人教版高中数学高二数学《数列求和》教案
中学数学数列求和教案
中学数学数列求和教案一、教学目标1. 理解数列的基本概念,并能正确判断是否为等差数列或等比数列。
2. 掌握等差数列和等比数列的通项公式,并能正确计算相应的数值。
3. 理解数列的求和公式,并能运用求和公式计算数列的和值。
二、教学准备教师:备好黑板、粉笔,准备好习题和板书内容。
学生:纸、铅笔、计算器等。
三、教学过程1. 知识点引入教师向学生展示一些数字序列(如1, 3, 5, 7, 9...)并问学生如何判断它们是否为等差数列。
引导学生发现其中的规律,并引入等差数列的概念。
2. 等差数列的定义和性质教师将等差数列的定义和性质进行讲解,并帮助学生掌握等差数列的通项公式 an = a1 + (n-1)d。
3. 等差数列的求和公式教师引导学生思考如何求等差数列的和值,并引出等差数列的求和公式 Sn = n/2 (a1+an)。
4. 例题演练教师出示一个等差数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
5. 等比数列的定义和性质教师将等比数列的定义和性质进行讲解,并帮助学生掌握等比数列的通项公式 an = a1 * r^(n-1)。
6. 等比数列的求和公式教师引导学生思考如何求等比数列的和值,并引出等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r)。
7. 例题演练教师出示一个等比数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
8. 综合练习教师布置一些综合性的练习题,让学生运用所学知识解答,并及时给予指导和纠正。
9. 课堂总结教师对本节课的重点内容进行总结,并强调数列求和在数学及现实生活中的应用价值。
四、巩固练习教师布置相关题目作为课后作业,要求学生用所学知识独立解答,并在下节课前交给教师检查。
五、教学拓展教师鼓励学生积极参与数学竞赛、参观数学实验室等拓展活动,加深对数列求和的理解和应用。
高二上教学案5:数列的求和
学生
学校
年级
高二上
课次
5
科目
数学
教师
日期
时段
课题
数列的求和
教学目标
考点分析
掌握数列求和的各种方法
能用倒序相加法求和
教学重、难点
教学重点:数列求和的各种方法
教学难点:累加法与累乘法
教学内容(要有知识点的梳理,必须讲练结合)
一、知识点、考点归纳与整理
公式法:
如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.
(1) ,特别地当 时,
(2) ,特别地当 时
例8数列 的通项公式为 ,求它的前n项和
例9数列 的通项公式为 ,求它的前n项和
例10已知 ,求
例11已知已知 ,求
例12已知 ,求
例13已知 ,求
例14已知 ,求
例15在数列 中, 求
例16在数列 中, 求
其它求和方法
还可用归纳猜想法,奇偶法等方法求和。
例4已知函数
(1)证明: ;
(2)求 的值.
例5求 的值
3、错位相减法:
类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.
若 ,其中 是等差数列, 是公比为 等比数列,令
则
两式相减并整理即得
例6已知 ,求数列{an}ቤተ መጻሕፍቲ ባይዱ前n项和Sn
例7已知数列 的通项 ,求此数列的前 项和
4、裂项相消法:
把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似 (其中 是各项不为零的等差数列, 为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:
高中数学 专题1 数列及其数列求和教案 新人教A版必修5
专题1:数列及其数列求和►解读考纲(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的问题.►重点、考点精读与点拨 一、基本知识 1.定义:(1) .数列:按一定次序排序的一列数(2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列(3) 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列叫做等比数列2. 通项公式与前n 项和公式}{n a 为等差数列:d n a a n )1(1-+= 2)(2)1(11n n a a n d n n na S +=-+= }{n b 为等比数列:)1(11≠=-q qb b n n qqa a q q a S n n n --=--=11)1(11(q )1≠ 3. 常用性质}{n a 为等差数列,则有(1) 从第二项起,每项是前一项与后一项的等差中项,211-++=n n n a a a (n>1) (2) ),()(*N n m dm n a a m n ∈-+=(3) 若m+n = p+q , 则:q p n m a a a a +=+,特殊的:若m+n=2r ,则有:r n m a a a 2=+ (4) 若,,m a n a n m ==则有:0=+n m a (5) 若)(,,n m S m S n S n m n m +-===+则有:(6) }{n a 为等差数列q p q pn a n ,(+=⇔为常数)⇔),(2R q p qn pn S n ∈+= (7) m m m m m S S S S S 232,,--┅┅仍成等差数列(8)}{},{n n b a 为等差数列,则}{n n qb pa +为等差数列(p ,q 为常数) (9)若项数为偶数2n ,nd =-奇偶S S ,1+n na a S S =偶奇 若项数奇数2n -1,n a S S =偶奇-,1-n n S S =偶奇 (10)⎩⎨⎧=≥-=-111)2(S a n S S a n n n}{n a 为等比数列,则有(1) 只有同号的两数才存在等比中项 (2) ),(*N n m q a a mn m n ∈=-(3) 若m+n = p+q , 则:q p n m a a a a ⋅=⋅,特殊的:若m+n=2r ,则有:2r n m a a a =⋅ (4) }{},{n n b a 为等比数列,则}{n n b a ⋅,}{nnb a ,{n ca }为等比数列(0≠c ) (5) 等比数列中连续n 项之积构成的新数列仍是等比数列,当1≠q 时,连续项之和仍为等比数列(6) )1,0()0,0(≠≠-=≠≠=q q k kq S q c cqa n n nn二、在数列中常见问题:1、等差数列的通项公式是关于n 的一次函数,)(1d a dn a n -+=(定义域为正整数集),一次项的系数为公差;等差数列的前n 项和公式是关于n 的二次函数,n da n d s n )2(212-+=二次项系数为公差的一半,常数项为0. 证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:常数)常数,(==-++nn n n a a a a 11 2、等差数列当首项a 1>0且公差d<0时(递减数列),前n 项和存在最大值。
数列求和公式教案
数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。
2. 掌握数列求和公式的推导和应用。
3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 数列求和公式的推导过程。
2. 数列求和公式的应用。
教学难点:1. 数列求和公式的推导过程。
2. 复杂数列求和公式的应用。
教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。
2. 学生准备:课本、笔记工具。
教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。
Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。
2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。
2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。
Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。
3.2 学生进行个人或小组练习,解决与数列求和相关的问题。
3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。
4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。
4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。
教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。
2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。
教学资源:1. 教材:数学教材相关章节。
2. 多媒体课件:用于展示示例和推导过程等。
教学评价:1. 学生的课堂参与情况。
高中数学数列的求和教案
高中数学数列的求和教案
一、教学目标
1. 知识与技能:了解数列的基本概念与性质,掌握等差数列、等比数列的求和公式,能够熟练计算数列的和。
2. 过程与方法:通过理论学习和实际练习,培养学生的数学思维能力和解决问题的方法。
3. 情感态度:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点和难点
1. 等差数列、等比数列的求和公式的掌握和应用。
2. 解题方法的灵活应用和实际问题的转化。
三、教学内容
1. 数列的基本概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
四、教学过程
1. 导入:通过提出一个生活中的实际问题,引出数列的概念和重要性。
2. 讲解:介绍数列的基本概念和性质,重点讲解等差数列、等比数列的求和公式。
3. 实例讲解:通过几个具体的例题,讲解如何应用求和公式计算数列的和。
4. 练习:学生独立或分组完成一些练习题,巩固所学知识。
5. 拓展:带领学生思考更复杂的数列求和问题,引导学生拓展思维。
6. 讲评:对学生的练习情况进行总结和讲评,指导学生做好巩固练习。
五、板书设计
1. 数列的概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
六、教学反思
通过本节课的教学,学生能够较好地掌握数列求和的基本方法和技巧,但是在应用中还存在一定的困难,需要通过更多的实践和练习加以巩固。
下节课可以通过更复杂的案例实践来提高学生的解题能力。
数列求和教案
数列求和教案一、教学目标1.了解数列的概念和性质;2.掌握等差数列和等比数列的通项公式;3.掌握数列求和公式;4.能够应用数列求和公式解决实际问题。
二、教学重点1.等差数列和等比数列的通项公式;2.数列求和公式。
三、教学难点1.数列求和公式的应用。
四、教学过程1. 引入教师通过举例子引入数列的概念,让学生了解数列的定义和性质。
2. 等差数列和等比数列的通项公式2.1 等差数列的通项公式教师通过举例子引入等差数列的概念,让学生了解等差数列的定义和性质。
然后,教师介绍等差数列的通项公式:a n=a1+(n−1)d其中,a n表示等差数列的第n项,a1表示等差数列的第一项,d表示等差数列的公差。
2.2 等比数列的通项公式教师通过举例子引入等比数列的概念,让学生了解等比数列的定义和性质。
然后,教师介绍等比数列的通项公式:a n=a1q n−1其中,a n表示等比数列的第n项,a1表示等比数列的第一项,q表示等比数列的公比。
3. 数列求和公式3.1 等差数列的求和公式教师介绍等差数列的求和公式:S n=n2(a1+a n)其中,S n表示等差数列的前n项和。
3.2 等比数列的求和公式教师介绍等比数列的求和公式:S n=a1(q n−1) q−1其中,S n表示等比数列的前n项和。
4. 应用教师通过例题让学生掌握数列求和公式的应用。
五、教学总结教师对本节课的内容进行总结,强调数列求和公式的重要性和应用。
六、作业1.完成课堂练习;2.完成课后作业。
七、教学反思本节课的教学重点是数列求和公式的应用,但是由于时间有限,只能介绍一些基本的应用,没有涉及到更复杂的应用。
下次教学中,应该加强对数列求和公式的应用讲解,让学生更好地掌握数列求和公式的应用。
高二数学数列求和教案
(1)定义法
特点:需要用定义求和
(2)倒序相加法
特点:把数列颠倒顺序后出现相同的项。
(3)错位相减法
特点:由等差数列和等比数列相对应项乘积组成的数列求和。
培养学生归纳总结能力。
尝
试
应
用
题目:
1、有限数列A={a1,a2,a3…an},Sn为其前n项和,定义为A的“凯森和”,
如有500项的数列,a1,a2…a500的“凯森和”为2004,则有501项的数列2,a1,a2…a500的“凯森和”为———
高二数学数列求和教案
临邑五中李德泉
教学目标:1、在等差数列与等比数列求和的基础上,使学生掌握几种常见的数列求和方法。
2、培养学生分析、归纳、概括问题的能力。通过实例分析提高学生解决问题的能力。
3、通过师生交流提高学生学习兴趣,激发学生的求知欲。
教学重点:数列求和的几种常见方法。
教学难点:选择合适的方法求数列的和。
(2)当x≠±1时
2、有的不能转化为等差或等比数列的求和
例题2
求数列的前n项和
解:通项 可变形为
共同分析,再让学生做。
板书分析过程
例题1的做法定义为分组组合法(拆项法)
例题2的做法定义为裂项法培养学生转化问源自的能力反馈练
习
1、等比数列的首项为a,公比为q,Sn为前n项和,求S1+S2+…+Sn
2、正数数列{an}的前n项和Sn满足Sn=
A 2002 B2004 C2006 D 2008
2、已知
求S
3、求和
启发学生用上述方法尝试解题,再做点评。
利用多媒体出示结果
培养学生自主探究解决问题的能力。
数列求和教学设计
数列求和教学设计一、教材分析数列的求和是高中必修5第一章第内容。
它是等差数列和等比数列的延续,与前面学习的函数也有着密切的联系。
它是从实际问题中抽离出来的数学模型,实际问题中有广泛地应用。
同时,在公式推导过程中蕴含着分类讨论等丰富的数学思想。
二、教法分析基于本节课是专题方法推导总结课,应着重采用探究式教学方法。
在教学中以学生的讨论和自主探究为主,辅之以启发性的问题诱导点拨,充分体现学生是主体,教师服务于学生的思路。
三、学法分析在此之前,已经学习了等差数列与等比数列的概念及通项公式,已经具备了一定的知识基础。
在教师创设的情景中,结合教师点拨提问,经过交流讨论,形成认识过程。
在这个过程中,学生主动参与学习,提高自身的数学修养。
让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、三维目标1知识与技能理解掌握各种数列求和的方法,学会解析数列解答题,提高解决中难题的能力.2过程与方法通过对例题的研究使学生感受数列求和方法的多样性3情感态度与价值观感受数学问题的差异,但又能以不同的方法加以解决,进而体会到数学知识的灵活性五、教学重点与难点本着课程标准,在吃透教材的基础上,我确立如下教学重点与难点:重点:数列求和公式的推导及其简单应用。
此推导过程中蕴含了分类讨论,递推、转化等重要思想,是解决一般数列求和问题的关键,所以非常重要。
为此,我给出了四种方法进行数列求和,加深学生理解,突出重点。
难点:数列求和公式的推导及应用。
在此之前,已经学习了等差数列与等比数列的前n项和,可由此引发进行数列求和的专题学习,为此,我引导学生先进性等差与等比数列的复习。
由此引入专题学习。
下面,为了讲清重点和难点,达到本节课的教学目标,我再从教法学法上谈谈:a+++1)≠六.教学反思这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
高中数学教案-人教a版必修5——数列的求和方法
第13课时 数列的求和方法(一)知识归纳: 1.拆项求和法:将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和. 2.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列. 3.裂项求和法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. 4.错位求和法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法. 5.反序求和法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列进行变换(相加、相减等),这是仿照推导等差数列前n 项和公式的方法.6.分组组合求和:将数列中具有相同规律的项组合到一起分别求和 (二)学习要点: 1.“数列求和”是数列中的重要内容,在中学高考范围内,学习数列求和不需要学习任何理信纸,上面所述求和方法只是将一些常用的数式变换技巧运用于数列求和之中. 在上面提到的方法中,“拆项”、“并项”、“裂项”方法使用率比较高,“拆项”的典型例子是数列“)1(3221+++⨯+⨯=n n S n ”的求和;“裂项”的典型例子是数列“)1(1321211+++⨯+⨯=n n S n ”的求和;“并项”的典型例子是数列“n S n n ⋅-++-+-+-=+1)1(654321 ”的求和.2.“错位”与“反序”求和方法是比较特殊的方法,使用率不高,其中“错位”求和方法一般只要求解决下述数列的求和问题:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法.例1.求下列数列的前n 项和n S : (1)5,55,555,5555,…,5(101)9n-,…; (2)1111,,,,,132435(2)n n ⨯⨯⨯+;(3)1n a n n =++ (4)23,2,3,,,n a a a na ;(5)13,24,35,,(2),n n ⨯⨯⨯+;(6)2222sin 1sin 2sin 3sin 89++++.解:(1)555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=--. (2)∵1111()(2)22n n n n =-++, ∴11111111[(1)()()()]2324352n S n n =-+-+-++-+1111(1)2212n n =+--++.(3)∵111(1)(1)n n na n n n n n n n n +===++++++-∴21321n S n n=+++++(21)(32)(1)n n =++++11n =+.(4)2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.(5)∵2(2)2n n n n +=+,∴ 原式222(123=+++ (2))2(123n ++⨯+++…)n +(1)(27)6n n n ++=.(6)设2222sin 1sin 2sin 3sin 89S =++++,又∵2222sin 89sin 88sin 87sin 1S =++++, ∴ 289S =,892S =.例2.解答下述问题:(I )已知数列}{n a 的通项公式)12)(12()2(2+-=n n n a n ,求它的前n 项和.[解析],1212++-=n nn n a n ),1212()121321()5232()311(++-+--+--+++++=∴n nn n n n n n S n=1212)12121()5352()3231(1++=++-+--++++++n n n n n n n n n =12)1(2++n n n(II )已知数列}{n a 的通项公式,)]1([122++=n n n a n 求它的前n 项和.[解析],)1(11)1()1(222222+-=+⋅-+=n n n n n n a n.)1(11))1(11()1)1(1()3121()211(22222222+-=+-+--++-+-=∴n n n n n S n(III )求和:;1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n[解析]注意:数列的第n 项“n ·1”不是数列的通项公式,记这个数列为}{n a , ∴其通项公式是.6)2)(1(2)1(6)12)(1(2)1()321()321()321(),,,3,2,1()]1([222222++=++++-+=+++++++++-⋅++++=∴=+-=--⋅=n n n n n n n n n n n n n n S n k k k kn k n k a n k (Ⅳ)已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=[解析]n n n b n a )109(,1=+=为等差数列为等比数列,∴应运用错位求和方法:.)109()10(999),10()109(1099)109()1(])109(1[108159)109()1(])109()109()109[(59101:,)109()1()109(3)109(2109;)109()1()109(31092111321322n n n n n n n n n n n n n S n n n S n S n S ⨯+-=∴+-=⨯+--⨯+=⨯+-++++=⨯+++⨯+⨯=∴⨯+++⨯+⨯=++++ 两式相减得(Ⅴ)求和nn n n n n C n C C C C W )13(10743210++++++=[解析],,13110 =+=+∴+=-n n n a a a a n a 为等差数列而∴=-,kn n k n C C 运用反序求和方法是比较好的想法,nn n n n n n C n C n C C C W )13()23(741210++-++++=- ①, 01214)53()23()13(n n n n n n n n C C C n C n C n +++-+-++=-- 012104)53()23()13(n n n n n n C C C n C n C n W +++-+-++=∴- ②, ①+②得,2)23())(23(2210n n n n n n n C C C C n W ⨯+=+++++=.2)23(1-⨯+=∴n n W[评析]例1讨论了数列求和的各种方法,关键是准确抓住数列通项公式呈现的规律,然后选定一种求和方法,并作出相应的变换.例3.已知数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列, 偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项,∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-,当n 为偶数时,奇数项和偶数项分别有2n项, ∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.例4.解答下列问题:设),3(9)(2-≤-=x x x f(1)求)(x f 的反函数);(1x f -(2)若;),2(),(,1111n n n u n u f u u 求≥-==--(3)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+[解析](1)9)(21+-=-x x f(2)}{),2(9122121n n n u n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴k u u n u n n n(3)),8919(9119891--+=++-=k k k k a k );119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n(II )设函数),2)(1(,1:}{,332)(11≥==+=-n b f b b b x x x f n n n 作数列求和:.)1(11433221+-⋅-+-+-=n n n n b b b b b b b b W[解析]),384(91,312,32211++=∴+=∴+=+-n n b b n b b b n n n n n ①当n 为偶数时]})1[()43()21{(94222222n n W n --++-+-=298)]12(1173[94]})1[()43()21{(98n n n n ⨯--++++-=--++-+-+=);62(9194)]22(2[21942n n n n n +-=-+⨯⨯-②当n 为奇数时}])1()2[()21{(9422222n n n W n +---++-=).762(91312198]22121[9431]21[98})]32(1173[{9431})]1()2[()43()21{(98222++=++⨯++⨯-⨯-=++--++-+++-=++---++-+-+n n n n n n n n n n n n n [解析]例2中的(I )、(II )两题是以数列求和为主要内容的数列综合试题,需要熟练运用求和方法,问题(I )中运用了“裂项”求和方法,而问题(II )中灵活运用了拆项与并项的求和方法. 例5.已知数列}{n a 的各项为正数,其前n 项和2)21(+=n n n a S S 满足, (I )求)2(1≥-n a a n n 与之间的关系式,并求}{n a 的通项公式; (II )求证.211121<+++nS S S [解析](I )2)1(4+=n n a S ①,而211)1(4+=--n n a S ②,①—②得,0)2)((0)(2111212=--+⇒=+------n n n n n n n n a a a a a a a a2}{),2(2,01=∴≥=-∴>-d a n a a a n n n n 是公差 的等差数列, ;12,1)1(41211-=∴=⇒+=n a a a a n 而(II )22221212111111,nS S S n S n n +++=+++∴= .212)111()3121()211(1111),2(111)1(11212<-=--++-+-+<+++∴≥--=-<nn n S S S n n n n n n n [评析]例3是十分常见的数列型的不等式证明问题,由于运用了数列求和的思想,∴作出了一个巧妙的放缩变换,然后与数列求和挂上了钩.《训练题》一、选择题1.在数列}{n a 中,9,11=++=n n S n n n a 项和若其前,则项数n 为( )A .9B .10C .99D .1002.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的前n 项和等于 ( )A .n n -+12B .221--+n n C .12--n nD .22--n n3.设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 =( )A .-1B .0C .1D .24.数列1,项和为的前n n+++++++ 3211,,3211,211 ( ) A .1+n n B .12+n nC .)1(2+n nD .)1(4+n n5.数列{n a }的前n 项和=+++-=22221,12n n n a a a S 则( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n6.数列{n a }的通项公式为,,1421na a ab n a nn n +++=-= 令则数列{n b }的前n 项和为( )A .2nB .)2(+n nC .)1(+n nD .)12(+n n二、填空题7.数列 ,3216,1615,814,413,212,1的前10项之和为8.若==+++-+++n n n 则,2219)2(42)12(31222222 9.已知{n a }的前n 项和||||||,1410212a a a n n S n ++++-= 则的值为10.已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为三、解答题:11.已知数列{n a }的各项分别为}{,,,,,165434322n a a a a a a a a a a 求 ++++++的前n 项和n S .12.已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+⋅-=-+++ 的前n 项和 n n n n W n b a n n S 项和的前求数列}{.222⋅-+=.13.设数列{n a }中,}{),(321n n a N n n a 将*∈++++= 中5的倍数的项依次记为,,,321b b b , (I )求4321,,,b b b b 的值.(II )用k 表示k k b b 212与-,并说明理由.(III )求和:.212321n n b b b b b +++++-14.数列{n a }的前n 项和为n S ,且满足,)1(2,11n n a n S a +== (I )求n a 与1-n a 的关系式,并求{n a }的通项公式;(II )求和.111111212322-++-+-=+n n a a a W15.将等差数列{n a }的所有项依次排列,并如下分组:(1a ),(32,a a ),(7654,,,a a a a ),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n 组有12-n 项,记T n 为第n组中各项的和,已知T 3=-48,T 4=0, (I )求数列{n a }的通项公式;(II )求数列{T n }的通项公式;(III )设数列{ T n }的前n 项和为S n ,求S 8的值.《答案与解析》一、1.C 2.B 3.C 4.B 5.D 6.B 二、7.512511558.10 9.67 10.)3(3+n n11.,221--+++=n n n n aa a a(1);2)1(,1+=∴==n n S n a a n n 时当(2)当,11)1(11211aa a a a a a a n n n n n --=--=≠---时 )],()1[(1112312--+++-++++-=∴n n n a a a a a a aS ①];1)1(11[11,122aa a a a a S a n n n ------=±≠时当 ②当1-=a 时,1)当n 为奇数时;21nS n +=2)当n 为偶数时.2nS n =12.当),12(22)52(2)32()12(,21-=⋅--⋅-=⋅-≥+n n n a n n nn n n 时;14,2.4)2(2,4;2111-=-=≥⎩⎨⎧-=≥=-==∴-n S S b n a n a a a n n n nnn n 时当得而 而.)2(141,111⎩⎨⎧≥-===n n b b b n得 )14(215211272)],14(211272[443232-++⨯+⨯+⨯=-++⨯+⨯+-=∴n s n W nn n 记)14(2)54(2112722143-+-++⨯+⨯=∴+n n s n n ②,①①-②得)14(2)222(428143--++++=-+n s n n).54(2),54(24),45(24)14(2)12(322811112-=-+=∴-+-=---+=++++-n W n s n n n n n n n n 得 13.(I );55,45,15,10104935241========a b a b a b a b (II )),(515),(52)1(++∈=+=∴∈=+=N k k n k n N m m n n a n 或 ;2)15(5,2)15(5,,515521512212+==-==∴<=-=---k k a b k k a b b b k n k n k k k k k k 或即 (III )).12)(1(625,252212212++=+++∴=+-n n n b b b n b b n n n 14.(I )),2(1,2)1(2111≥-=⎩⎨⎧=+=---n a n n a na S a n S n n n n n n 两式相减得 ;,12211122111n a n n n n n a a a a a a a a n n n n n n =∴=⋅⋅--⋅-=⋅⋅⋅=∴--- (II ))]4121()311[(21)2(1531421311-+-=+++⋅+⋅+⋅=n n W n ].211123[21)]211()5131(+-+-=+-++-+n n n n 15.(I )设{n a }的公差为d ,则486473-=-=d a T ①,036874=+=d a T ②,解①、②得;232,9,27-=∴-==n a a d n(II )当2≥n 时,在前n -1组中共有项数为,1222112-=+++--n n ∴第n 组中的22)12(22)232(21111⨯-+⨯-=----n n n n n n T 项的和 ;22423122--⨯-⨯=n n(III ).59415,255}{88=∴S a S n 项的前为。
高二数学《数列求和》教学设计
2.6数列求和一、内容与解析(一)内容:数列求和(二)解析:本节课要学的内容数列的求和,指的是由给出数列的前几项或者递推公式或者和的递推公式求其前n 项的和.学生已经学习了等差、等比数列及特定数列的通项公式的求法,本节课的内容就是在此基础上的发展.由于它在本章中属于综合性比较强的知识,能够体现学生的观察、归纳等能力,所以在本学科有重要的地位,是本学科的重要内容.教学的重点是掌握特定类型数列的求和,解决重点的关键是归纳出每种特定类型数列的特点,对方法进行归纳。
二、教学目标及解析教学目标:掌握某些特定类型数列前n 项和的求法。
解析:就是要掌握公式法、裂项相消法、错位相减法、倒序相加法。
三、问题诊断分析在本节课的教学中,学生可能遇到的问题是什么时候用什么方法。
产生这一问题的原因是对已知条件分析不清.要解决这一问题,就是要带领学生进行归纳。
四、教学过程求数列的前n 项和Sn 基本方法:1.直接由等差、等比数列的求和公式求和,等比数列求和时注意分q=1、q ≠1的讨论;2.拆项分解求和法:把数列的每一项分成几项,使转化为几个等差、等比数列,再求和;3.裂项相消法:把数列的通项拆成几项之差,使在求和时能出现隔项相消(正负相消),剩下(首尾)若干项求和.如:4.错位相减法:若一个数列具备有如下特征:它的各项恰好是由某个等差数列与某个等比数列之对应项相乘所构成的,其求和则用错位相减法 (此法即为等比数列求和公式的推导方法)。
如果 {}n a 是等差数列,{}n b 是等比数列,那么求数列 {}n n b a ⋅的前n 项和,可用错位相减法.复习引入:(1)1+2+3+ (100)(2) 1+3+5+……+2n-1=(3) 1+2+4+......+2= (4) n n 21. (813412)211+++=设计意图:让学生回顾旧知,由此导入新课。
[教师过渡]:今天我们学习《数列求和》第二课时,课标要求和学习内容如下:(多媒体课件展示)导入新课:[情境创设] (课件展示):例1:求数列)1(1,......431,321,211+⨯⨯⨯⨯n n ,…的前n 项和 分析:将各项分母通分,显然是行不通的,启发学生能否通过通项的特点,将每一项拆成两项的差,使它们之间能互相抵消很多项。
高中数学人教版《数列的和》教案2023版
高中数学人教版《数列的和》教案2023版一、引言数学是一门需要不断实践和思考的学科,而数列的和是其中一个重要的概念。
本次教案旨在帮助学生学习和理解数列的和,培养他们的数学思维和解题能力。
二、教学目标1. 理解数列的概念和特点;2. 掌握等差数列和等比数列的求和公式;3. 运用所学知识解决实际问题;4. 培养数学思维和解题能力。
三、教学内容及步骤1. 数列的概念和特点数列是按照一定规律排列的一组数,其中每个数称为数列的项。
数列的特点包括首项、公差和项数。
2. 等差数列的和(1)引入等差数列的概念,解释其中的关键词汇;(2)讨论等差数列的递推公式和通项公式;(3)介绍等差数列的求和公式,并解释其中的参数;(4)通过例题演示如何求解等差数列的和;(5)让学生通过练习巩固所学知识。
3. 等比数列的和(1)引入等比数列的概念,解释其中的关键词汇;(2)讨论等比数列的递推公式和通项公式;(3)介绍等比数列的求和公式,并解释其中的参数;(4)通过例题演示如何求解等比数列的和;(5)让学生通过练习巩固所学知识。
4. 实际问题的应用(1)介绍实际问题中数列的和的应用场景;(2)通过例题演示如何将实际问题转化为数学问题,并求解;(3)让学生通过实际问题的练习提高解题能力。
四、教学方法1. 探究法:通过引导学生提出问题、实例观察、归纳总结等方式,激发学生的学习兴趣和主动思考;2. 讲解法:通过教师的讲解,帮助学生理解知识点的定义、公式和求解方法;3. 演示法:通过例题演示和解题思路分析,帮助学生掌握解题的步骤和技巧;4. 练习法:通过大量的练习题,巩固所学知识,提高解题能力。
五、教学资源1. 《高中数学人教版》教材;2. 教学课件和教学工具。
六、教学评价1. 课堂表现评价:包括学生的听讲情况、发言情况和参与度;2. 作业评价:通过作业的完成情况和正确率,评价学生对知识的掌握程度;3. 测试评价:通过小测验或考试,检验学生对所学知识的整体掌握情况。
高中数学教案 第5讲 数列求和
第5讲数列求和1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.1.公式法(1)等差数列{a n }的前n 项和S n =□1n (a 1+a n )2=□2na 1+n (n -1)d2.(2)等比数列{a n }的前n 项和S n2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或其他可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见的数列的前n 项和(1)1+2+3+…+n =n (n +1)2;(2)2+4+6+…+2n =n (n +1);(3)1+3+5+…+2n -1=n 2.2.几种常见变形(1)1(2n -1)(2n +1)=12(12n -1-12n +1);(2)等差数列{a n }(a n ≠0)的公差为d (d ≠0),则1a n a n +1=1d (1a n -1a n +1);(3)1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2);(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1.1.思考辨析(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.()(2)当n ≥2时,1n 2-1=)(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.()答案:(1)√(2)√(3)×(4)√2.回源教材(1)数列{a n }的前n 项和为S n .若a n =1n (n +1),则S 5等于()A.1B.56C.16D.130解析:B因为a n =1n (n +1)=1n -1n +1,所以S 5=a 1+a 2+…+a 5=1-12+12-13+…+15-16=56.(2)已知a n =2n +n ,则数列{a n }的前n 项和S n =.解析:S n =(2+22+ (2))+(1+2+…+n )=2(1-2n )1-2+12n (n +1)=2n +1-2+12n 2+12n .答案:2n +1-2+12n 2+12n(3)数列{(n +3)·2n -1}前20项的和为.解析:S 20=4·1+5·21+6·22+…+23·219,2S 20=4·2+5·22+6·23+…+23·220,两式相减,得-S 20=4+2+22+…+219-23·220=4+2(1-219)1-2-23·220=-22·220+2.故S 20=22·220-2.答案:22·220-2分组(并项)法求和例1(2024·菏泽模拟)已知数列{a n }中,a 1=1,它的前n 项和S n 满足2S n +a n +1=2n +1-1.(1)n (2)求S 1+S 2+S 3+…+S 2n .解:(1)证明:由2S n +a n +1=2n +1-1(n ≥1),①得2S n -1+a n =2n -1(n ≥2),②由①-②得a n +a n +1=2n (n ≥2),得a n +1=-a n +2n⇒a n +1-2n +13=-(a n -2n 3)(n ≥2),又当n =1时,由①得a 2=1⇒a 2-223=-(a 1-23),所以对任意的n ∈N *,都有a n +1-2n +13=-(a n -2n 3),故{a n -2n 3}是以13为首项,-1为公比的等比数列.(2)由(1)知a n -2n 3=(-1)n -13⇒a n =2n +(-1)n -13,所以a n +1=2n +1+(-1)n 3①得S n =2n +13-(-1)n 6-12,所以S 1+S 2+…+S 2n =13(22+23+…+22n +1)-16[(-1)+(-1)2+…+(-1)2n ]-2n 2=13×22-22n +21-2-0-n =22n +2-3n -43.反思感悟1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n n ,n 为奇数,n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.训练1已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).当n 为偶数时,T n =1-3+5-7+…+(2n -3)-(2n -1)=-n .当n 为奇数时,T n =T n -1+b n =-(n -1)+(-1)n -1(2n -1)=-(n -1)+(2n -1)=n .综上,T n =(-1)n +1n .裂项相消法求和例2(2023·南京一模)已知等比数列{a n }的前n 项和为S n ,a 1=1,S n +1+2S n-1=3S n (n ≥2).(1)求数列{a n }的通项公式;(2)令b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n +1+2S n -1=3S n ⇒S n +1-S n =2S n -2S n -1即a n +1=2a n ,∵{a n }是等比数列,∴q =2,又a 1=1,∴数列{a n }的通项公式为a n =2n -1,n ∈N *.(2)由(1)知,S n=1×(1-2n)1-2=2n-1,∴b n=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n=b1+b2+…+b n=1-122-1+122-1-123-1+…+12n-1-12n+1-1,即T n=1-12n+1-1.反思感悟1.裂项相消法求和的基本步骤2.裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.训练2已知S n是数列{a n}的前n项和,S n=n2.(1)求数列{a n}的通项公式;(2)求数列{1a n a n+1}的前n项和T n.解:(1)当n≥2时,由S n=n2,得S n-1=(n-1)2,则a n=S n-S n-1=n2-(n-1)2=2n-1.当n=1时,有S1=a1=1,符合上式.综上,a n=2n-1.(2)由(1)得,1a n a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),则T n=12(11-13+1 3-15+15-17+…+12n-1-12n+1)=12(1-12n+1)=n2n+1.错位相减法求和例3(2024·盐城模拟)已知数列{a n}的前n项和为S n,a n+1>a n,4S n=a2n+4n.(1)求{a n}的通项公式;(2)求数列{a n2n+1}的前n项和T n.解:(1)∵4S n=a2n+4n,①∴n≥2时,4S n-1=a2n-1+4(n-1),②①-②得4a n=a2n-a2n-1+4,∴(a n-2)2=a2n-1(n≥2),在①式中令n=1,a21-4a1+4=0,(a1-2)2=0,a1=2,∵a n+1>a n,∴数列{a n}为单调递增数列,∴a n≥2,∴a n-2=a n-1,a n-a n-1=2,∴{a n}为等差数列且首项为2,公差为2,∴a n=2+2(n-1)=2n.(2)a n2n+1=2n2n+1=n2n,∴T n=121+222+323+…+n2n,③1 2T n=122+223+…+n-12n+n2n+1,④③-④得12T n=12+122+…+12n-n2n+1,1 2T n=12[1-(12)n]1-12-n2n+1,1 2T n=1-n+22n+1,则T n=2-n+2 2n.反思感悟1.如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,常采用错位相减法.2.错位相减法求和时,应注意:(1)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.(2)应用等比数列求和公式时必须注意公比q是否等于1,如果q=1,应用公式S n=na1.训练3已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解:(1)设等比数列{a n}的公比为q.由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n.(2)由(1)可得b n=log2a n=n,所以a n b n=n·2n,T n=1×2+2×22+3×23+…+n×2n,2T n=1×22+2×23+…+(n-1)2n+n·2n+1,所以-T n=2+22+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1,所以T n=(n-1)2n+1+2.限时规范训练(四十四)1.(2023·全国乙卷)记S n为等差数列{a n}的前n项和,已知a2=11,S10=40.(1)求{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.解:(1)设{a n}的公差为d,2=a1+d=11,10=10a1+45d=40,解得a1=13,d=-2.所以{a n}的通项公式为a n=13+(n-1)·(-2)=15-2n.(2)由(1)得|a n|-2n,n≤7,n-15,n≥8.当n≤7时,T n=13n+n(n-1)2×(-2)=14n-n2,当n≥8时,T n=T7+1+3+5+…+(2n-15)=T7+1+3+5+…+[2(n-7)-1]=14×7-72+(n-7)[1+2(n-7)-1]2=98-14n+n2.综上,T n n-n2,n≤7,-14n+n2,n≥8.2.已知单调递增的等差数列{a n}的前n项和为S n,且S4=20,a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若b n=2a n+1-3n+2,求数列{b n}的前n项和T n.解:(1)设数列{a n}的公差为d(d>0),4=20,24=a2·a8,a1+4×32d=20,a1+3d)2=(a1+d)(a1+7d),1=2,=21=5,=0(舍),所以a n=2+(n-1)·2=2n.(2)由(1)得,a n=2n,所以b n=4(n+1)-3n+2,所以T n=4×2-33+4×3-34+…+4(n+1)-3n+2=4[2+3+…+(n+1)]-(33+34+…+3n+2)=4n·2+n+12-27(1-3n)1-3=2n2+6n+272-3n+32.3.在①S5=50,②S1,S2,S4成等比数列,③S6=3(a6+2)这三个条件中任选两个,补充到下面问题中,并解答本题.已知等差数列{a n}的公差为d(d≠0),前n项和为S n,且满足.(1)求a n;(2)若b n-b n-1=2a n(n≥2),且b1-a1=1,求数列{1b n}的前n项和T n.注:如果选择不同的组合分别解答,则按第一个解答计分.解:(1)选择条件①②.由S5=50,得5a1+5×42d=5(a1+2d)=50,即a1+2d=10.由S1,S2,S4成等比数列,得S22=S1S4,即4a21+4a1d+d2=4a21+6a1d,即d=2a1,解得a1=2,d=4,因此a n=4n-2.选择条件①③.由S5=50,得5a1+5×42=5(a1+2d)=50,即a1+2d=10.由S 6=3(a 6+2),得6(a 1+a 6)2=3a 1+3a 6=3a 6+6,即a 1=2,解得d =4,因此a n=4n -2.选择条件②③.由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即4a 21+4a 1d +d 2=4a 21+6a 1d ,则d=2a 1.由S 6=3(a 6+2),得6(a 1+a 6)2=3a 1+3a 6=3a 6+6,即a 1=2,解得d =4,因此a n =4n -2.(2)由a 1=2,a n =4n -2可得b 1=3,b n -b n -1=2a n =8n -4.当n ≥2时,(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)=(8n -4)+(8n -12)+…+12=[(8n -4)+12](n -1)2=4n 2-4,即b n -b 1=4n 2-4,则b n =4n 2-1.当n =1时,b 1=3,符合b n =4n 2-1,所以当n ∈N *时,b n =4n 2-1,则1b n =14n 2-1=12(12n -1-12n +1),因此T n =12(11-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +1.4.(2024·扬州模拟)已知数列{a n }的前n 项和为S n ,a 1=4且a n +1=S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =(-1)n +12n +1n log 2a n ,求数列{b n }的前n 项和T n .解:(1)因为a n +1=S n +4,当n =1时,a 2=S 1+4=8,当n ≥2时,a n =S n -1+4,所以a n +1-a n =a n ,即a n +1=2a n (n ≥2,n ∈N *),又a 2a 1=84=2,满足上式,所以{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1.(2)因为b n =(-1)n +12n +1n log 2a n =(-1)n+12n +1n (n +1)=(-1)n +1(1n +1n +1),所以T n =(11+12)-(12+13)+…+(-1)n +1(1n +1n +1)=1+(-1)n +1n +1.5.(2024·宁波模拟)已知数列{a n }满足a n +1a n -2n 2(a n +1-a n )+1=0,且a 1=1.(1)求出a 2,a 3的值,猜想数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且b n =S na n ·a n +1,求数列{b n }的前n 项和T n .解:(1)由已知得,当n =1时,a 2a 1-2(a 2-a 1)+1=0,又a 1=1,代入上式,解得a 2=3,同理可求得a 3=5.猜想a n =2n -1.(2)由(1)可知a n =2n -1,经检验符合题意,所以S n =n 2,则b n =n 2(2n -1)(2n +1)=14[1+1(2n -1)(2n +1)]=14+18(12n -1-12n +1),所以T n =[14+18(1-13)]+[14+18(13-15)]+…+[14+18(12n -1-12n +1)]=n 4+18(1-12n +1)=n 2+n 4n +2.6.(2023·广西联盟校检测)已知数列{a n }和{b n }的项均为正整数,前n 项和分别为S n ,T n ,且S n =12n -T n+n 2(n ∈N *).(1)求{a n }和{b n }的通项公式;(2)求数列{a n b n }的前n 项和.解:(1)因为{a n }和{b n }的项均为正整数,所以前n 项和S n ,T n 也是正整数,又S n =12n -T n+n 2(n ∈N *),所以(S n -n 2)(2n -T n )=1,n -n 2=1,n-T n =1n -n 2=-1,n -T n =-1.若S n -n 2=-1,则a 1=S 1=0,与{a n }的项均为正整数相矛盾,故不符合题意,所以S n =n 2+1,T n =2n -1.当n=1时,a1=S1=2,当n≥2时,a n=S n-S n-1=2n-1,所以a n ,n=1,n-1,n≥2,同理,b n=2n-1.(2)记数列{a n b n}的前n项和为C n,当n=1时,a1=2,b1=1,所以C1=a1b1=2.当n≥2时,C n=2×1+3×2+5×22+…+(2n-1)·2n-1,①①×2,得2C n=2×2+3×22+5×23+…+(2n-1)·2n,②①-②,得-C n=4+8(2n-2-1)-(2n-1)·2n,化简得C n=(2n-3)·2n+4.综上,数列{a n b n}的前n项和C n=(2n-3)·2n+4.。
高中数学《数列求和方法》公开课优秀教学设计
教学设计数列求和方法3——错位相减一.教学内容分析本节内容是《普通高中课程标准实验教科书数学》人教A版必修5第二章中,学生在学习了等差数列和等比数列的通项公式以及前n项和公式的基础上,学习了求和方法:公式法、分组求和法之后的第3种求和方法,主要体现数学中的转化思想。
即将不能直接求和的问题通过错位相减,转化为能用等比求和的问题。
重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n 项和。
难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。
二.教学目标分析1.知识与技能:会用错位相减求通项为等差数列与等比数列对应项乘积的数列前n项和。
2.过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,在探究的过程中让学生体会数学的转化思想。
3.情感、态度与价值观:在问题导练的过程中,培养学生的探究能力、化归能力、运算能力。
三.学情分析本节课之前学生已经学习了等差和等比数列前n项和公式,数列求和方法:公式法、分组求和法,在推导等比数列前n项和公式时,错位相减法已经使用过,本节课需要再次阅读课本,探究方法,通过学生自己的努力学会错位相减的流程,但是错位相减的目的、错位相减后的项数及符号需要在学生尝试练习、巩固练习之后通过老师的引导、点评才能理解掌握。
同时转化的数学思想更需要在老师的启发中得以理解。
四.教学策略分析数列求和方法3---错位相减,需要学生在不断的尝试练习、巩固练习中得到掌握,此方法在等比数列前n项和公式推导过程中已经运用过,按照知识的发生、发展过程和学生的思维规律,本节课首先给出用公式法和分组求和法能够解决的两道练习题,对前一节内容进行复习,然后对第一道练习题目进行变式,设置障碍,创设情境,把学生的注意力引到再读课本,探究方法,引出课题,再次尝试,提炼方法,限时训练,互命试题,让学生在层层练习中掌握方法,整个设计过程中学生是学习的主体,老师仅仅是帮助者、服务者,这样设计重视了新旧知识实质性联系,让重点知识和重要数学思想方法得到螺旋式巩固和提高。
数列求和的常用方法教学设计-2023-2024学年高二上学期数学人教A版(2019)选择性必修第二册
第四章数列数列求和的几种常用方法(1课时)【教学内容】数列求和的几种常用方法。
【教学目标】1、在学习完选择性必修二的《数列》一章后,能够建立解决数列求和的基本框架,复习数列求和的几种常用方法:公式法、分组求和法、并项求和法、倒序相加法、错位相减法、裂项相消法。
2、能够在具体的综合的问题情境中,识别问题模型,选择恰当的求和方法。
【教学重难点】教学重点:数列求和的几种常用方法的掌握。
教学难点:数列求和的几种常用方法的运用。
【教学过程】一、知识回顾问题:请同学们回忆一下数列求和有哪些常用的方法?师生活动:数列求和的常用方法有:公式法、分组求和法、并项求和法、倒序相加法、错位相减法、裂项相消法。
追问(1):同学们可以说出公式法中等差数列和等比数列的求和公式吗?追问(2):等比数列的求和公式需要注意什么问题呢?追问(3):你还认识哪些常用的求和公式呢?二、热身练习问题:请同学们完成以下练习:1.已知数列{a n},①若满足a1=2,a n+1=a n+2,则其前n项和S n=___________;②若满足a1=2,a n+1=2a n,则其前n项和S n=____________.2.已知数列{a n}满足a n={2n−1,n为奇数,(√2)n, n为偶数,则其前20项和S20=____________.3.数列{a n}的通项公式为a n=(−1)n(3n−2),则a1+a2+⋯+a20= .4.11×2+12×3+13×4+⋯+1n×(n+1)=_________.5.已知数列{a n}满足a n=n∙2n,则其前n项和S n=_______________________.6.sin21°+sin22°+sin23°+⋯+sin288°+sin289°=__________.师生活动:我们已经复习了数列求和的常用方法,现在请同学们在练习中进一步回顾基本使用方法。
高中数学 第二章 数列 数列求和教案2 新人教A版必修5-新人教A版高二必修5数学教案
数列求和一、教学目标:1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 二、教学重点:裂项相消法、错位相减法.三、教学难点:确定数列的通项公式选择相应的求和方法,错位相减法. 四、教学过程: (一)考点知识点梳理1、数列求和的常用方法 (1)裂项相消法 形如⎭⎬⎫⎩⎨⎧)()(1n g n f 的数列求和,其中)(),(n g n f 是关于n 的一次函数.方法:裂项相消法,即把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的拆项公式 (1)1nn +1=1n -1n +1; (2)12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n .(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(3)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.辨 析 感 悟 (1)当n ≥2时,1n 2-1=1n -1-1n +1.(×) (2)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(3)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.(√)(4)(2014·某某调研改编)若S n =1-2+3-4+…+(-1)n -1·n ,则S 50=-25.(√)[感悟·提升]两个防X 一是用裂项相消法求和时,注意裂项后的系数以及搞清未消去的项,如(1). 二是含有字母的数列求和,常伴随着分类讨论,如(2)中a 需要分a =0,a =1,a ≠1且a ≠0三种情况求和,只有当a ≠1且a ≠0时可用错位相减法求和.(二)典例分析考点一 裂项相消法求和【例1】求和:)23)(13(11181851521+-+⨯+⨯+⨯=n n S n【例2】(2013·新课标全国Ⅰ卷)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和.解 (1)设{a n }的公差为d ,则S n =na 1+n n -12d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5.解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=13-2n1-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1,从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为解:∵数列的通项公式为a n =1(3n-1) (3n+2) =13 (13n-1 -13n+2)∴S n =13 (12 -15 +15 -18 +18 -111 +…+13n-4-13n-1 +13n-1 -13n+2)=13 (12 -13n+2 )=16n+412⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n . 规律方法 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.注意:对裂项公式的分析,通俗地说,裂项,裂什么?裂通项。
数列求和的主要方法教案 高二上学期数学人教A版选择性必修第二册
数列求和的主要方法数列是高中数学的重要内容,又是一种特殊的函数,在高考中占有重要的地位.而数列求和是数列的一个重要内容.除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的方法.下面是数列求和的基本方法.一、分组求和法对于既不是等差又不是等比的数列,如果把数列各项拆开后重新组合,能得到常见的数列,则可分组求和.例1.求和:()()12235435n S --=-⨯+-⨯()()3635235n n --+-⨯++-⨯.分析:注意到各项前半部分2,4,6,,2n ,是成等差,后半部分提起公因式3后得到等比数列.解:()()12235435(63n S --=-⨯+-⨯+-)()35235(2462)n n n --⨯++-⨯=++++()12335555(1)3nn n -----++++=+-⨯21115531114515nn n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 二、错位相减求和法这种方法主要用于求数列{}n n a b ⋅的前n 项和,其中{}{},n n a b 中一个是等差数列,一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫错位相减法.例2.求23123n n nS a a aa=++++(a 为常数)的和. 解:当1a =时,(1)1232n n n S n +=+++=,当1a ≠时,23123n n nS a a a a=++++(1)234111231n n n n nS a a a aa a +-=+++++(2)(1)-(2)得231111111111111nn n n n n n a a S a a a a a a a a++⎛⎫- ⎪⎛⎫⎝⎭-=++++-=- ⎪⎝⎭-所以()21(1)(1)n n n a a n a S a a ---=-.三、倒序相加法倒序相加法是推导等差数列的前n 项和公式时用到的方法.即如果一个数列{}n a ,与首末两项距离相等的项之和相等,可用此法求解.例3.求1,2,3,,100这样一个等差数列的和.解:设这个等差数列的和为100S100123100S =++++,(1)再把项的次序反过来,可以写成100100991S =+++,(2)把(1),(2)两式等号两边分别相加,得1002101101101101S =++++,因为有100个101,所以100210110010100S =⨯= 即100210100S =,所以1005050S =. 四、裂项相消法这是分解与组合思想在数列求和中的具体应用.将数列的通项公式拆成两项之差,可以消去中间某些项,剩下有限的几项.常见裂项方法有.1.1111()n n k k n n k ⎛⎫=- ⎪++⎝⎭.2.1111(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭.3.111(1)(2)2(1)n n n n n ⎡=⎢+++⎣1(1)(2)n n ⎤-⎥++⎦.1k=.例4.等比数列{}n a的各项均为正数,且12a+2232631,9a a a a==.(1)求数列{}n a的通项公式.(2)设31323log log logn nb a a a=++,求数列1nb⎧⎫⎨⎬⎩⎭的前n项和*nT解:(1)设数列{}n a的公比为q,由23269a a a=,得22349a a=,所以219q=.由条件可知0q>,故13q=.又因为1223a a+=1,所以113a=.故数列{}n a的通项公式13n na=.(2)31323(1)log log log(123)2n nn nb a a a n+=+++=-++++=-,所以12112(1)1nb n n n n⎛⎫=-=--⎪++⎝⎭,所以123111112[12nnTb b b b⎛⎫=++++=--⎪⎝⎭1111112233411nn n n⎤⎛⎫⎛⎫⎛⎫+-+-++-=-⎪ ⎪ ⎪⎥++⎝⎭⎝⎭⎝⎭⎦. 所以数列1nb⎧⎫⎨⎬⎩⎭的前n项和nT为21nn-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知数列{an}的前n项的和Sn满足Sn=2an—1,等差数列{bn}满足b1=a1,b4=S3
(1)求{an},{bn}的通项公式;(2)设Cn= ,数列{Cn}的前n项和为Tn,T20=?
(3)设Dn=an·bn,数列{Dn}的前n项和为Pn,P20=?
五、课堂小结
六、课后作业
1.求和Sn= + +…+ =________.
2n-1)=________.
三、例题讲解
学生自己
类比理解
学生
理解、记忆
练习:P180
3,4
总结
1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积相等.
教
学
过
程
设
计
教
学
二次备课
数列求和常用的方法
1.倒序相加法
2.错位相减法
3.裂项相消法
4.分组转化求和法
二、基础练习
1.已知数列{an}的前n项和为Sn且an=n·2n,则Sn=_____.
2.(1) =_____________;
(2) =_____________;
(3) =_____________.
3.求和1+(1+2)+(1+2+22)+…+(1+2+22+…+
例1.已知等比数列{an}的首项为a1= ,公比q满足q>0且q≠1.又已知a1,5a3,9a5成等差数列.(1)求数列{an}的通项;
(2)令bn=log3 ,求 + +…+ 的值.
例2.若数列{an}的前n项和为Sn=n2-7n-8.
(1)求{an}的通项公式;(2)求数列{|an|}的前n项和Tn.
鼓励学生大胆进行猜测
学生练习1: P181
1,6板演
学生练习2: P181
2 ,5板演
总结:
2.用乘公比错位相减法求和时,应注意将两式“错项对齐”,以便下一步准确写出“Sn-qSn”的表达式.
课 外作 业
课本第182页习题6
教 学 小 结
备课时间
2012年10月25日
上课时间
第周周月日
班级节次
课 题
数列求和
总课时数
第节
教 学目 标
1、掌握一般数列的求和方法
2、培养学生分析问题的能力
教 学重 难点
一般数列的常见四种求和方法教Biblioteka 学参 考各省高考题 非常学案
授 课方 法
自学引导 类比
教学辅助手段
多 媒 体
专用教室
教
学
过
程
设
计
教
学
二次备课
一、知识回顾