∥CF,EF∥AC.求证:BE=CF.
边形的周长为( B )
A.16
B.26
C.22
D.11
4.如图,在▱ABCD 中,AB⊥AC,若 AB=3,AC=4,则 AD 的长
为( A )
A.5
B.8
C.10
D.11
课堂练习
5.在▱ABCD 中,若∠A+∠C=100°,则∠B=_____1_3_0_°______. 6.在▱ABCD 中,AB=5,则 CD=_______5_______. 7.▱ABCD 的周长为 28 cm,且 AB∶BC=2∶5,那么 AB= ______4________ cm,AD=______1_0_______ cm.
又∵∠1=∠2,∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB.
归纳小结
平行四边形的性质:
1.平行四边形对边相等。 2.平行四边形对角相等。
巩固练习
1.如图,在四边形 ABFE 中,点 C,D 分别在边 AE,BF 上,若 AB∥CD∥EF,AE∥BF,则图中的平行四边形共有____3______ 个.
证明:∵ED∥CF,EF∥AC, ∴四边形 EFCD 是平行四边形. ∴ED=CF. ∵BD 是∠ABC 的平分线, ∴∠EBD=∠DBC. ∵ED∥BC,∴∠EDB=∠DBC. ∴∠EBD=∠EDB.∴BE=ED.∴BE=CF.

八年级数学上册知识点归纳:平行四边形的性质

八年级数学上册知识点归纳:平行四边形的性质

八年级数学上册知识点归纳:平行四边形的性质八年级数学上册知识点归纳:平行四边形的性质知识点总结1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。

误区提醒(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。

知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

(3)判定定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

2.菱形:(1)定义:邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

(3)判定定理:①一组邻边相等的平行四边形是菱形。

鲁教版(五四制)八年级数学上册第五章第一节平行四边形的性质第一课时ppt课件

鲁教版(五四制)八年级数学上册第五章第一节平行四边形的性质第一课时ppt课件
对称性:是中心对称图形 对角线的交点是对称中心
对边:平行且相等
对角:相等
情景导入 活动1 生活中的平行四边形
情景导入 活动1 生活中的平行四边形
探究新知
拼图游戏
活动1:请同学将制作好的两个全等的三角形拿出来
将它们相等的一组边重合,拼成一个四边形。
问题(1)这样的四边形能拼出几种?展示你所有的 拼图结果 问题(2)观察拼出的四边形的对边有怎样的位置关 系?说说你的理由。
思考:问题(1)平行四边形是中心对称图形吗? 如果是,你能找到它的对称中心吗? 问题(2)平行四边形的对边有什么性质? 问题(3)平行四边形的对角有什么性质? 问题(4)平行四边形中相邻的两角有什么关系呢?
合作探究 1.平行四边形是中心对称图形吗?如果是,
你能找出它的对称中心吗?
A
D
O●
O
B
C
由旋转得到:
∴ ∠B =∠D
同理可证 ∠A=∠C
同时我们还可以得到邻角有怎样的关系? 邻角互补。
学以致用
例1 已知:如图,在 两点,并且AE=CF
求证:BE=DF
ABCD中,E,F是对角线AC上的
A
D
E
证明:∵四边形ABCD是平行四边形
F
∴AB=CD,AB∥CD
B
C
∴∠BAE= ∠DCF 又∵AE=CF
温馨提示:证明边、角相等时,
平行四边形是中心对称图形,对角线的交点是对称中心
探究新知 (2)平行四边形的对边相等
已知: 四边形ABCD是平行四边形.
求证: AB=CD,BC=DA.
A
D
证明:连接AC
点评:∵要四证边形明A上BCD述是结平论行四,边可形 以连接∴AABC∥或CDB,DA,D将∥平BC,行四边

平行四边形的性质课件数学北师大版八年级下册

平行四边形的性质课件数学北师大版八年级下册
1. 从边看: 平行四边形的对边平行且相等.
• • •
2. 从角看:平行四边形的对角相等、邻角互补 .
• • •
注意:要根据推理证明的需要,合理选用平
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P 随堂练习T ] 如图 6-1-4,在 ABCD 中,
137
1
18
AB=5 cm, BC=4 cm,则▱ ABCD 的周长为______cm.
感悟新知
知2-练
解题秘方:紧扣平行四边形边的性质进行解答 .
解:∵平行四边形的对边相等,
∴ CD=AB=5 cm, AD=BC=4 cm.
∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知
形 ABCD两条对角线的交点 O,
∴ AE+AB+BF=FC+CD+DE=

(

AB+BC+CD+DA), S 四边形 ABFE=S 四边形
FCDE=

S
.
▱ ABCD
感悟新知
知3-练
例3 如图 6-1-7, 已知 ▱ ABCD的周长是 60,对角线
AC, BD 相交于点 O. 若△ AOB 的周长比△ BOC

AC,

OB=OD=

BD.

知3-讲
感悟新知
知3-讲
2. 拓展性质
(1)平行四边形的一条对角线将平行四边形分成面积相

八年级数学上册第五章平行四边形1平行四边形的性质第1课时平行四边形的边角性质习题课件鲁教版五四制

八年级数学上册第五章平行四边形1平行四边形的性质第1课时平行四边形的边角性质习题课件鲁教版五四制

6
7
8
9
10
11
12
13
14
15
16
(2)若 BC =2 AB ,∠ BCD =100°,求∠ ABE 的度数.
【解】由(1)易得 BF =2 AB , EF = EC .
∵ CD ∥ AB ,∴∠ FBC +∠ BCD =180°.
∵∠ BCD =100°,∴∠ FBC =180°-100°=80°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
【证明】∵四边形 ABCD 是平行四边形,∴ AB = CD ,
∠ B =∠ D ,∠ BAD =∠ BCD . ∵ AE 平分∠ BAD , CF


平分∠ BCD ,∴∠ BAE = ∠ BAD ,∠ DCF = ∠ BCD ,


∴∠ BAE =∠ DCF .
∴∠ DAC =∠ C ,∴ AD = CD . ∵ AD = AE = BF ,
∴ BF = CD ,∴ BD = CF .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14. 如图,在▱ ABCD 中,点 E , F 在对角线 AC 上,∠ CBE
=∠ ADF . 求证:
(1) AE = CF ;

人教版八年级数学下册第18章平行四边形 知识要点总结

人教版八年级数学下册第18章平行四边形 知识要点总结

人教版八年级数学下册第18章平行四边形知识要点总结第18章平行四边形复习平行四边形知识点一、平行四边形定义:二、平行四边形的性质边:1.两组对边互相平行且相等;符号语言:角:2.两组对角分别相等;符号语言:对角线:3.对角线互相平分。

符号语言:对称性:中心对称图形但不一定是轴对称图形平行线之间的距离:平行线间的距离都相等符号语言:∵AE∥BF且AB⊥BF,CD⊥BF,EF⊥BF∴AB=CD=EF三、平行四边形的判定边:1. 两组对边分别平行.....的四边形是平行四边形;符号语言:2. 两组对边分别相等......的四边形是平行四边形;符号语言:3. 一组对边平行且相等......的四边形是平行四边形;符号语言:角:4. 两组对角分别相等......的四边形是平行四边形;符号语言:对角线:5.对角线互相平分的四边形是平行四边形;符号语言:四、平行四边形的面积公式S□ABCD=ah(a是边,h是这个边的高);五、与三角形有关的知识点1.三角形中位线定义:连接三角形两边中点的线段..叫做三角形的中位线。

2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半符号语言:3.取值范围:利用三角形的性质:两边之和大于第三边;两边之差小于第三边 如:已知□ABCD 两对角线的长分别为6和8,则较短边长x 的取值范围为1<x<7.4.直角三角形性质定理(1)直角三角形斜边上的中线等于斜边的一半.符号语言:∵在Rt △ABC 中,且AD =CD∴ BD=AD=CD(2)直角三角形中,30°角所对应的直角边等于斜边的一半.符号语言:∵在Rt △ABC 中,且∠A=30°∴BC=12AC 或 2BC=AC特殊的平行四边形知识点—矩形一、矩形的定义:二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的四个角都是直角; 符号语言:3.矩形的对角线平分且相等。

符号语言:三、矩形判定1.有一个角是直角的平行四边形.....叫做矩形。

八年级数学《平行四边形性质 》课件

八年级数学《平行四边形性质 》课件

小组展示
A
D
一、 平行四边形的相关概念:
1、定义:有两组对边分别平行的四B 边形叫平行C四边形. 2、特征:a、属于四边形; b、有两组对边分别平行.
3、符号:“ ”如平行四边形ABCD记作: ABCD;
读作:平行四边形ABCD
4、有关名称:
A
D
(1)对边,(2)邻边;


(3)对角,(4)邻角;
D
3. 如图, ABCD中,DE⊥AB,BF⊥CD,垂 足分别为E,F.求证:AE=CF.
两条平行线中,一条直线 D 上任意一点到另一条直线
的距离,叫做两条平行线
之间的距离
A E
FC B
DE=BF 吗?
两条平行线间的距离处 处相等
已知 : 如图, ABCD , AB=8cm,BC=10cm,∠B=30°.
B
C
(5)高。
返回
5.证明平行四边形的对边平行且相等
6.证明平行四边形的对角相等,邻角互 补
平行四边形的性质:
平行四边形的对边平行;
四边形ABCD是平行四边形 AB CD;AD BC
平行四边形的对边相等;
四边形ABCD是平行四边形 AB CD; AD BC
平行四边形的对角相等;
四边形ABCD是平行四边形 A C;B D
求 : ABCD 的面积.
A
D
解: 过A作AE⊥BC于点E
在Rt△ABE中,
B
∠B= 30°, AB=8 .
EC
∴ AE=
1 2
AB=
1 2
×8 =4
∴ ABCE的面积
S ABCD =BC·AE
=10×4 =40(cm2).

人教版数学八年级下册《 平行四边形的判定一》ppt课件

人教版数学八年级下册《 平行四边形的判定一》ppt课件
证明:在平行四边形ABCD中,∠A=∠C,AD=BC, 又∵BF=DH,∴AH=CF. 又∵AE=CG, ∴△AEH≌△CGF(SAS). ∴EH=GF.同理得△BEF≌△DGH(SAS). ∴GH=EF. ∴四边形EFGH是平行四边形.
课堂检测
能力提升题
如图,五边形ABCDE是正五边形,连接BD , CE,交于点P.
D
110°
70° B
110°C
A

B 120°
C 60°
D
不是
能判定四边形ABCD是平行四边形的条件: ∠A:∠B:∠C:∠D的值为 ( )D
A. 1:2:3:4
B. 1:4:2:3
C. 1:2:2:1
D. 3:2:3:2
探究新知
知识点 3 平行四边形的判定定理3
如图,将两根木条AC,BD的中点重叠,用小钉绞合在一
人教版 数学 八年级 下册
18.1 平行四边形 18.1.2 平行四边形的判定
(第1课时)
导入新知
一天,八年级的李明同学在生物实验室做实验时,不小心碰碎 了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示 部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店不安 全,于是他想把原来的平行四边形重新在纸上画出来,然后带 上图纸去就行了,可原来的平行四边形怎么画出来呢?
E
OF
B
C
∴ A∵BO=DO,
∴四边形BFDE是平行四边形.
巩固练习
根据下列条件,不能判定四边形为平行四边形的是( C )
A.两组对边分别相等 B.两条对角线互相平分
C.两条对角线相等
D.两组对边分别平行
如图,在四边形ABCD中,AC与BD交于点O.

八年级数学《平行四边形的判定》课件

八年级数学《平行四边形的判定》课件

选做题
2、已知: ABCD中, E、F分别是AC上两点, 且BE⊥AC于E,DF⊥AC于F. 求证: 四边形BEDF是平行四边形.

E

F


图形语言 符号语言 C∵AB∥CD, AD∥BC D
B C∵AB=CD, AD= BC
∴ABCD是平行四边形
∴ABCD是平行四边形
B C ∵∠A=∠C, ∠B=∠D B C ∵OA=OC, OB=OD
O
∴ABCD是平行四边形
∴ABCD是平行四边形

必做题
1、已知:E、F是平行四边形ABCD对角 线AC延长线上的两点,并且AE=CF . 求证:四边形BFDE是平行四边形
命题3:对角线互相平分的四边形是平行四边形
百炼成金
定义:两组对边分别平行的四边形是 平行四边形 定理1:两组对边分别相等的四边形是 平行四边形 定理2:两组对角分别相等的四边形是 平行四边形 定理3:对角线互相平分的四边形是 平行四边形
请你来判断:
下列哪些四边形是平行四边形?并说明理由
大显身手
人教版数学教材八年级下
18.1.2平行四边形的判定(1)
知识回顾 定义:两组对边分别平行的四边形 叫做平行四边形

平行四边形的两组对边 分别相等
平行四边 形的性质:
平行四边形的两组对角 角 分别相等 对角线 平行四边形的对角线互 相平分
得出猜想
命题1:两组对边分别相等的四边形是平行四边形
命题2:两组对角分别相等的四边形是平行四边形
例1:已知:E、F是平行四边形ABCD对 CF DE= ∥ BF . 角线AC上的两点,并且 AE 求证:四边形BFDE是平行四边形
课堂小结:

18.1.3平行四边形的性质课件华东师大版八年级数学下册

18.1.3平行四边形的性质课件华东师大版八年级数学下册

A.63°
B.72°
C.54°
D.60°
4. 如图,在□ABCD中,BF 平分∠ABC,交 AD 于点 F,
CE 平分∠BCD,交 AD 于点 E,AB = 6,EF = 2,则 BC 长为( B )
5. 如图,在平行四边形 ABCD 中,P 是 CD 边上一点, 且 AP 和 BP 分别平分∠DAB 和∠CBA,若 AD = 5, AP = 8,则△APB 的周长为__2_4____.
BC分别相交于点 E 和点 F .求证:OE=OF.
分析:要证明OE=OF,只要证明它们所在
A
E
O
D
的两个三角形全等即可.
证明:▱ABCD中
B
F
C
有OB=OD(平行四边形的对角线互相平分) 又∵∠DOE=∠BOF,
∵AD∥BC
∴△DEO≌△BFO.
∴∠DEO=∠BFE
∴OE=OF
9. 如图,▱ABCD的对角线AC与DB相交于点O,其周长为16,且△AOB
的周长比△BOCAB和BC的长.
解:在▱ABCD中
A
D
O
有OA=OC(平行四边形的对角线互相平分)
B
C
∵△AOB的周长+2=△BOC的周长
∴AB+OA+OB+2=BC+OB+OC,
∴2(AB+BC)=16
43;4=16
又∵▱ABCD的周长等于16
∴AB=3,BC=5
10. 如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为点E,且 BE=5cm,ADAD和BC之间的距离.
1. 已知平行四边形 ABCD 的周长为 32,AB = 4,则 BC 的长为____1_2___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在 ABCD中,若BE平分∠ABC, 则ED= 4cm .
A
5cm 3
E 4cm
D
A E

5cm
B
1 2 9cm
C
5cm
B C
2.如图,在平行四边形ABCD中,CE⊥AB,点E为 垂足,如果∠A=125°,则∠BCE的度数为多少?
• 通过本节课的学习,你有什么收获?
1.两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的性质:对边平行
对边:AB与CD; BC与DA. 对角: ∠ABC与∠CDA; ∠BAD与∠DCB.
理解定义
两组对边分别平行的四边形叫做平行四边形.
A B C D 记作: ABCD
读作:平行四边形ABCD ∵四边形ABCD是平行四边形 ∴ AB∥CD

AB∥CD
AD∥BC ∴四边形ABCD是平行四边形
AD∥BC
∠A= ∠C, ∠B= ∠D(平行四边形的对角相等)
1.如图:在 ABCD中,根据已知你能得到哪 些结论?为什么?
A 30cm B
124°
32cm
56° 124°
D
30cm
56°
32cm
C
如图 小明用一根36m长的绳子围成了一个平行四边形 的场地,其中一条边AB长为8m,其他三条边各长多少?
A 8cm B C D 解:∵ 四边形ABCD是平行四边形
∴AB=CD, AD=BC
∵AB=8m ∴CD=8m 又AB+BC+CD+AD=36, ∴ AD=BC=10m
1.如图, ABCD的周长是28cm,△ABC的周长
是22cm,则AC的长为(
A 6cm A B 12cm D C 4cm
)
D 8cm A B C D
B
C
2.如图,在 ABCD中,∠A:∠B=7:2,求 ∠C的度数.
已知: ABCD 求证:AB=CD,BC=DA; ∠B=∠D,∠A=∠C. 证明:连接AC ∵四边形ABCD是平行四边形
4 1 2 3
∴AB∥CD,AD∥BC ∴∠1=∠2,∠3=∠4 在△ABC和△CDA中 ∠1=∠2
AC=CA ∠3=∠4 ∴ △ABC≌△CDA(ASA)
∴AB=CD,BC=DA, ∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
定理1:平行四边形的两组对边分别相等 定理2:平行四边形的两组对角分别相等
D C
几何语言:
∵ 四边形ABCD是平行四边形
A B
∴ AB=CD,AD=BC.(平行四边形的对边相等)
∠A= ∠C, ∠B= ∠D(平行四边形的对角相等)
在 ABCD中, AB=CD,AD=BC. (平行四边形的对边相等)
19.1平行四边形
平行四边形相关概念
1.两组对边分别平行的四边形叫做平行四边形.
如图:四边形ABCD是平行四边形 记作: ABCD
BALeabharlann DC2.平行四边形不相邻的两个顶点连成的线段叫
平行四边形的对角线.
线段AC、BD就是 ABCD的两条对角线。
3.平行四边形相对的边称为 对边, 相对的角称为 对角.
对边相等
对角相等
邻角互补
3.解决平行四边形的有关问题经常连结对角线转 化为三角形。
F D
G C
O
H
用两个全等的三角形纸片可以拼出几种 形状不同的平行四边形?
从拼图可以得到什么启示?
小结:
平行四边形可以是由两个全等的三角形组成, 因此在解决平行四边形的问题时,通常可以连结对 角线转化为两个全等的三角形进行解题。
平行四边形的边、角有怎样的数 量关系?
请用直尺,量角器等工具度量你手中平行 四边形的边和角,并记录下数据,验证猜想 AB=DC,AD=BC,∠A=∠C,∠B=∠D是否正确? 用你以前所学的知识证明猜想.
A
D
B
C
如图


2013-9-13
AB AD
CD BC
ABCD AB CD BC
ABCD
AD
7
如图是某区部分街道示意图,其中 BC∥AD∥EG,AB//FH∥DC.图中的平行四边形 9 共有_____个. 从B站乘车到D站只有两 A 条路线有直接到达的公交车, 路线1是B—E—A—F—D, E 路线2是B—H—O—G—D, 请比较两条路线路程的长短,B 并说明理由.
相关文档
最新文档