高等数学数列与极限期末复习题汇总

合集下载

高数期末基础题总结

高数期末基础题总结

高数期末基础题总结一、极限与连续1.极限的定义及性质在高等数学的学习中,我们经常会遇到极限这个概念,那么什么是极限呢?在数学中,对于函数f(x),如果对于任意给定的ε>0,存在与ε对应的值δ>0,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,那么我们说函数f(x)当x趋近于a时极限为L。

在极限的定义上,我们需要了解几个概念:左极限、右极限、无穷极限。

2.极限的运算法则了解了极限的定义之后,我们还需要了解一些关于极限的运算法则,常用的有有限和、有限差、常数倍、乘积、商、幂等运算法则。

这些法则在计算具体的极限值时非常有用,可以简化计算过程。

3.连续的概念及连续函数的性质连续函数是极限的一个重要应用,连续函数与极限的关系是非常密切的。

在高等数学中,我们常常为了研究一个函数f(x)在某一点a处的性质,需要先讨论f(x)在a点的连续性。

若函数f(x)在点a处的极限与f(a)的值相等,则函数f(x)在点a处连续。

二、导数与微分1.导数的定义及几何意义在高等数学中,我们接触到的第一个重要概念就是导数。

对于函数y=f(x),若函数在点x0处的导数存在,那么函数在该点的导数可以用极限的形式表示:f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)。

导数在几何上表示了函数在某点处切线的斜率,它是函数变化率的度量。

2.常用的导数公式在计算导数的过程中,掌握一些基本的导函数公式是非常有帮助的。

常用的导函数公式有基本导函数公式、基本初等函数的导数、反函数的导数等。

这些公式可以帮助我们快速计算函数的导数,提高计算效率。

3.高阶导数与微分除了一阶导数,我们还可以对函数进行高阶求导,即求二阶导数、三阶导数等。

高阶导数与函数的性质有着密切的联系,可以帮助我们研究函数的曲线形状和变化趋势。

微分是导数的一个应用,通过微分可以求函数在某一点处的变化量。

三、定积分与不定积分1.定积分的概念及性质定积分是对函数在一定区间上的累加结果的度量,它是极限的一个应用。

大学高数极限考试题及答案

大学高数极限考试题及答案

大学高数极限考试题及答案# 大学高数极限考试题及答案一、选择题1. 下列函数中,极限不存在的是()A. \( f(x) = \frac{x^2 - 1}{x - 1} \) 当 \( x \to 1 \)B. \( g(x) = \sin(x) \) 当 \( x \to \pi \)C. \( h(x) = x^2 \) 当 \( x \to 2 \)D. \( k(x) = \frac{\sin(x)}{x} \) 当 \( x \to 0 \)答案:A2. 计算极限 \( \lim_{x \to \infty} \frac{x^2}{x + 1} \) 的结果是()A. \( \infty \)B. \( 1 \)C. \( 0 \)D. \( \frac{1}{2} \)答案:A二、填空题1. \( \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = \) ______答案:02. \( \lim_{x \to 1} (x^2 - 1) = \) ______答案:0三、计算题1. 计算极限 \( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)。

解答:\( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3}\frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \)2. 计算极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \)。

解答:使用洛必达法则(L'Hôpital's Rule):\( \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0}\frac{\cos(x)}{1} = \cos(0) = 1 \)四、证明题1. 证明 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \)。

高等数学 第一章 第二节 数列的极限

高等数学 第一章 第二节 数列的极限

第一章 第一节 数列极限A 组 一、选择题:1. 数列{}n x 有界是数列lim n n x →∞存在的【 】A. 充分必要条件B. 充分条件C. 必要条件D. 既非充分条件又非必要条件 2. 下列命题正确的是【 】 A. 有界数列一定收敛 B. 无界数列一定收敛C. 若数列收敛,则极限唯一D. 若函数(sin )y f x =在()f x 处的左右极限都存在,则()f x 在此点处的极限存在3. 下面命题正确的是【 】A. 若{}n u 有界,则{}n u 发散B. 若{}n u 有界,则{}n u 收敛C. 若{}n u 单调,则{}n u 收敛D. 若{}n u 收敛,则{}n u 有界4. 观察下列数列的变化趋势,其中极限是1的数列是【 】A.1n n x n =+ B. 2(1)nn x =-- C. 13n x n=+D. 211n x n =- 5、⎪⎩⎪⎨⎧=-为偶数当为奇数当n n n x n ,10,17则 。

(A );0lim =∞→n n x (B );10lim 7-∞→=n n x(C );,10,,0lim 7⎩⎨⎧=-∞→为偶数为奇数n n x n n (D) 不存在n n x ∞→lim6、下列数列n x 中,收敛的是 。

(A )n n x nn 1)1(--=(B )1+=n n x n (C )2sin πn x n =(D )nn n x )1(--= 7.下列命题:(1)设a u n n =∞→lim ,b v n n =∞→lim ,且b a >,则必有n n v u >( ,,,321=n );(2)设n n v u >( ,,,321=n ),且a u n n =∞→lim ,b v n n =∞→lim ,则必有b a >;(3)设n n n v x u ≤≤( ,,,321=n ),且0)(lim =-∞→n n n v u ,则n n x ∞→lim 必存在. 正确的个数为( ) . (A ) 零个; (B ) 1个; (C ) 2个; (D )3个.8、数列{}n x 无界是数列发散的【 】A. 充分必要条件B. 充分条件C. 必要条件D. 既非充分条件又非必要条件10.设n n n x z y ≤≤,且lim()0,lim n n n n n y x z →∞→∞-=则()(A)存在且等于零 (B)存在但不一定等于零 (C)不一定存在 (D) 一定不存在 11.设=1>0,,nn n kk a n Z S a+∈=∑,则数列{}n a 有界是数列{}n S 收敛的()(A)充分必要条件 (B)充分非必要条件 (C )必要非充分条件 (D )即非充分地非必要条件. 12. 设有两个数列{}{}lim()0n n n n n a b b a →∞-=,,且则(A ){}{}n n a b ,必都收敛,且极限相等 (B ){}n a 收敛,{}n b 发散(C ){}{}n n a b ,必都收敛,且极限不相等 (D ){}{}n n a b ,可能收敛,也可能发散 13、下列说法正确的是:(A )如果数列n x 发散,则n x 必是无界数列。

高数期末考试题及答案大全

高数期末考试题及答案大全

高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。

答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。

在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。

切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。

试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。

则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。

利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。

积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。

高三数学第三轮复习 第5部分 数列与极限题型整理分析 试题

高三数学第三轮复习 第5部分 数列与极限题型整理分析 试题

卜人入州八九几市潮王学校第五局部数列与极限35、等差数列{n a }中,通项b dn a n+=,前n 项和cn n d S n +=22〔d 为公差,N n ∈〕.证明某数列是等差〔比〕数列,通常利用等差〔比〕数列的定义加以证明,即证:n n a a -+1是常数)(N n ∈(1n n a a +=常数,)n N ∈n 有:n n n n a a a a -=-+++112〔nn n n a a a a 112+++=〕.[举例]数列}{n a 满足:)(22,111N n a a a a n nn ∈+==+. 〔1〕求证:数列}1{na 是等差数列;〔2〕求}{n a 的通项公式. 分析:注意是到证明数列}1{n a 是等差数列,那么要证明n n a a 111-+nn n a a a 2211+=+,所以21111=-+n n a a .即数列}1{n a 111=a ,那么21)1(2111+=-+=n n a n ,所以12+=n a n .36、等差数列前n 项和、次n 项和、再后n 项和〔即连续相等项的和〕仍成等差数列;等比数列前n 项和〔和不为0〕、次n 项和、再后n 项和仍成等比数列.类比还可以得出:等比数列的前n 项的积、次n 项的积、再后n 项的积仍成等比数列.[举例1]数列}{n a 是等差数列,n S 是其前n 项的和,20,884==S S ,那么=12S _;分析:注意到812484,,S S S S S --16812=-S S ,所以3612=S .[举例2]数列}{n a 是等比数列,n T 是其前n 项的积,20,584==T T ,那么=12T _.分析:由812484,,T T T T T 成等比,那么8124248)(T T T T T ⋅=,所以64)(34812==T T T . 37、在等差数列}{n a 中,假设),,,(N q p n m q p n m ∈+=+,那么q p n m a a a a +=+;在等比数列}{n a 中,假设),,,(N q p n m q p nm ∈+=+,那么q p n m a a a a ⋅=⋅等差〔等比〕数列中简化运算的技巧多源于这条性质.[举例]数列}{n a 是等比数列,124,5128374=+-=⋅a a a a ,且公比q 为整数,那么10a 的值是_______.分析:由8374a a a a ⋅=⋅得⎩⎨⎧-==⇒⎩⎨⎧-=⋅=+4128512124838383a a a a a a 或者⎩⎨⎧=-=128483a a ,又此数列的公比为整数,所以⎩⎨⎧=-=128483a a 公比2-=q ,那么5122810==q a a .38、等差数列当首项01>a 且公差0<d ,前n 01<a 且公差0>d ,前n n 项和的最值可以利用不等式组⎩⎨⎧≥≤≤≥+)0(0)0(01n n a a 来确定n 的值;也可以利用等差数列的前n 项的和是n 的二次函数〔常数项为0〕转化成函数问题来求解.[举例1]假设}{n a 是等差数列,首项0,0,020072006200720061<⋅>+>a a a a a ,那么〔1〕使前n项和n S 最大的自然数n 是__;〔2〕使前n 项和0>n S 的最大自然数=n ;分析:由条件可以看出0,020072006<>a a ,可知2006S 最大,那么使n S 最大的自然数为2021;由020072006>+a a 知040121>+a a ,02)(4012401214012>+=a a S ,200740134013a S ⋅=,所以04013<S ,那么使0>n S 的最大自然数为4012.[举例2]在等差数列}{n a 中,满足7473a a =且n S a ,01>是数列前n n S 获得最大值,那么=n _____. 分析:7473a a =知111334)6(7)3(3a d d a d a -=⇒+=+,那么1113343733)1(4a na n a a n -=--=.当9≤n 时0>n a ,当10≥n 时0<n a ,所以9=n .39、数列}{n a 是等比数列,其前n 项的和n S 是关于q 的分段函数⎪⎩⎪⎨⎧≠--==1,1)1(111q qq a q na S n n ,在求和过程中假设公比不是详细数值时,那么要进展讨论.[举例1]数列}{n a 是等比数列,前n 项和为n S ,且11lim a S n n =∞→,求1a 的取值范围.分析:注意到等比数列的公比是不为零的常数,前n 项和存在的前提条件是1||<q ,且qa S n n -=∞→1lim1,知1111a q a =-,那么q a -=121,有)2,1()1,0(21 ∈a ,那么)2,1()1,0(1 ∈a )0,1()1,2(--- .[举例2]数列}{n a 是等比数列,首项11=a ,公比1-≠q ,求nn S 1lim∞→的值.分析:涉及到等比数列的前n1=q 时,n na S n ==1,此时01lim 1lim==∞→∞→n S n nn ;当1≠q 时,q q S nn --=11,那么nn S 1lim∞→=1,(||1)1lim0,(||1)1nn q q q q q →∞-<⎧-=⎨>-⎩. 40、等差数列、等比数列的“根本元〞是首项、公差〔比〕,当觉得不知如何用性质求解时,可以把问题转化成“根本元〞解决.学会用任意两项关系:假设n a {}是等差数列,那么对于任意自然数n m ,有d m n a a m n )(-+=;假设n a {}是等比数列,那么对于任意的自然数n m ,,有m n m n q a a -⋅=.在这两关系式中假设取1m =,这就是等差〔比〕数列的通项公式. [举例1]数列}{n a 是等差数列,首项01>a ,且05375=+a a .假设此数列的前n 项和为n S ,问nS 是否存在最值?假设存在,n 为何值?假设不存在,说明理由. 分析:d ,那么0)6(5)4(311=+++d a d a ,即1214a d -=,由01>a 知0<d ,所以数列}{n a 是递减数列,故nS 有最大值而无最小值.由等差数列的通项公式知:11121425)214)(1(a n a n a a n -=--+=,当6≤n 时,0>n a ,当7≥n 时,0<n a .所以6S 最大.综上知,当6=n时,n S 最大,不存在最小值.[举例2]正项等比数列}{n a 中,首项11>a ,且15735=⋅a a .假设此数列的前n 项积为n T ,问n T 是否存在最值?说明理由.分析:与举例1联络起来,这是数列中的“类比〞问题.其解决的思想方法是一样的.对于单调正项数列,前n 项积n T 最大〔小〕,那么应满足)11(1111⎩⎨⎧>≤⎩⎨⎧<≥++n n n n a a a a . 设此数列公比为q ,那么1)()(461341=⋅q a q a ,那么2141-=a q .214251121411)(n n n a a a a ---=⋅=.由11>a 知:6≤n 时,7,1≥>n a n 时,1<n a .所以当6=n 时,6T 最大,n T 没有最小值.[特别注意]等差数列与正项等比数列之间存在的类比关系实际上是运算上的变化,这种变化可以由等差数列与等比数列的一个性质来提醒.我们知道:假设数列}{n a 是正项等比数列,记)1,0(log ≠>=m m a b n m n ,那么数列}{n b {}n a 是等差数列,记(0)n a n b m m =>,那么数列{}n b 是等比数列.41、数列的前n 项和n S ,求数列的通项公式时,要注意分段⎩⎨⎧≥-==-2,111n S S n S a n nn .当1a 满足)2(,1≥-=-n S S a n n n 时,才能用一个公式表示.[举例]数列}{n a 的前n 项和a n n a S n++-=2)2(.假设}{n a 是等差数列,求}{n a 的通项公式.分析:证明一个数列是等差数列或者是等比数列,要从等差、等比数列的定义出发.等差、等比数列的性质不能作为证明的理由. 由a n n a S n++-=2)2(知,1=n 时,1211-==a S a ,当2≥n 时,=-=-1n n n S S a)3()2(2a n a -+-.当2≥n 时,)2(21-=-+a a a n n ,而412-=-a a a .假设数列}{n a 是等差数列,那么4)2(2-=-a a ,所以0=a .那么34+-=n a n .42、形如:n n a a =+1+)(n f 的递推数列,求通项用叠加〔消项〕法;形如:)(1n g a a nn =+的递推数列,求通项用连乘〔约项〕法. [举例]数列}{n a 满足)2(3,1111≥+==--n a a a n n n ,求数列}{n a 的通项公式.分析:解决这种递推数列的思想方法本质上是等差、等比数列求通项公式的思想方法.等差数列的根本递推关系:d a a n n +=+1,等比数列的递推关系:q a a nn =+1. 由题知:)2(333311233222111≥⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-=-=---------n a a a a a a a a n n n n n n n n n相加得:2)31(33331211-----=+++=-n n n n a a ,又11=a ,所以)2(213≥-=n a n n ,而1a 满足此式,那么)(213N n a n n ∈-=. 43、一次线性递推关系:数列}{n a 满足:c b a c a b a a a n n ,,(,,11+⋅==+是常数〕是最重要的递推关系式,可以看出当1=b时,此数列是等差数列,当0=c 〔)0≠b 时,此数列是等比数列.解决此递推的方法是通过代换〔令)k a b n n+=化成等比数列求解.[举例]数列}{n a 满足:)(,12,111N n a a a n n ∈+==+,求此数列的通项公式.分析:由121+=+n n a a 得:)1(211+=++n n a a 知数列}1{+n a 是等比数列,首项为2,公比为2,所以n na 21=+,知12-=n n a .44、在解以数列为模型的数学应用题时,要选择好研究对象,即选择好以“哪一个量〞作为数列的“项〞,并确定好以哪一时刻的量为第一项;对较简单的问题可直接寻找“项〞与“项数〞的关系,对较复杂的问题可先研究前后项之间的关系〔即数列的递推公式〕,然后再求通项.[举例]某企业去年底有资金积累a 万元,根据预测,从今年开场以后每年的资金积累会在原有的根底上增长20%,但每年底要留出b 万元作为奖励金奖给职工.企业方案用5年时间是使资金积累翻一番,求b 的最大值.分析:与年数相关的应用题在解答过程中要注意项数与年数之间的关系,在设数列时就要指明.特别注意年底、年初的不同.设从今年开场每年底该企业的资金积累为n a 万元,那么b a b a a -=-+=45%)201(1〔万元〕,b a b a a n n n -=-+=+45%)201(1,那么)4(4541b a b a n n -=-+.所以数列}4{b a n -是以b a b a 54541-=-为首项,45为公比的等比数列,所以1)45)(545(4--=-n n b a b a ,1)45)(545(4--+=n n b a b a .由题知a a 25≥,那么a b a b 2)2.1)(52.1(44≥-+,求得:a ab 08.09950763≈≤.即b 的最大值大约为8%a .45、常见的极限要记牢:⎪⎩⎪⎨⎧-=><==∞→11||1||,01,1lim q q q q q n n 或不存在,,注意n n q ∞→lim 存在与0lim =∞→nn q 是不一样的;e nn n =+∞→)11(lim ,特别注意此式的构造形式;假设)(),(n g n f 是关于n 的多项式函数,要会求)()(limn g n f n ∞→. [举例1]求以下各式的值:〔1〕)4(22lim 2≠-+∞→a aa n n n n n ;〔2〕nn n n 2)11(lim +-∞→. 分析:对于指数型的分式型极限,一般是分子、分母同除以幂底数绝对值较大的幂,这样可以求出极限.〔1〕当2||<a 时,原式1)2(11)2(lim =-+=∞→nn n aa;当2||>a 时,原式11)2()2(1lim-=-+=∞→n n n a a . 〔2〕与e 相关的极限问题要注意其构造形式,注意到括号内是""+号相连,且分子为1,幂的指数与括号内的分母一样.当形式不同时,要向此转化.nn n n n n n )121(lim )11(lim 2+-=+-∞→∞→=2)12(21)2111(lim )2111(lim -+-⋅+-∞→∞→=+-+=+-+e n n n nn n nn .[举例2]假设1432lim2=+++∞→n bn an n ,那么=a ____;=b ____. 分析:对于分子分母是关于n 的整式的分式型极限,假设分子的最高的幂指数大于分母的最高的幂指数,那么此式极限不存在;当分子的最高的幂指数与分母的最高的幂指数一样时,极限是分子、分母的最高次幂的系数比;当分子的最高的幂指数小于分母的最高的幂指数时,极限是零.注意到此式极限为1是存在的,由上分析知13,0==ba ,所以3,0==b a . 46、理解极限是“无限运动的归宿〞. [举例]△ABC 的顶点分别是))(0,24(),2,0(),2,0(N n nC n B n A ∈+-,记△ABC 的外接圆面积为n S ,那么=∞→n n S lim _____.分析:此题假设要先求出三角形ABC 的面积后再求极限那么是“漫长〞的工作,注意到当∞→n 时A 、B 、C 点的变化,不难看出△ABC 被“π4lim=∞→n n S .。

数列专题复习及答案

数列专题复习及答案

数列、数列极限、数学归纳法综合复习一、填空题1、已知)(1562*∈+=N n n na n ,则数列{}n a 的最大项是 2、在等差数列{}n a 中,若46101290a a a a +++=,则101413a a -= 3、已知等比数列{}n a ,若151,4a a ==,则3a 的值为 4、数列{}n a 中,23=a ,15=a ,则数列1{}1n a +是等差数列,则=11a 5、在数列{}n a 和{}n b 中,n b 是n a 与1n a +的等差中项,12a =且对任意n N *∈都有031=-+n n a a ,则数列{}n b 的通项公式为 ___ _______6、设等差数列{}n a 的公差d 不为0,19a d =,k a 是1a 与2k a 的等比中项,则k =7、等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为8、正数数列{}n a 中,已知12a =,且对任意的,s t N *∈,都有s t s t a a a ++=成立,则12231111n n a a a a a a ++++9、等差数列{}n a 的前n 项和为n S ,且42358,26a a a a -=+=,记2nn S T n =,如果存在正 整数M ,使得对一切正整数n ,n T M ≤都成立.则M 的最小值是__________ 10、已知无穷等比数列12{},lim[3()]4,n n n a S a a a S →∞+++-=中,各项的和为且 则实数1a 的范围11、设正数数列{}n a 的前n项和为n S ,且存在正数t ,使得对于所有自然数n ,有2n a t+=成立,若n nt →∞<,则实数t 的取值范围为12、数列{n a }的通项公式为12(12)1()(3,)3n n nn a n n N -*⎧≤≤⎪=⎨≥∈⎪⎩,则=∞→n n S lim13、已知数列{}n a 的通项公式为121n n a -=+,则0121231nn n n n n a C a C a C a C ++++=14、数列{}n a 满足112(0)2121(1)2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若761=a ,则2007a 的值为____15、在数列{}n a 中,如果对任意n N *∈都有211()n n n na a k k a a +++-=-为常数,则称{}n a 为等 差比数列,k 称为公差比. 现给出下列命题:⑴等差比数列的公差比一定不为0; ⑵等差数列一定是等差比数列;⑶若32nn a =-+,则数列{}n a 是等差比数列;⑷若等比数列是等差比数列,则其公比等于公差比. 其中正确的命题的序号为二、选择题16、等差数列}{n a 的公差为d ,前n 项的和为n S ,当首项1a 和d 变化时1182a a a ++是一个定值,则下列各数中也为定值的是 ( )7.A S 8.B S 13.C S15.D S17、在等差数列}{n a 中,15100,517a a a >=,则数列}{n a 前n 项和n S 取最大值时,n的值为( ).12A .11B .10C .9D18、设}{n a 为等差数列,若11101a a <-,且它的前n 项和n S 有最小值,那么当n S 取得最小正值时,n =( ).11A .17B .19C .20D19、等差数列}{n a 的前n 项和为n S ,且56S S <,678S S S =>,则下列结论中错误的是( ) .0A d < 7.0B a =95.C S S > 67.n D S S S 和均为的最大值20、已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列{}n c 的前10项和等于( ).A 55 .70B .85C .100D21、已知等差数列{}n a 的前n 项和为n S ,若OB =1200a OA a OC +,且,,A B C 三点共线 (该直线不过原点O ),则200S =( ).A 100 .B 101 .C 200 .D 20122、已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是( ) .2A .3B .4C .5D三、解答题23、设数列{}n a 的前n 项和为n S ,已知1a a =,13n n n a S +=+,*n N ∈.(1)设3nn n b S =-,求{}n b 的通项公式;(2)若1n n a a +≥,*n N ∈,求a 的取值范围.24、数列{}n a 满足a a =1,a a -=2(0>a ),且{}n a 从第二项起是公差为6的等差数列,n S 是{}n a 的前n 项和.(1)当2≥n 时,用a 与n 表示n a 与n S ;(2)若在6S 与7S 两项中至少有一项是n S 的最小值,试求a 的取值范围;25、数列{}n a 中,112a =,点1(,2)n n n a a +-在直线y x =上,其中n N *∈; (1)设11,n n n b a a +=--{}n b 求证:数列是等比数列;(2)求数列{}n a 的通项; (3)设分别为数列、n n T S {}n a 、{}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ;若不存在,则说明理由。

高数极限60题及解题思路

高数极限60题及解题思路

高数极限60题1.求数列极限)sin 1(sin lim n n n -+∞→。

2.设∑==n k kn b k S 1,其中)!1(+=k b k ,求n n S ∞→lim 。

3.求数列极限)321(lim 12-∞→+⋯+++n n nq qq ,其中1<q 。

4.求数列极限)]1(54[lim 2--++∞→n n n n 。

5.求数列极限)11)...(311)(211(lim 222nn ---∞→。

6.求极限)111)(110()110(...)13()12()1(lim 2222--++++++++∞→x x x x x x x 。

7.求极限)12584(lim 2+++--∞→x x x x 。

8.讨论极限xx xx x e e e e 2323432lim --∞→+-。

9.求极限)4tan(2tan lim 4x x x -⋅→ππ。

10.求极限2223lim 32--+→x x x 。

11.求极限xx x x 350)41()21(lim +-+→。

12.求极限301sin tan 1lim x x x x +-+→。

13.讨论极限x x x cos 22lim 0-→。

14.求数列极限12sin 2lim -∞→n n n π。

15.设01>>a x ,且n n ax x =+1,证明:n n x ∞→lim 存在,并求出此极限值。

16.设21=x ,且n n x x +=+21,证明:n n x ∞→lim 存在,并求出此极限值。

17.设2221...31211nx n ++++=(n 为正整数),求证:n n x ∞→lim 存在。

18.求数列极限!2lim n nn ∞→。

19.求极限)23ln()32ln(lim 32x x x e e +++∞→。

20.求极限xxx x x x ++++∞→lim 。

21.无限循环小数•9.0的值(A)不确定 (B)小于1 (C)等于1 (D)无限接近122.求数列极限2)(sec lim n n n π∞→。

高中数学 数列及数列的极限试题及答案

高中数学 数列及数列的极限试题及答案

数列一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)在数列2,5,22,11,…中,如果52是这个数列中的一项,那么它的项数是( ).A .6B .7C .10D .11(2)数列0,2,0,2,…的通项为n a ,下列公式不能作为已知数列的通项公式的是( ).A .nn a )1(1-+= B .2π)1(sin 22-=n a nC .π)1cos(1+-=n a nD .1)1(1--+=n n a(3)已知数列{n a }中,11=a ,32=a ,且*)()1(1221N ∈-=--++n a a a n n n n ,那么4a 等于( ).A .365B .21C .17D .10(4)n S 是数列}{n a 的前n 项和,且),3,2,1(log 3 ==n n S n ,那么数列}{n a ( ). A .是公比为3的等比数列 B .是公差为3的等差数列C .是公比为31的等比数列 D .既非等差数列也非等比数列(5)等差数列}{n a 中,81073=-+a a a ,4411=-a a ,那么它的前13项和为( ). A .168 B .156 C .78 D .152(6)等比数列}{n a 中,0>n a ,且362867564=+++a a a a a a ,则75a a +等于( ). A .6 B .12 C .18 D .24 (7)数列}{n a 中,n n a n ++=11,若其前n 项和9=n S ,则n 等于( ).A .9B .10C .99D .100(8)若a ,b ,c 成等比数列,a ,m ,b 成等差数列,n 是b ,c 的等差中项,则n cm a +的值为( ).A .4B .3C .2D .1 (9)数列}{n a 中,已知n a n 211-=,记||||||||321n n a a a a S ++++= ,那么等于( ).A .25B .50C .100D .150(10)等比数列}{n a 中,其前n 项和为n S ,且14=S ,38=S ,则20191817a a a a +++的值为( ).A .14B .16C .18D .20 (11)在50到350之间的所有个位数字是1的整数的和为( ). A .5 880 B .5 539 C .5 208 D .4 877(12)现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余钢管尽可能少,那么剩余钢管的根数为( ).二、填空题:(13)n S 是等差数列}{n a 的前n 项和,且05=S ,729=S ,则++++13121110a a a a20a + =__________.(14)在10到2000之间形如*)(2N ∈n n 的各数的和为__________.(15)数列}{n a 中,1)97(+⋅=n n n a ,则此数列的最大项为__________.(16)已知数列}{n a 满足)2)(1(32321++=++++n n n na a a a n ,那么数列}{n a 的前n 项和的公式为n S =__________.三、解答题:(17)在4与64之间插入三个正数a 、b 、c ,使4,a ,b 与b ,c ,64都成等比数列,且使a ,b ,c 成等差数列,求a 、b 、c 的值.(18)已知等差数列前三项为a ,4,3a ,前n 项和为n S ,5502=k S . (Ⅰ)求a 和k 的值;(Ⅱ)求数列}1{n S 的前n 项和n T .(19)数列}{n a 为正项的等比数列,它的前n 项和为80,前2n 项和为6 560,且在前n 项中数值最大的项为54.求这等比数列的首项1a 与公比q .(20)已知α 、β 、γ 都是锐角,2tan 2tan3γα=,且2tan β =tan γ ,求证:α ,β ,γ 成等差数列.(21)在等比数列}{n a 中,1531=+a a ,前4项和为45.设3log )5(122+-=n n a n C ,试问数列}{n C 中有没有最小值?若有,求出这最小项,并指明项数;若没有,说明理由. (22)假设A 型进口汽车关税税率在2001年是100%,在2006年是25%,2001年A 型进口车每辆价格为64万元(其中含32万元关税税款).(Ⅰ)已知与A 型进口车性能相近的B 型国产车,2001年每辆价格为46万元.若A 型车的价格只受关税降低的影响,为了保证2006年B 型车的价格不高于A 型车价格的90%,B 型车价格要逐年降低,问平均每年至少下降多少万元?(Ⅱ)某人在2001年将33万元存入银行,假设该银行扣利息税后的年利率为1.8%(五年内不变),且每年按复利计算(例如,第一年的利息计入第二年的本金),那么五年到期时这笔钱连本带息是否一定够买一辆按(Ⅰ)中所述降价后的B 型汽车?参考答案一、选择题:(1)B (2)D (3)A (4)D (5)B (6)A (7)C (8)C (9)B (10)B (11)A (12)B 提示:(1)给出数列的一个通项公式是13-=n a n .令5213=-n ,得n =7.(3)在已知递推公式中令n =1,可得83=a .再令n =2得3654=a .(4)nn S 3=故31=a ,当n ≥2时,132-⋅=n n a .(5)由已知可求得74=d ,7601=a .(6)由已知可得36)1(22821=+q q a .故6)1(241=+q q a ,而)1(24175q q a a a -=+. (7)n n a n -+=1,故11-+=n S n .(8)由已知有⎪⎩⎪⎨⎧+=+==.2,2,2c b n b a m ac b 消b 得(2m -a )(2n -c )=ac .(9)由2110211≤⇔≥-n n .故当n =1,2,3,4,5时0>n a ,n ≥6时0<n a .(10)由11)1(41=--q q a 、31)1(81=--q q a 可得31148=--q q .故24=q ,11-=q a .因此)1)(1)(1()1)(1(216216120191817q q q q q q q a a a a a ++-=++=+++ =16)1()()1)(1()(4442244=-=+-q q q q q . (11)这些数可组成51为首项,341为末项的等差数列,且共有30个数.(12)n 层的正三角钢管垛总共用钢管数为2)1(+n n ,这里求使1002)1(≤+n n ,*N n ∈,且n 尽量大,经估算知n =19.二、填空题:(13)528 (14)2032 (15)54)97(4=a (16))3(232n n +.提示:(13)n n S n 1022-=.所求为920S S -. (14)这些数组成以42为首项,2为公比,共7项的等比数列.(15)927)97(11n a a n n n -⋅=-++,故n =1,2,3时,n n a a >+1;n ≥4时,n n a a <+1. (16)由)2)(1(32321++=++++n n n na a a a n ,则1321)1(32--++++n a n a a a = (n -1)n (n +1)(n ≥2).两式相减得()233≥+=n n a n ,且61=a .于是)(33*Ν∈+=n n a n . 三、解答题:(17)设a =b -d 、c =b +d .则⎪⎩⎪⎨⎧=+=-.64)(,4)(22b d b b d b 解得d =15. 代入可得0225342=+-b b ,故b =25,b =9(舍去).于是a =10,b =25,c =40. (18)(1)依题意有3a +a =8,故a =2.于是等差数列前三项为2,4,6,其首项为2,公差为2.又由5502=k S ,得550222)1(2=⋅-+k k k .解得k =50.(2)由(1))1(22)1(2+=⋅-+=n n n n n S n .111)1(11+-=+=n n n n S n .1111)111()3121()211(+=+-=+-++-+-=n nn n n T n .(19)若q =1,则有n n S S 22=与题意不符,故q ≠1.于是依题意有⎪⎪⎩⎪⎪⎨⎧=--=--.56061)1(,801)1(211qq a q q a nn 两式相除,并化简可得081822=+-n n q q .故81=n q 或1=n q (舍去).由81=nq ,故q >1,所以数列}{n a 前n 项中,n a 最大,即54=n a . 由5411==-n n q a a ,得q q a n 541=,即q a 54811=. 再把81=nq 代入801)1(1=--q q a n 中可得11-=q a .由此解得21=a ,q =3.(20)βγγγγγγγαγαγαtan tan 212tan 12tan2tan 12tan2tan 2tan2tan12tan2tan 2tan243==-=-+=-+=+.且α 、β 、γ 均为锐角,故2π20<+<γα,2π0<<β,于是βγα=+2,即α ,β ,γ 成等差数列.(21)设等比数列}{n a 的公比为q ,依题意有⎪⎩⎪⎨⎧=+++=+.45)1(,15)1(32121q q q a q a 解得⎩⎨⎧==.2,31q a ∴ 123-⋅=n n a ,nn a 21223⋅=+,225)25(21022log )5(22222--=-=-=n n n n C n n .又*Ν∈n ,于是当n =2或3时,n C 最小,为-12.(22)(Ⅰ)因为2006年关税税款为2001年的41,故所减少的关税税款为244332=⨯(万元).所以2006年A 型车价格64-24=40(万元).因为5年后B 型车价格应不高于A 型车价格的90%,故B 型车价格≤40×90%=36(万元).又2001年B 型车价格为46万元,故5年中至少要降10万元,所以平均每年至少降价2万元.(Ⅱ)依题意,2001年存入33万元,5年到期时连本带息可得5)811(33%.+⨯(万元).而5)811(33%.+⨯>33(1+5×0.018+10×0.000324)=36.07692(万元).因此,能买一辆依(Ⅰ)中所述5年后降价为36万元以下的B型车.数列的极限【教学目标】⒈认知目标①使学生加深对数列极限概念的理解.②掌握数列极限的四则运算法则及运用条件.③掌握求数列极限的一些常用方法.⒉能力目标①培养学生观察抽象能力与严谨推理的能力.②培养学生分析问题解决问题的能力.⒊情感目标①激发学生勇于克服困难勤于探索的精神.②培养学生严谨的学习态度,通过对问题转化培养辩证唯物主义观点. 【教学重点】运用数列的四则运算法则求数列的极限.【教学难点】求含参数的式子的极限时,要注意对参数值的分类讨论.【教学课型】复习课【教学过程】(一)数列极限概念的理解.学生课前练习:⑴已知Aann=∞→lim,则在区间()εε+-AA,外(ε为任意小的正常数)这数列{}n a的项数为(填“有限项”或“无穷项”)⑵下列命题正确的是()①数列(){}31n-没有极限②数列()⎭⎬⎫⎩⎨⎧-nn21的极限为0③数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-+n233的极限为3 ④ 数列()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n 32没有极限 A ①② B ②③④ C ①②③ D ①②③④ ⑶()BA b aB b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件⑷ 212lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→n n r r ,则r 的取值范围是( ) A -2121<<r B 21->r C 21>r D 1-<r (5)1312lim 22--+∞→n n n n 的值为( ) A -21 B -32 C 21 D 32知识归纳:1) 数列{}n a 的极限定义:任给0>ε,存在N >0,当n>N 时,ε<-A a n 恒成立.记作Aa n n =∞→lim . 注意:①N 与ε有关.②Aa n n =∞→lim 的几何意义是当n>N 时,n a 对应的点全部落在区间()εε+-A A ,之内.2) 数列极限的运算法则:如果A a n n =∞→lim ,Bb n n =∞→lim .则① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .③ ()0,0lim≠≠=∞→B b B Ab a n n n n .注意:和与积必须是有限的。

高考数学数列的极限专题复习(专题训练最全版)

高考数学数列的极限专题复习(专题训练最全版)
n
n n 注意: lim a 存在与 lim a 0 ,实数 a 要满足的条件是不同的; n n
0 (s t ) a n a1 n at 1 n at a0 (4) lim 0 s (s t ) ; n b n b n s 1 b 0 1 s 1 n bs b0 不存在 ( s t ) 1 n (5) lim (1 ) e ,特别注意此式的变式情况,如: n n
解:数列{an}的通项公式为 ,

=
=
=
=
=
=﹣2.
2n 1, n 2015 2.已知 an ,Sn 是数列{ a n }的前 n 项和( A) 1 n 1 ( ) , n 2015 2
A. lim an 和 lim S n 都存在
n n
B. lim an 和 lim S n 都不存在
n
an 2 2n 1 a ) 1 ,则复数 a b i 的虚部为 ﹣2 bn 2 b
= ,
解:2n+

,∴
,解得
∴点(a,b)的坐标为(4,﹣2) ,故答案为(4,﹣2) . 4.数列{ a n }满足 lim[(2n 3) an ] 1 ,则 lim ( nan ) =__________1/2
=2,∴d1=2d2.
=
=
=
=
6.已知数列{ a n }同时满足下面两个条件:①不是常数列;②它的极限就是这个数列中的项;请 写出则此数列的一个通项公式 a n =____________
解:由于当 an=
时,数列{an}不是常数数列,它的极限
=
=1,
5

大一高数求极限复习题

大一高数求极限复习题

大一高数求极限复习题# 大一高数求极限复习题一、基础概念题1. 定义极限的概念,并给出极限存在的条件。

2. 描述无穷小量的概念,并解释无穷小量与极限的关系。

3. 举例说明左极限和右极限的区别,并说明它们在确定极限时的作用。

二、极限运算题4. 计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

5. 计算极限 \(\lim_{x \to 1} (x^2 - 1)\)。

6. 计算极限 \(\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 + 5}\)。

三、无穷小量比较题7. 比较 \(x^2\) 和 \(x^3\) 当 \(x \to 0\) 时的无穷小量阶数。

8. 判断 \(\frac{1}{x^2}\) 与 \(\frac{1}{x}\) 当 \(x \to\infty\) 时的无穷小量阶数。

四、夹逼定理应用题9. 利用夹逼定理计算 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

10. 利用夹逼定理求解 \(\lim_{x \to 0} \frac{1 - \cos x}{x}\)。

五、洛必达法则应用题11. 使用洛必达法则求解 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

12. 使用洛必达法则求解 \(\lim_{x \to \infty} \frac{e^x}{x}\)。

六、数列极限题13. 计算数列 \(a_n = \frac{1}{n}\) 的极限。

14. 计算数列 \(b_n = (1 + \frac{1}{n})^n\) 的极限。

七、连续性与间断点题15. 定义函数的连续性,并给出连续函数的性质。

16. 判断函数 \(f(x) = x^2\) 在 \(x = 2\) 处是否连续,并说明理由。

17. 确定函数 \(g(x) = \frac{1}{x}\) 的间断点,并分类。

数列极限期末复习

数列极限期末复习

数列极限期末复习知识点小结:1运用数列极限的运算法则求一些数列的极限时必须注意以下几点:(1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算 数列极限的运算法则:如果,lim ,lim B b A a n n nn ==∞→∞→那么B A b a n nn +=+∞→)(limBA b a n n n -=-∞→)(lim BA b a n n n .).(lim =∞→0(lim ≠=∞→B B A b a nn n2.无穷等比数列的各项和公比的绝对值小于1的无穷等比数列前n 项的和当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n SS →∞=1lim ,(0||1)1n n a S S q q→∞==<<- 3熟练掌握如下几个常用极限:(1)∞→n lim C =C (C 为常数);(2) ∞→n lim (n1)p=0(p >0);(3)∞→n limd cn b an k k ++=ca(k ∈N *,a 、b 、c 、d ∈R 且c ≠0); (4)∞→n lim q n=0(|q |<1)例 1 数列{a n }和{b n }都是公差不为0的等差数列,且nnn b a ∞→l i m =3,求nnn nb a a a 221lim +++∞→ 的值为例2 求n n nn n aa a a --∞→+-lim (a >0);若实数a 满足0322<--a a,则13lim 3n nn n n a a+→∞-=+________。

3例3 已知1)11(lim 2=--++∞→b an n n n ,求实数a ,b 的值; 例4 将无限循环小数∙∙21.0化为分数例5求数列∙∙81.0,∙∙8100.0,∙∙810000.0,…的前n 项和及各项和练习1、在等比数列{a n }中, 公比q=-31,a 1=4, 则该数列所有项的和是2、已知数列1,,则其各项的和等于 。

数列数学期末考试复习题(知识点有归纳,习题有答案)

数列数学期末考试复习题(知识点有归纳,习题有答案)

数列1)数列性质:①数列:按照一定顺序排列着的一列数.②数列的项:数列中的每一个数.③有穷数列:项数有限的数列.④无穷数列:项数无限的数列.⑤递增数列:从第2项起,每一项都不小于它的前一项的数列.⑥递减数列:从第2项起,每一项都不大于它的前一项的数列2)做选择题的几种方法:①排除法②特殊法③替代法④代入法3)特殊数列:①常数列②隔项数列③循环数列④对称数列⑤摆动数列1)等差数列性质2)等差数列通项公式(2)3)等差数列求和公式4)!!等差数列等差中项性质2.等比数列1)等比数列性质2)等比数列通项公式(2)3)等比数列求和公式4)!!等比数列等比中项性质1)公式求和2)递推公式数列求和3)求和过程最值问题4)叠加法错位相减相乘法(啪啪)4.递推数列1)后项递推前一项2)经过变换为特殊数列1.在等差数列}{n a 中,公差1=d ,8174=+a a ,则20642a a a a ++++ 的值为( ) (A )40 (B )45 (C )50 (D )55 2.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A.40 B.42 C.43 D.45 3.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A.5B.4C. 3D. 24.在等比数列{a n }中,a 1=1,a 10=3,则a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 = ( ) A. 81 B. 27527 C.3 D. 2435.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=()A .120B .105C .90D .75 6.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .5 7.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12 = ( )(A )310 (B )13 (C )18 (D )191. 已知数列1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则=+221b a a _______. 2. 已知等差数列{a n },公差d ≠0,431a a a ,,成等比数列,则18621751a a a a a a ++++=3. 等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = 。

高考理科数学数列的极限复习资料

高考理科数学数列的极限复习资料

• • •
即 又 所以-lna 2in m< a( t存n<tb 在2 且,t 2 t≠可2 0) 得.故( 02 t<) n |1 lni mta2t |2 n<2 .1t,22.
2020/12/8
16
• 解法2:由题设知tbn+1=2bn+1,且t≠2,
• •
可 由f得(b)≠gb(n b1) ,tt 1≠2 2,2 tt≠0bn,t 12.
4
3n1 lnim 3n1
an1 an1
(a>0,且为常数).
2020/12/8
8
• 解:(1)原式lim 4n lim 4 2.
• (2)原式
n n24nn n 141 n
22 1
lim
n
22

32 1 32

42 1 42
••
n2 1 n2
1• 3
lim
n
22

2•4 32

3•5 42
••
n
1n
n2
1
n1 1 lim .
n 2n 2
2020/12/8
9
• (3)原式=
lim
n
2
3
C3 n1
4
n
n
lim
n
n1
3!n 2
n n 1
• n(n 1)
2
n1
lim
n
3
n
2
1 1
lim n
n
31
2 n
1 3
.
2020/12/8
10
• (4)当a>3时,原式=
lim
n
9

高中数学数列与极限练习题及参考答案

高中数学数列与极限练习题及参考答案

高中数学数列与极限练习题及参考答案以下是针对高中数学数列与极限练习题的练习题及参考答案:一、选择题1. 以下哪个数列是等差数列?A. {1,2,4,8,16}B. {1,3,6,10,15}C. {1,4,9,16,25}D. {1,-2,4,-8,16}参考答案:B2. 若数列 {an} 为等差数列,常数为 d,差为 a1 - a0,以下哪个不等式成立?A. a100 > a50 + 50dB. a100 > (a0 + a100)/2C. a100 > a50 + (50/2 - 1)dD. a100 > a50 + (50/2)d参考答案:D3. 以下哪个数列是等比数列?A. {1,2,4,8,16}B. {1,3,6,10,15}C. {1,4,9,16,25}D. {1,-2,4,-8,16}参考答案:A4. 给定 {an} 为等比数列,公比为 q,首项为 a0,以下哪个等式成立?A. a0 + a3 = a1 + a2B. a2q = a4C. a1 - a0 = (1 - q)a0D. a5 + a2 = a4 + a3q参考答案:D二、计算题1. 已知数列 {an},其中 a0 = 1,a1 = 2,a2 = 4,求 a3 和 a4。

参考答案:a3 = 8,a4 = 162. 给出等比数列 {an},其中 a1 = 2,a2 = 8,求公比 q。

参考答案:q = 43. 如果知道 {an} 是等差数列,a3 = 13,a6 = 28,求 a17。

参考答案:a17 = 674. 若 {an} 是等比数列,a3 = 20,a6 = 320,求公比 q。

参考答案:q = 4三、证明题1. 证明等差数列 {an} 的通项公式为 an = a0 + nd。

参考答案:通过递推法可得出 an = an-1 + d,即 {an - d} 为等差数列,且 a0 = a0 + 0d,故得证。

数列与极限例题和知识点总结

数列与极限例题和知识点总结

数列与极限例题和知识点总结一、数列的基本概念数列是按照一定顺序排列的一列数,例如:1,3,5,7,9 就是一个数列。

数列中的每一个数称为数列的项,其中第 n 项通常用\(a_n\)表示。

二、数列的分类1、按照项数的多少,数列可分为有限数列和无限数列。

有限数列的项数是有限的,而无限数列的项数是无限的。

2、按照数列的增减性,数列可分为递增数列、递减数列、常数列和摆动数列。

递增数列是指从第二项起,每一项都大于它前一项的数列;递减数列则是每一项都小于它前一项的数列;常数列是各项都相等的数列;摆动数列是从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列。

三、数列的通项公式如果数列\(\{a_n\}\)的第 n 项\(a_n\)与 n 之间的关系可以用一个公式来表示,那么这个公式叫做数列的通项公式。

例如,数列 2,4,6,8,10,······的通项公式为\(a_n = 2n\)。

四、数列的前 n 项和数列\(\{a_n\}\)的前 n 项之和,记为\(S_n\),即\(S_n = a_1 + a_2 + a_3 +······+ a_n\)。

五、常见数列1、等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的数列叫做等差数列,这个常数称为等差数列的公差,通常用 d 表示。

通项公式:\(a_n = a_1 +(n 1)d\)前 n 项和公式:\(S_n =\frac{n(a_1 + a_n)}{2} = na_1 +\frac{n(n 1)d}{2}\)例如:数列 3,5,7,9,11 是一个公差为 2 的等差数列,其通项公式为\(a_n = 3 +(n 1)×2 = 2n + 1\),前 n 项和为\(S_n =\frac{n(3 + 2n + 1)}{2} = n(n + 2)\)。

高数复习资料

高数复习资料

高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。

1-3数列的极限 北京航空航天大学高等数学期末模考复习

1-3数列的极限 北京航空航天大学高等数学期末模考复习

即有 a 1 xn a 1. 记 M max{ x1 ,, xN , a 1, a 1},
则对一切自然数n,皆有 xn M , 故xn有界.
注意:有界性是数列收敛的必要条件.
推论 无界数列必定发散.
例4 证明数列xn (1)n1是发散的.


lim
n
xn
a,
由定义, 对于 1 , 2
则N , 即当n
使得当 N时,
n N时, xn (a
有 1, 2
x a
n a 1),
2
1 成立, 2
区间长度为1.
而x
无休止地反复取
n
1,
1两个数
,
不可能同时位于长度为1的区间内.
事实上,{ xn }是有界的, 但却发散.
3. 数列及其子数列的极限关系
设{an } 是一个数列. 正整数列 n1, n2 , n3 , 满足 n1 n2 n3 , 则称数列 {an1 , an2 , an3 ,} 是数列
n
xn 0.
lim
n
xn
a.
定理 1.3.5 (极限的四则运算) 设 {an },{bn } 是收敛
数列, 则 {an bn },{anbn } 也都是收敛数列,且
(1)
lim(
n
an
bn )
lim
n
an
lim
n
bn;
(2)
lnim(anbn )
(lim n
an
).(lim n
bn );
如果
hn2 ,
由此得 0 hn
2 , 即 0 n n 1
n1
2 n1
(n 1).

高中数学数列及其极限知识点总结及练习题

高中数学数列及其极限知识点总结及练习题

高中数学数列及其极限知识点总结及练习题中国魏晋时期的数学家刘徽创「割圆术」﹐利用圆的内接正多边形﹐当边数愈来愈多时﹐会愈靠近圆的面积﹐从而得出了圆周率 π 的近似值。

刘徽采用的「割圆术」﹐其程序蕴含了「无穷」﹑「极限」等数学概念。

例题1 ---------------------------------------------------------------------------------------------------------------- 写出下列各数列的前 8 项。

(1)〈3n -1〉。

(2)〈(-1)n 〉。

(3)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n ﹐n 为正整数且 n ≥2。

(4)〈a n 〉﹐其中 a n =20+21+…+2n -1﹐n 为正整数。

随堂练习 ------------------------------------------------------------------------------------------------------------ 写出下列各数列的前 6 项:(1)n 1。

(2)〈2n -1〉。

(3)()211nn -+。

(4)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n 2﹐n 为正整数且 n ≥2。

------------------------------------------------------------------------------------------------------------------------将下列各数列用〈a n 〉表示: (1)等差数列:7﹐10﹐13﹐16﹐…。

(2)等比数列:1﹐-12﹐14﹐-18﹐…。

(3)平方数的倒数所成的数列:11﹐14﹐19﹐…﹐1100。

随堂练习 ------------------------------------------------------------------------------------------------------------ 将下列各数列用〈a n 〉表示:(1)等差数列:7﹐10﹐13﹐16﹐…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
机动 目录 上页 下页 返回 结束
2. 设
证明下述数列有极限 .
证: 显然 xn xn 1 , 即
单调增, 又
(1
) 1
1 (1 a1 )(1 ak )
存在
“拆项相消” 法
机动 目录 上页 下页 返回 结束
k
机动 目录 上页 下页 返回 结束
例如
证明:数列
是发散的.
思考与练习
1. 如何判断极限不存在?
找两个收敛于不同极限的子数列.
作业 P30 3 (2) , (3) , 4 , 6
P56 4 (1) , (3) 4 (3) 提示:
可用数学归纳法证
第三节 目录
上页
下页
返回
结束
备用题
1 a 1.设 xn 1 ( xn ) ( n 1 , 2 , ) , 且 x1 0 , 2 xn a 0 , 求 lim xn . 利用极限存在准则
数列极限的运算(证略)
求下列极限
二、收敛数列的性质
1. 收敛数列的极限是唯一的 (证略)
机动
目录
上页
下页
返回
结束
2. 收敛数列一定有界. 证: 设 取
1 , 则 N , 当 n N 时, 有
xn a a 1 a
xn a 1, 从而有

M max x1 , x2 , , xN , 1 a xn M ( n 1 , 2 , ) .
n
1 a a 解: xn 1 (xn ) xn a 2 xn xn 1 a xn 1 1 a (1 2 ) ( 1 ) 1 2 a xn 2 xn
∴数列单调递减有下界, 设 故极限存在, lim xn A n 1 a A a 则由递推公式有 A ( A ) 2 A x1 0 , xn 0 , 故 lim xn a
第二节 数列的极限
一、数列极限的定义
第一章
二 、收敛数列的性质
三 、极限存在准则
机动
目录
上页
下页
返回
结束
一 、数列极限的定义
引例. 设有半径为 r 的圆 , 用其内接正 n 边形的面积 逼近圆面积 S . 如图所示 , 可知

n
r
当 n 无限增大时, 无限逼近 S (刘徽割圆术) ,

刘徽
目录
上页
n (1) n 1 xn 1 n
1 只要 n 即 0 , 欲使 1 因此 , 取 N [ ] , 则当 n N 时, 就有 n n (1) 1 n


n (1) n lim xn lim 1 n n n
机动 目录 上页 下页 返回 结束
下页
返回
结束
数列的定义
按照自然数大小的次序排列起来的一组无 穷多个实数称为数列 数列中的每一个数称为项,
数列也可以看作是定义在自然数集上的函数

例如

共同性质
(要多近有多近)
⑤、⑥ 无此性质

数列极限的定义



逻辑形式
若数列不收敛,则称该数列发散

例1. 已知
证明数列
的极限为1.
证:
机动
目录
上页
下页
返回
结束
子数列
4. 收敛数列的任一子数列收敛于同一极限 .
证: 设数列 若 是数列
的任一子数列 .
时, 有
则 0 , N , 当
现取正整数 K , 使
于是当 k K 时, 有
nk
N
从而有 x n a , 由此证明 lim x nk a . k
例3. 设 q 1 , 证明等比数列 的极限为 0 . 证:
xn 0
欲使 只要 即
ln .ห้องสมุดไป่ตู้亦即 n 1 ln q ln 因此 , 取 N 1 , 则当 n > N 时, 就有 ln q
q
n 1
0

n
lim q
n 1
0
证明

机动 目录 上页 下页 返回 结束

则有
由此证明收敛数列必有界.
说明: 此性质反过来不一定成立 . 例如, 数列 (1 ) n1 虽有界但不收敛 .
机动 目录 上页 下页 返回 结束


3. 收敛数列的保号性.
若 时, 有 且
( 0) ,
( 0) .
证: 对 a > 0 , 取
推论: 若数列从某项起
( 0)
( 0) . (用反证法证明)
相关文档
最新文档