银杏叶总黄酮提取工艺

合集下载

银杏叶中黄酮类化合物的提取和制剂工艺研究

银杏叶中黄酮类化合物的提取和制剂工艺研究

银杏叶中黄酮类化合物的提取和制剂工艺研究银杏叶是一种常见的中药材,具有多种药理作用,其中黄酮类化合物是其主要有效成分之一。

因此,提取和制剂工艺的研究对于银杏叶的开发和利用具有重要意义。

一、黄酮类化合物的提取工艺1.溶剂提取法溶剂提取法是目前应用最广泛的提取方法之一。

常用的溶剂有乙醇、乙醚、丙酮等。

其中,乙醇提取法是最为常用的一种方法。

其具体操作步骤为:将银杏叶粉末加入乙醇中,浸泡一定时间后,过滤得到提取液,再用旋转蒸发仪将溶剂蒸发,得到黄酮类化合物。

2.超声波提取法超声波提取法是一种新兴的提取方法,其优点是提取效率高、提取时间短、操作简便。

其具体操作步骤为:将银杏叶粉末加入水中,用超声波处理一定时间后,过滤得到提取液,再用旋转蒸发仪将溶剂蒸发,得到黄酮类化合物。

3.微波辅助提取法微波辅助提取法是一种快速高效的提取方法,其优点是提取效率高、提取时间短、操作简便。

其具体操作步骤为:将银杏叶粉末加入水中,用微波处理一定时间后,过滤得到提取液,再用旋转蒸发仪将溶剂蒸发,得到黄酮类化合物。

二、黄酮类化合物的制剂工艺1.胶囊剂胶囊剂是一种常见的制剂形式,其优点是服用方便、剂量准确、稳定性好。

其制剂工艺为:将黄酮类化合物与辅料混合均匀,填充进胶囊中,再进行封口,即可制成胶囊剂。

2.片剂片剂是一种常见的制剂形式,其优点是服用方便、剂量准确、稳定性好。

其制剂工艺为:将黄酮类化合物与辅料混合均匀,压制成片状,再进行包衣,即可制成片剂。

3.口服液口服液是一种常见的制剂形式,其优点是服用方便、剂量准确、吸收快。

其制剂工艺为:将黄酮类化合物与辅料混合均匀,加入适量的溶剂,搅拌均匀后进行过滤、灭菌,即可制成口服液。

总之,银杏叶中黄酮类化合物的提取和制剂工艺研究对于银杏叶的开发和利用具有重要意义。

在提取工艺方面,溶剂提取法、超声波提取法、微波辅助提取法等均有应用;在制剂工艺方面,胶囊剂、片剂、口服液等均是常见的制剂形式。

未来,随着科技的不断进步,银杏叶中黄酮类化合物的提取和制剂工艺也将不断完善,为人们的健康保驾护航。

银杏叶中黄酮类化合物的提取工艺研究

银杏叶中黄酮类化合物的提取工艺研究

验 " 研究了浸取温度 $ 乙醇含量和固液质量比对黄酮类化合物提取率的影响 % 结果显示温 度是影响提取率的主要因素 " 最佳工艺为浸取温度 K8 Q " 乙醇的体积分数为 F8X 和固液 质量比 >YF "银杏叶中黄酮类化合物的浸出率可达到 V!U%X % 关键词 银杏叶 & 黄酮类化合物 & 乙醇 & 提取 中图分类号 5Z!%DU![$ "5ZD#8U#[$ 文献标识码 L 文章编号 $88#9#K!VA!88#C8#988!J98%
图 % 固液质量比对银杏黄酮的影响
$"$ 正交试验
根据以上的单因素试验结果 " 采用正交试验法 " 以浸取温度 % 乙醇体积分数和固液质量比作为试验 的 0 个因素 "各设置 0 个水平试验 " 以确定银杏叶总 黄酮的最佳提取条件 ! 试验方法如下 $ 称取干燥粉碎 的银杏叶 $% / "用乙醇作溶剂进行浸取试验 "将浸取 液过滤 % 离心和浓缩定容 " 取 $ 12 按标准曲线的做 法于 *$% 51 处测定吸光度 " 计算浸取液中总黄酮含 量及浸出率 ! 正交试验结果及分析见表 $738! 正交实验结果以总黄酮浸出率为主要考察目标 " 浸出率越高越好! 从表中计算分析最佳条件为
!""# 年第 $% 卷第 # 期
!" !!!!!!" !"
化工生产与技术
&’()*+,- ./012+3*04 ,41 5(+’40-067
( ( !"
杏叶中黄酮类化合物的提取工艺研究
朱平华
!淮海工学院化工系 " 江苏 连云港 !!!88J#

银杏叶中黄酮类化合物的提取

银杏叶中黄酮类化合物的提取

银杏叶中黄酮类化合物的提取工艺
常规提取法的溶剂一般选用水,醇水溶液,酮 水溶液。醇酮对黄酮成分提取率相近,而水的提 取率比较低,考虑到提取物的收率,提取溶剂的 成本以及操作安全陛,使用乙醇水溶液比酮水溶 液和水更合适。
恒压滴液漏斗法
• • • •
• • • •
1、向恒压滴液漏斗中加入10克银杏叶粉末。 2、向烧瓶中加入200ml70%乙醇和适量沸石。 3、冷凝回流,水浴加热,进行连续萃取。 4、恒压滴液漏斗中的银杏叶粉末逐渐变白,烧瓶中的液 体变为绿色。 5、将萃取液进行减压蒸馏,得银杏浸膏粗产物,称重, 计算产率。 6、在500ml烧杯中,将银杏浸膏粗产物加250ml去离子水, 搅拌均匀。 7、再将此溶液转移至分液漏斗(大于350ml)中,分别用 60ml二氯甲烷萃取三次。合并萃取液。 8、用无水硫酸钠干燥。用旋转蒸发器蒸去二氯甲烷,蒸 馏剩余物为黄酮提取物。经干燥后称重,计算产率。
• 2-苯基色原酮分子结 构图
黄酮类化合物的六种结构式:
黄酮类化合物的理化性质
• 黄酮类化合物除少数游离外,大多与糖结合成苷。糖基多连在C8或C6 位置上,连接的糖有单糖(葡萄糖、半乳糖、鼠李糖等),双糖(槐 糖、龙胆二糖、芸香糖等)、叁糖(龙胆三糖、槐三糖等)与酰化糖 (2-乙酰葡萄糖、吗啡酰葡萄糖等) • 黄酮类化合物多为结晶性固体,少数为无定型粉末。 • 黄酮苷元一般难溶或不溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚 等有机溶剂,易溶于稀碱液。黄酮类化合物的羟基糖苷化后,水溶性 相应加大,而在有机溶剂中的溶解度相应减少。黄酮苷一般易溶于水、 甲醇、乙醇、乙酸乙酯、吡啶等溶剂,难溶于乙醚、三氯甲烷、苯等 有机溶剂。黄酮类化合物因分子中多有酚羟基而呈酸性,故可溶于碱 性水溶液、吡啶、甲酰胺及二甲基甲酰胺中。有些黄酮类化合物在紫 外光(254nm或365nm)下呈不同颜色的荧光,氨蒸汽或碳酸钠溶液处 理后荧光更为明显。多数黄酮类化合物可与铝盐、镁盐、铅盐或锆盐 生成有色的络合物。

银杏黄酮制备实验

银杏黄酮制备实验

实验四、银杏黄酮的提取与检测一、实验目的:1、了解黄酮类物质的分离提取和检测方法。

2、了解大孔吸附树脂的特性和在生化分离中的应用。

二、实验原理:1、提取原理溶剂加到原料中进行提取的过程中,由于扩散、渗透作用,逐渐通过细胞壁透入细胞中,溶剂进入细胞后溶解可溶性物质,造成了细胞内外浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入植物细胞中,可溶性成分不断被提取出来,如此多次反复,直到细胞内外浓度相等,达到动态平衡为止。

2、大孔吸附树脂纯化原理:大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型树脂,为用于固体萃取而设计。

是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。

大孔吸附树脂吸附能力高,易解吸,内部微孔即多又大,表面积也大,具有较多的活性中心,使离子、分子扩散速率增大,交换速度加快,在使用上可以缩短生产周期,提高效率,而且大孔吸附树脂可以进行再生重复使用,因此使生产成本大为降低,适于工业化生产。

3、银杏黄酮含量的分光光度法测定原理黄酮类化合物的测定使用较广泛的是络合—分光光度法,该法的基本原理是,黄酮类化合物分子结构中,凡在C 3或C 5位上有羟基,都会与铝盐形成有颜色的配位化合物,见图:O O OAl 2+O OOAl2黄酮和铝盐的络合物芦丁因此,银杏叶中的黄酮类化合物包括单黄酮、双黄酮和黄酮苷都能与铝盐形成络合物,比色测定结果是总黄酮含量。

硝酸铝络合分光光度法测定总黄酮的原理为:在中性或弱碱性及亚硝酸钠存在条件下,黄酮类化合物与铝盐生成螯和物,加入氢氧化钠溶液后显红橙色,在500波长处有吸收峰且符合定量分析的比尔定律,一般与芦丁标准系列比较定量.如果细说,硝酸铝显色法是先用亚硝酸钠还原黄酮,再加硝酸铝络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2’羟基查耳酮而显色.它的显色原理发生在黄酮醇类成分邻位无取代的邻二酚羟基部位,不具有邻位无取代邻二酚羟基的黄酮醇类成分加入上述试剂时是不显色的.三、仪器:电子天平(0.1mg )、紫外分光光度计、恒温水浴摇床、电热恒温水浴锅、索氏提取器、电热恒温干燥箱、微波炉、超声波破碎仪、超声波清洗机、旋转蒸发器、循环水式真空泵、布式漏斗、真空抽率瓶、真空泵。

花果山银杏叶中黄酮化合物的提取与测定

花果山银杏叶中黄酮化合物的提取与测定

花果山银杏叶中黄酮化合物的提取与测定引言银杏(Ginkgo biloba)是一种有着悠久历史的珍贵中药材,是我国特有的植物,广泛分布于我国的南北各地。

银杏叶的营养成分非常丰富,其中包含一系列的黄酮类化合物。

黄酮类化合物具有抗氧化、抗炎、抗肿瘤等多种保健作用,对人体健康非常有益。

本文的研究目的是提取花果山银杏叶中的黄酮化合物,并使用高效液相色谱法(HPLC)对其进行测定。

材料与方法实验材料•花果山银杏叶•甲醇•氯仿•石油醚•水•醋酸实验方法提取黄酮类化合物1.将花果山银杏叶晾干、研磨成细粉末,过筛备用2.将10克银杏叶粉末加入250毫升甲醇中,并放置在磁力搅拌器上,加热回流2小时。

过滤,收集过滤液。

3.用氯仿提取黄酮类化合物:将收集过滤液加入等体积的水中,加入等体积的氯仿,轻轻摇匀,放置 5min 后分层,收集上层的氯仿提取液,重复 3 次,合并氯仿提取液。

4.用石油醚洗涤:将氯仿提取液加入等体积的石油醚中,轻轻摇匀,放置 5min 后分层,收集上层的石油醚洗涤液,重复 3 次,合并石油醚洗涤液。

5.用醋酸洗涤:将石油醚洗涤液加入等量的冷醋酸中,放置 10min ,常规少量收集悬浊液,过滤,收集上清液。

6.用旋转浓缩仪将上清液旋干,得到提取物。

HPLC测定1.将提取物溶解于甲醇中,过滤,取液层。

2.取20微升溶液,注满进样器,进样,并进行分离检测。

使用AgilentZORBAX Eclipse Plus C18色谱柱,流动相为乙腈-0.1%醋酸水,梯度洗脱,检测波长设置为280nm,流速为1ml/min。

3.计算黄酮化合物的含量。

结果与分析通过上述实验方法,成功提取了花果山银杏叶中的黄酮类化合物,提取率为2.82%。

使用HPLC对提取物进行了测定,得到的结果如下表所示:序号黄酮化合物名称相对保留时间含量(mg/g)1 槲皮素0.38 4.952 云南柿皮素0.45 3.183 杨梅素0.51 2.794 紫草素0.63 1.535 芦丁0.83 4.026 视黄醇 1.05 0.48从上表可以看出,花果山银杏叶中含有多种黄酮类化合物,其中槲皮素和芦丁的含量较高,云南柿皮素、杨梅素和紫草素的含量较低,而视黄醇的含量非常少。

响应面分析法优化银杏叶黄酮类化合物的提取工艺

响应面分析法优化银杏叶黄酮类化合物的提取工艺

工艺技术响应面分析法优化银杏叶黄酮类化合物的提取工艺伦 琦,乔镜澄*,杨江南,刘海涛,武湘姝,文 文(天津天狮学院 食品工程学院,天津 301700)摘 要:以乙醇为浸提液,利用微波萃取辅助超声法提取银杏叶中总黄酮类化合物,通过单因素试验以及响应面试验设计优化提取工艺。

结果表明,黄酮类化合物的最佳提取条件为乙醇浓度63.15%、超声时间2.65 min、液料比116∶1(mL∶g)、微波时间3.83 min,该条件下银杏叶中黄酮化合物提取量为28.36 mg·g-1。

关键词:银杏叶;黄酮;响应面分析法;工艺优化Study on Optimization of Extraction Technology by Response Surface Methodology of Flavonoids from Ginkgo biloba leaves LUN Qi, QIAO Jingcheng*, YANG Jiangnan, LIU Haitao, WU Xiangshu, WEN Wen(Food Engineering Department Tianjin Tianshi College, Tianjin 301700, China) Abstract: The total flavonoids in Ginkgo biloba leaves were extracted by microwave extraction-assisted ultrasonication using ethanol as the extracting solution, and the extraction process was optimized by single-factor test and response surface test design. The results showed that the optimum extraction conditions for flavonoids were 63.15% ethanol concentration, 2.65 min ultrasonic time, 116∶1 (mL∶g) liquid-to-material ratio and 3.83 min microwave time, and the extraction amount of flavonoids in Ginkgo biloba leaves was 28.36 mg·g-1 under these conditions.Keywords:Ginkgo Biloba leaves; flavonoid; response surface methodology; optimization银杏叶提取物复杂的化学成分中主要起药理活性作用的是黄酮类物质,其黄酮种类多达40种。

银杏叶中总黄酮提取工艺研究

银杏叶中总黄酮提取工艺研究
长。
0. O・
宋 0 . 督
Ot
2 12 标 准 曲 线 的 绘 制 分 别 配 制 6种 芦 丁 标 ..
0.
准溶 液 于 5 0 n 波 长 下 测定 吸 光 度 , 1 m 乙醇 的体 积分 数为 6 的试 剂为空 白参 比液 , 验 数据 见 0 试
表 2 。
分 析纯 。
1 2 试 验 方 法 .
大, 而水 又将 降低水 提 液表 面 张力 , 摇 后产 生持 振
久性 泡沫 而影 响 分离 , 们 则 采用 不 同浓 度 的 乙 我
主要有 :
12 1 总黄 酮含 量 的测 定 . .
醇 水 溶 液 提 取 所 测 样 品 中 的 银 杏 叶 黄 酮 。 根 据 银 杏 叶 中 主 要 活 性 成 分 黄 酮 的 特 性 , 照 药 舆 原 有 依 的 提 取 方 法 , 用 加 热 回 流 提 取 , 单 因 素 试 验 的 采 在 基础 上 , 出 影 响 因素 主要 有 : 醇 的体 积 分数 、 得 乙 温 度 、 液 质 量 浓 度 、 取 时 问 。 采 用 I ( 正 料 提 3) 交 表 优 化 提 取 条 件 , 点 考 察 上述 四个 素 , 总 重 以
仪 器 :2 7 1型 分 光 光 度 计 、 氏 提 取 器 、 分 索 万
之 一 电子天 平 。
1 2 2 试验 设计 黄 酮类 化合 物 的提取 、 离通 .. 分
常 以 甲醇 或 水 为 主 要 提 取 剂 , 由 于 甲 醇 其 毒 性 但
芦 丁标 准 品 : 化试剂 , 海试剂 二 厂 ; 生 上 乙醇 :
酮 含量 。
银 杏 叶 : 0 9年 9月 采 于 陕 西 杨 凌 , 龄 为 20 树 l , 0a 每次采 收 的银 杏叶 都及 时放 人 6 一7 O O℃ 的 干 燥箱 中 干燥 2 , 粉 碎 装 人 广 口瓶 , 处 保 4h 经 暗 存, 供提 取 、 测定 黄酮 用 。 ,

银杏叶提取黄酮及分离纯化

银杏叶提取黄酮及分离纯化

银杏叶提取黄酮及分离纯化组员:李佳辉、黄埔、赵超武一、实验目的1.掌握传统的溶剂提取法并对银杏中的黄酮进行提取2.掌握紫外分光光度计的应用,以及相关溶液的配置3.学会自主设计实验,培养团队合作精神二、实验原理⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用;⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm;⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因为黄酮类化合物可以与铝盐发生络合显色反应。

其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。

先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。

显色原理发生在黄酮醇类邻位无取代的邻二酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。

(如二氢黄酮类化合物就不发生该显色反应)目前银杏叶黄酮的提取方法主要有:溶剂提取法、超临界流体萃取法(SFE法)、高速逆流色谱技术提取法(HSCCC)微波提取法、超色波提取法、酶提取法、分子烙印技术。

因溶剂提取法操作简单,所需试剂廉价易得,故通常使用此法来进行大规模生产。

其工艺流程如下:银杏叶—→粉碎—→NaOH-60%乙醇回流提取—→离心—→过滤—→滤液收集—→二次醇提—→合并两次滤液—→树脂吸附—→脱吸—→浓缩—→干燥—→提取物由于银杏叶黄酮中的类黄酮主要为芦丁,故用芦丁为对照物绘制标准曲线,并采用分光光度法进行测定。

三.实验材料及器材1.材料酸银杏叶、芦丁、亚硝酸钠、硝酸铝、氢氧化钠、95%乙醇、磷酸氢二钠、磷二氢钠、D101大孔吸附树脂、盐酸2.相关溶液的配制和树脂预处理0.20mg/mL芦丁标准溶液(500mL)、5%NaNO2(500mL)、10%AI(NO3)3(500mL)、1mol/LNaOH 、0.4mol/LNaOH(500mL)、0.4mol /L HCl(500mL)、30%乙醇(500mL)30%乙醇(1)D101树脂预处理(500g):商品树脂均残留惰性溶剂,故使用前根据应用需要,必须进行不同深度的预处理,在提取器内,加入高于树脂层10-20厘米的乙醇浸泡3—4小时,然后放净洗涤液,为一次提取过程。

银杏叶黄酮提取工艺

银杏叶黄酮提取工艺

银杏叶黄酮提取工艺银杏叶黄酮是一种重要的药用成分,具有抗氧化、抗炎、抗肿瘤等多种药理活性。

因此,研究银杏叶黄酮的提取工艺对于开发和利用银杏资源具有重要意义。

本文将介绍银杏叶黄酮提取的工艺流程和相关技术。

1. 银杏叶的采集和处理银杏叶的采集通常在秋季进行,选取成熟的银杏叶进行采集,并尽快进行初步处理。

采集后的银杏叶需要进行清洗、晾干等处理,以保证叶片的质量和干燥度。

2. 银杏叶的粉碎经过初步处理的银杏叶需要进行粉碎,通常采用机械破碎或者超声波破碎等方法。

粉碎后的银杏叶可以增加提取效率,并便于后续的提取工艺。

3. 银杏叶黄酮的提取银杏叶黄酮的提取通常采用溶剂提取法。

常用的溶剂包括乙醇、甲醇等。

提取过程中,可以根据需要进行多次提取,以提高提取率。

提取时间、温度、溶剂比例等因素也会对提取效果产生影响,需要根据实际情况进行优化。

4. 提取液的浓缩和纯化提取得到的液体需要进行浓缩和纯化。

常用的方法有真空浓缩、冷冻浓缩等。

浓缩后的提取液可以进行纯化,常用的纯化方法包括萃取、分离、结晶等。

通过浓缩和纯化,可以得到相对纯净的银杏叶黄酮。

5. 银杏叶黄酮的检测和分析提取得到的银杏叶黄酮需要进行检测和分析,以确定其含量和质量。

常用的检测方法包括高效液相色谱法(HPLC)、气相色谱法等。

通过检测和分析,可以评估提取工艺的效果,并确定最佳的提取条件。

6. 银杏叶黄酮的应用银杏叶黄酮具有广泛的应用价值,在医药、保健品、化妆品等领域都有重要的应用。

例如,银杏叶黄酮可以用于制备抗氧化剂、抗炎剂、抗肿瘤药物等。

同时,银杏叶黄酮还可以用于制备美容产品、保健品等。

银杏叶黄酮的提取工艺是一个复杂的过程,需要考虑多个因素的影响。

通过合理的工艺流程和技术手段,可以提高银杏叶黄酮的提取效率和质量,为其应用提供有力支持。

未来,还需要进一步研究和改进提取工艺,以满足不同领域对银杏叶黄酮的需求,并推动其在医药和化工等领域的广泛应用。

一种超声波辅助提取银杏叶中总黄酮的方法

一种超声波辅助提取银杏叶中总黄酮的方法

一种超声波辅助提取银杏叶中总黄酮的方法
超声波辅助提取银杏叶中总黄酮的方法是一种利用超声波引起的
物理和化学效应来增强提取过程的方法。

具体步骤如下:
1. 准备银杏叶样品:将银杏叶研磨成粉末状样品,确保样品颗
粒度均匀。

2. 制备提取溶剂:选择适合提取黄酮类化合物的溶剂,常用的
有乙醇、甲醇、乙酸乙酯等。

根据需要还可以加入一些助溶剂,如水、酸或碱溶液。

3. 超声波提取:将银杏叶粉末样品与提取溶剂放入超声波提取
装置中,设定适当的超声波功率和提取时间。

超声波的高频振动会引
起样品中的微小气泡破裂和液流剧烈换向,从而增加溶剂与样品的接
触面积和质量传递速率。

4. 过滤和浓缩:用滤纸或滤芯将提取液中的固体微粒进行过滤,得到无固体颗粒的提取液。

然后使用浓缩设备,如旋转蒸发器或减压
浓缩仪,将提取液浓缩至一定体积。

5. 分离和纯化:可以通过液液抽提、源于固相萃取或使用柱层
析等方法对提取液进行进一步的分离和纯化,以得到含有较高浓度总
黄酮的样品。

使用超声波辅助提取方法可以大大缩短提取时间,提高提取效率,并且可以减少溶剂用量。

超声波还能够改变细胞壁结构,促进黄酮的
释放和溶解,从而增强提取效果。

生物制药综合实验讲义

生物制药综合实验讲义

实验一银杏叶总黄酮的提取及测定1 实验目的(1)掌握银杏叶中黄酮的提取方法;(2)掌握银杏叶中黄酮的含量测定。

2 实验原理近几年来,随着对黄酮类化合物研究的日益深入与重视,黄酮类化合物提取技术的发展也得到了促进。

目前提取黄酮类化合物的方法主要包括有机溶剂浸提法、超声波提取法、超临界流体萃取法、微波提取法和酶提取法等。

本实验采用有机溶剂浸提法提取银杏叶总黄酮,运用芦丁法测定银杏叶总黄酮含量。

3 实验材料、试剂和主要仪器3.1 实验材料与试剂银杏叶,芦丁标准品,无水乙醇,NaNO2,Al(NO3)3,NaOH。

3.2主要仪器移液枪,圆底烧瓶,水浴锅,旋转蒸发仪,布氏漏斗,容量瓶,10 ml刻度管,酶标仪。

4 实验步骤4.1银杏叶黄酮的提取称量2 g银杏叶放入圆底烧瓶中,加入100 ml 80%乙醇于圆底烧瓶中,于80℃下热回流提取2h,用漏斗过滤,弃渣留滤液,滤液用旋转蒸发仪浓缩并转入100 ml容量瓶中,用30%的乙醇定容,摇匀,供检测使用。

4.2芦丁标准曲线的绘制用80%乙醇配制0.03%(0.3 mg/ml)的芦丁标准储备液。

分别吸取刚配制好的芦丁标液0.0,15.6,31.3,62.5,125,250,500 μl置于7个1.5 ml EP管中,用80%的乙醇补足至0.5 ml,依次编号0~6,加入30 μl NaNO2(5%),摇匀静置6 min后加入30 μl A1(NO3)3 (10%),摇匀静置6 min后再加入400 μl NaOH (4%),混匀,用80%乙醇补至1 ml,静置l5~20 min,以0号试管为空白,用酶标仪在510 nm波长处测定吸光度,以吸光度(A)为横坐标,芦丁浓度(μg/ml)为纵坐标,绘制标准曲线。

4.3总黄酮含量的测定做2个样,取适量提取液置于1.5 ml EP管中,用80%乙醇补充至0.5 ml,加入30 μl NaNO2(5%),摇匀静置6 min后加入30 μl A1(NO3)3(10%),摇匀静置6 min后再加入400 μl NaOH(4%),混匀,用80%乙醇补至1 ml,静置l5~20 min,以0号试管为空白,用酶标仪在510 nm波长处测定吸光度。

银杏黄酮类化合物的提取

银杏黄酮类化合物的提取

黄酮类化合物的提取1.丙酮工艺法银杏叶——提取——过滤——萃取——丙酮相——减压蒸馏——减压干燥——残渣——粉碎——制品将干燥并粗粉碎的绿银杏叶50KG放入提取容器中,用250L60%的丙酮水溶液在约55℃处理5小时左右,然后冷却混合物,压滤,滤液用CCL4萃取3次,每次用30L CCL4,丙酮相在减压条件下馏出丙酮,残液在约50℃条件下减压干燥,粉碎所得残渣即为银杏叶提取物约7~8KG。

2.酮类提取——Pb(OH)2沉淀法银杏叶——提取——滤液——萃取——酮相——萃取——酮相——过滤——滤液——减压干燥——浓缩液——乙醇溶液——沉淀——过滤——滤液——减压浓缩——萃取——有机相——干燥——溶解——放置——过滤——滤液——减压干燥——残渣——粉碎——成品取100KG干燥的粗碎过的绿银杏叶,在约55℃用380L60%丙酮在旋转式提取容器中提取5小时,然后冷却压滤,用50L、40L、30L的CCL4分3次萃取滤液,分相后,在丙酮-水相中溶解35KG(NH4)2SO4,然后加入35L丁酮,仔细混匀后分离析出丙酮-丁酮相,在酮相中再加入26KG固体(NH4)2SO4搅拌,过滤出固体物质后,减压蒸发,所得浓缩液用50%的变性乙醇稀释至10%的浓度。

所得变性乙醇稀释液在搅拌与氮清洗的条件下,与10L Pb(OH)2悬浮液相混合,生成淡褐色沉淀,分离出沉淀后减压浓缩滤液至一半体积,再在搅拌下与10KG (NH4)2SO4,和10L丁酮混合,在搅拌结束后分析出丁酮-乙醇相,从水相中分离出有机相,水相中再加入8L丁酮搅拌,析出的丁酮-乙醇相与前面的有机相合并,浓缩后加入4KG(NH4)2SO4,分离析出的水相,用0.8KG硫酸钠干燥有机相,在减压下蒸发至干。

接着用15L变性乙醇溶解黏稠的残渣,放置12小时后分离析出的沉淀,将滤液在50℃减压蒸干,粉碎后可得1.2KG制品。

3.酮类提取——硅藻土过滤法银杏叶——提取——过滤——滤液——悬浮液——减压浓缩——过滤——滤液——萃取——酮相——干燥——过滤——减压浓缩——制品将10KG银杏叶置于提取器中,加入60L65%的丙酮,在60℃搅拌处理4.5小时,冷却悬浮液至25℃,在二段过滤器上过滤,压榨滤饼,除去溶剂,用10L新配丙酮洗涤固形物。

碱溶酸沉法提取银杏叶总黄酮

碱溶酸沉法提取银杏叶总黄酮
摘要 [ 目的]研 究银 杏叶 总黄 酮的碱溶 酸沉法提取 。[ 方法 ]采用碱溶 酸沉 法 , 对影 响银 杏叶 总黄酮提 取的 p H值 、 固液比 、 提取 温度 和提取 时间等 因素进行 系统研 究。[ 结果 ] 杏叶 总黄 酮碱 溶酸 沉法的 最佳提 取工 艺条件 为 : 5℃ 时用 4 倍量 p 银 9 J D H值 为 1. 0O的 N O aH 溶液 处理 6 i, 沉 p 0rn酸 a H值 35提 取 2次。[ ., 结论 ]在 最佳提 取 工艺条件 下, 杏叶 总黄 酮的提取 率达 到 8 .% 。 银 64
安徽 农 业 科 学 。 u a o An u A r c.0 8 3 2 ) 13 6—138 J r l f hi gi i2 0 。6(6 :18 on .S 18
责任编辑
张彩丽
责任 校 对
傅 真 治
碱 刘 金香, , 青生 南 大 食 科 教 部 点 验 ,德 合 究 ,西 昌34 王水 范 (昌 学 品 学 育 重 实 室中 联 研 院江 南 30) 07
L U i xa ge I Jn-in t l a
( yL b rtr f o dSin e Ke a oaoyo o cec ,Miit f d c tn, nh n nvri , ieG r nJit eerhIs tt, F ns yo u ai Na ca gU iest Sn - ema on sac ntue r E o y R i
N nh n ,J nx 3 0 7) a ca g i gi 0 4 a 3
Abta t f i t e h ee rhame os d h xrcin o aa Gn g i b ao od yak l.0uin ad ai i lt n sr c e i T ersac i dt t y tee t t fttl ik o b oa f vn isb lai8lt n c s ai . 0b c v 1 u a o l l o d— o o 『 to ]T eefciefcoso h xrcino tl . i b a o od yakl- lt nadai i l in p a e oi4q i rt , Me d h f t atr nteet t faa bl af v nis lai oui n c s a o , H vl ,sl iud ai h e v a o t G o l b s o d-o t u d o tmprtr .et ci i r tde 『 eut h pi u xrcinpo eso eetat no tl . i b aood ya aiS. e eaue xr t nt weesu i a o me d. R sl ]T eo t m et t rcs fh xrci faa bl af v nis l l. m a o t o t G o l b k O

银杏叶中黄酮类化合物的提取

银杏叶中黄酮类化合物的提取

随着时间的↑ 随着时间的↑黄 酮类化合物提取 4h之前 率↑ ,4h之前 时间↑ 时间↑提取率的 影响比较明显, 影响比较明显, 4h之后时间的 之后时间的↑ 4h之后时间的↑ 提取率增加变缓。 提取率增加变缓。
实验条件:温度 ℃ 浸取剂70%乙醇溶液 ;料液比 实验条件:温度80℃ ;浸取剂 乙醇溶液 料液比1:15
提取率 ( % ) 提取率(
三 、实验结果及讨论
料液比对提取率的影响:
90 85 80 75 70 65 1:10 1:15 1:20 1:25 1:40
↑ 1:15
料液比
随着料液比↑提取 随着料液比 提取 率也随之↑。 率也随之 。在 1:15之前,对提 之前, 之前 取率的影响比较 明显, 明显,在1:15之 之 后,对提取率影 响变小。 响变小。
芦丁的化学结构式
二、研究内容
测量波长的选取: 测量波长的选取:
1.5 1.2
0.9 0.6 0.3 0 400 450 500 550 600
500nm ↓
波长( nm) 波长 ( nm )
根据吸收光谱可 知,该有色溶液在波 nm具有最大吸 长500 nm具有最大吸 光度, 光度,且吸收范围较 宽,所以选择吸收波 nm作为定量测 长500 nm作为定量测 定波长。 定波长。
80 70 60 50 40 50 60 70
↑ 80℃ ℃
80
90
100
温度( 温度 ( ℃ )
浸取温度的↑ 浸取温度的↑提 取率液随着↑ 取率液随着↑ 。 80℃之前提取率 ℃ 增加迅速, ℃ 增加迅速,80℃ 之后, 之后,温度对提 取率的影响变小。 取率的影响变小。
实验条件:时间 浸取剂70%乙醇溶液 ;料液比 实验条件:时间4 h ;浸取剂 乙醇溶液 料液比1:15

银杏叶总黄酮提取工艺研究进展及应用

银杏叶总黄酮提取工艺研究进展及应用

银杏叶总黄酮提取工艺研究进展及应用摘要:本论文综述了银杏叶中总黄酮的提取方法,包括溶剂萃取法、超声辅助酶法、超临界二氧化碳萃取法等,在此基础上提出低共熔溶剂对银杏叶总黄酮的提取并进行了展望,以期为低共熔溶剂的提取提供借鉴和参考。

银杏(Ginkgo biloba L)为银杏科银杏属植物,据记载银杏叶的医药价值自宋朝起就得到重视,《日用本草》、《本草纲目》、《本草品汇精要》等书籍均对银杏叶的医药价值有所记载,其资源分布广泛,中国为银杏资源分布大国,占世界比重达到85%,其主要分布在中国贵州、四川、江苏等省区。

银杏叶含有丰富的类黄酮、乙二醇、多糖等活性物质,可用于食品、医药、生物农药等领域;具有抗菌、消炎功效,是生产生物农药的良好原料[1]。

1 银杏叶总黄酮传统提取工艺1.1 溶剂萃取法溶剂萃取法是较为常见的一种提取方法,以乙醇、甲醇等有机溶剂为萃取溶剂,从植物中提取总黄酮。

其基本原理是根据不同的黄酮的极性,选用不同的有机溶剂进行萃取。

溶剂萃取法相较于其他提取方法更为简单简便,但也具有易挥发,操作不当会发生爆炸等安全问题的缺点[2]。

徐桂花等[3]选择银杏叶作为研究对象,通过对其最佳提取工艺的的研究,当采用溶剂萃取法提取银杏叶总黄酮时的提取条件为液料比为40:1(mL/g),乙酵体积分数为75%,于70℃下提取4h,此时总黄酮得率达1.084%。

1.2 超声辅助酶法在提取前先对银杏叶粉末用酶进行预处理,达到一种破除细胞壁加速黄酮释放的作用,再利用超声波的强震、强速度、强的超声波空化作用,使天然产物的细胞壁受到强烈的损伤,从而促进了黄酮的释放,促进药物的渗透速度,缩短了提取时间,增加了有效成分的利用率。

通过对超声波提取方法的研究,证明该方法的最佳超声时间为20分钟,可以避免由于长时间的超声波作用而引起的活性物质的分解,以及由于时间的推移引起的杂质的增多,从而降低了能量消耗,从而达到节能、省时、高效的目的[4]。

银杏叶中总黄酮的提取工艺研究

银杏叶中总黄酮的提取工艺研究

银杏叶中总黄酮的提取工艺研究银杏叶是一种常见的中药材,具有多种药理作用,其中总黄酮是其主要有效成分之一。

因此,提取银杏叶中的总黄酮具有重要的研究价值和应用前景。

本文将介绍银杏叶中总黄酮的提取工艺研究。

一、总黄酮的提取方法目前,常用的总黄酮提取方法主要有超声波法、微波法、超临界萃取法、水提法、乙醇提法等。

其中,乙醇提法是最常用的方法之一,其操作简单、成本低廉、提取效果较好。

二、提取工艺的优化1.提取溶剂的选择乙醇浓度是影响提取效果的重要因素之一。

一般来说,乙醇浓度越高,提取效果越好。

但是,过高的乙醇浓度会导致提取物中杂质含量增加,从而影响提取效果。

因此,需要在提取溶剂的选择上进行优化。

2.提取时间的控制提取时间是影响提取效果的另一个重要因素。

一般来说,提取时间越长,提取效果越好。

但是,过长的提取时间会导致提取物中杂质含量增加,从而影响提取效果。

因此,需要在提取时间的控制上进行优化。

3.提取温度的控制提取温度是影响提取效果的另一个重要因素。

一般来说,提取温度越高,提取效果越好。

但是,过高的提取温度会导致提取物中杂质含量增加,从而影响提取效果。

因此,需要在提取温度的控制上进行优化。

三、总结总黄酮是银杏叶中的主要有效成分之一,其提取工艺的优化对于提高提取效果具有重要的意义。

在提取工艺的优化过程中,需要选择合适的提取溶剂、控制提取时间和提取温度,以达到最佳的提取效果。

未来,还需要进一步深入研究银杏叶中总黄酮的提取工艺,以提高其应用价值。

银杏叶中总黄酮的提取

银杏叶中总黄酮的提取

银杏叶中总黄酮的提取
1 银杏叶中总黄酮的提取
银杏叶是以银杏树(Ginkgo biloba L.)叶片为原料,是世界上著名的汉药,具有活血、散瘀、抗氧化和神经保护等功效。

其中,总黄酮是其最重要的活性成分之一,具有明显的保护神经及消除氧自由基的功效。

因此,总黄酮的提取技术对于银杏叶药材活性成分的研究具有重要意义。

2 材料与方法
银杏叶样品(湖南洞庭湖产)500克,70%乙醇(200mL),6次甲醇-水混合溶剂,1次甲醇提取。

多相混合物高效液相色谱法,仪器模式为Agilent1220树脂柱(AgilentC18(250mm×4.6mm,5μm)),流动相为缓冲溶液:锂溶液50mmol/L,流速A=0.2mL/min,B=0.2mL/min;从低比重A=0%,到高比重B=25%,线性升温时间15min。

常规参数为254nm检测器,测定波长320nm处的量值;样品灌注量20μL。

3 结果
提取中,银杏叶中总黄酮的提取量为2.37g,其含量约为0.47%。

除此之外,还检测到银杏叶中其他成分,其中主要成分为黄酮类化合物RG3、G4。

4 结论
通过对银杏叶中总黄酮的提取,证明了多相混合物高效液相色谱法是一个实用的提取技术,能够在银杏叶中有效提取总黄酮。

这种技术无论在提取效率,还是提取纯度方面,都获得较高的效果。

银杏叶中黄酮的提取原理及方法

银杏叶中黄酮的提取原理及方法

银杏叶中黄酮的提取原理及方法SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#银杏叶中黄酮提取及含量测定一、实验目的提取银杏叶中的总黄酮并测定其含量。

二、实验原理银杏系银杏科银杏属落叶乔木,银杏叶中含有多种生理活性成分,其中黄酮类化合物是重要的生理活性物质,具有保肝护肝、预防治疗心血管疾病、抗氧化、抗衰老等作用。

因此,将银杏叶作为高营养、保健功能价值的资源加以开发利用,这对于提高银杏叶综合利用率有重要意义。

银杏叶黄酮类化合物的提取方法目前研究的有水浸取法,成本低但浸取率低;有机溶剂浸取法中,乙醇浸取的效率高且无毒,是目前采用较多的方法;韩玉谦等采用超临界流体萃取法,在70%乙醇溶液中加热回流法和 CO2 超临界流体萃取法提取银杏叶中的活性成分,银杏黄酮回收率为84 . 4 % ,是常规萃取法回收率的2倍多;乙醇超声波浸取法, 黄酮提取率可达到 8 6 . 7 %。

银杏黄酮含量的测定常用分光光度法和高效液相色谱法。

分光光度法自20世纪 9 0年代以来一直是用来测定银杏黄酮的一种重要方法, 由于其成本低、便于操作等特点, 是一种快捷有效的方法[1]。

本实验采用乙醇作溶剂进行索氏提取,建立了用Al(NO3)3显色法对芦丁标准品和银杏叶提取液进行光谱扫描测定银杏叶总黄酮含量的方法[2]。

三、实验仪器和试剂材料:银杏叶粉末50g试剂:标准芦丁样品,无水乙醇(600ml),50mlAl(NO3)3(L),乙醚,5%NaNO2溶液,10%AL(NO3)3,4%NaOH溶液。

仪器:紫外分光光度计、电子分析天平、水浴锅、烘箱、烧杯、容量瓶(100ml1个、50ml1个、10ml6个)、索氏提取器、减压蒸馏装置、锥形瓶、沸石等。

四、实验步骤提取银杏叶中总黄酮(1)将银杏叶洗净, 在103℃下烘干至恒重,用研钵捣碎制得银杏叶粉(2)准确称取,置于索氏提取器中,按下列条件加热回流提取:乙醇浓度80%,料液比1:20(g/ml),回流温度85℃,回流时间2 h,平行进行1~3次实验。

银杏叶中黄酮类化合物的提取

银杏叶中黄酮类化合物的提取

银杏叶中黄酮类化合物的提取,一般采用以下方法:
乙醇提取法:将银杏叶粉末与乙醇混合,浸泡一段时间,然后进行加热提取。

提取后的溶液经过过滤、浓缩、结晶等步骤,可以得到黄酮类化合物。

超临界流体提取法:将银杏叶粉末与超临界二氧化碳混合,进行提取。

该方法操作简便、效率高,可以得到高纯度的黄酮类化合物。

水提取法:将银杏叶粉末与水混合,加热提取,再通过蒸发浓缩、冷却结晶等步骤,可以得到黄酮类化合物。

超声波提取法:将银杏叶粉末与溶剂混合,在超声波作用下进行提取。

该方法操作简便、时间短,但需要注意超声波的功率和时间,以避免对黄酮类化合物的破坏。

以上几种方法各有优缺点,具体选择哪种方法应根据实际情况进行选择。

同时,提取过程中应注意控制温度、pH值等因素,以保证黄酮类化合物的稳定性和纯度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[收稿日期] 2011- 12- 22
[基金项目] 济南市科技局高校院所自主创新计划项目(编号: 201004032)
[通 讯 作 者 ] 李 峰 (1957- ),男 ,山 东 安 丘 人 ,教 授 ,博 士 研 究 生 导 师,研究方向:中药质量控制研究,E- mail:ly0123@hotmail.com。
水平
1 2 3
表1 溶剂浓度 A
(%) 60 70 80
正交试验考察因素表
料液比 B
提取时间 C (t/h)
提取次数 D
1∶40
1
1
1∶50
2
2
1∶60
3
3
360 nm;进样量:20 μL;用高效液相色谱 法 测 定 ,以 甲醇 - 0.2%磷酸(52∶48,V/V)为流动相,在 360 nm 处 进 行 测 定 [7],以 槲 皮 素 的 塔 板 理 论 数 不 少 于 2 500, 测定总黄酮的含量。
第 36 卷 第 5 期 201220年12 9年月9 月
山东中医药大学学报
JOURNAL OF SHANDONG UNIVERSITY OF TCM
Vol.36,No.5 第 36 S卷ep第.2051期2
银杏叶总黄酮提取工艺研究
王 心 1,李 峰 2
(1.山东中医药大学 2009 年级硕士研究生,山东 济南 250355; 2.山东中医药大学药学院,山东 济南 250355)
[摘要] 目的:筛选银杏叶总黄酮最佳提取工艺,以银杏叶总黄酮的提取率为指标进行研究。 方法:运用正交设
计法,系统考察料液比、乙醇浓度、提取次数和提取时间 4 个因素对银杏叶总黄酮提取工艺的影响,并用高效液相
法 (HPLC)测定银杏叶总黄酮的含量。 结果:以乙醇浓度 80%,料液比 1∶50,提取 1 次,每次提取 1 h 为最佳提取条件。
峰 面 积 (A)
1600000 1400000 1200000 1000000 800000 600000 400000 200000
0
0
0.1
0.2
0.3 0.4
浓 度 (ρ/μg·mL-1)
449
2012 年 9 月
山东中医药大学学报
第 36 卷第 5 期
素 回 归 方 程 为 A=3×106C- 98967(r=0.9993);异 鼠 李素回归方程为 A=2×106C- 52648(r=0.9996)。 在 0.06~0.36 mg 范围内,槲皮素、山柰素、异鼠李素的 线性关系良好。 见图 1~3。
总黄酮醇苷含量 =(槲皮素 + 山柰素 + 异鼠李 素)×2.51 2.3 溶液的制备 2.3.1 银杏叶提取物的制备 将采摘的新鲜银杏叶 自然晾干,粉碎后过 40 目筛。 取银杏叶粉末 10 g 置 于 1 000 mL 圆底烧瓶中,加不同浓度乙醇加热回流 提取,过滤。 滤液浓缩,回收乙醇至无醇味,减压干 燥,即得。 2.3.2 供试品溶液的制备 将干燥后所得的粉末, 精密称取 35 mg,加甲醇 - 25%盐酸(4∶1)的混合溶液 25 mL,至水浴中恒温加热回流 30 min,迅速冷却至 室温,转移至 50 mL 容量瓶中,用甲醇稀释至刻度, 摇匀,用微孔滤膜滤过,取续滤液,即得。 2.3.3 对照品溶液的制备 精密称取槲皮素 1.65 mg、 山柰素 1.57 mg、异鼠李素 1.18 mg,置于 50 mL 容量 瓶中,加入甲醇定容至刻度,摇匀,得浓度为每 1 mL 中含有 30,30,20 μg 的标准储备液。 2.4 标准曲线的 制备 精密吸取对照品溶液 100, 200,400,500,600 μL 分 别 置 于 编 号 1、2、3、4、5 号 的 1 mL 容量瓶中,加甲醇稀释至刻度,摇匀。 以满 样进量法精密吸取 20 μL 进样,在波长 360 nm 处测 定峰面积。 以浓度为横坐标,峰面积为纵坐标,得槲 皮 素 回 归 方 程 :A=4×106C- 90933(r=0.9996);山 柰
结论:该方法操作简便,结果准确可靠,成本低,毒性小,适用于工业化生产。
[关键词] 银杏叶;总黄酮;正交设计;高效液相色谱法
[中图分类号] R284.2
[文献标识码] A
[文章编号] 1007- 659X( Nhomakorabea012)05- 0449- 03
银杏叶(Ginkgo biloba L.)为银杏叶科银杏叶属 植物银杏干燥的叶。 其主要成分为银杏酸、银杏内 酯 和 黄 酮 类 等 化 合 物 ,其 中 总 黄 酮 的 含 量 最 高 [1-3]。 银杏叶中黄酮类化合物具有保护血管、防止动脉硬 化、扩张毛细血管、活化大脑等功能,用于治疗心绞 痛、冠心病、高血压、支气管等疾病。 此外,在食品工 业上也应用广泛,可用作抗氧化剂、天然添加剂和功 能性食品的原料。 其提取方法常见报道,本实验经 参 考 相 关 文 献 [4-6],采 用 乙 醇 为 溶 剂 ,通 过 正 交 设 计 方法,考察提取物中总黄酮的含量,以确定银杏叶的 最佳提取工艺,为含有银杏叶提取物的饲料添加剂 建立相应质量标准提供可靠依据。 1 仪器与试剂 1.1 仪器 旋转蒸发器 RE- 52AA,SHZ- D(Ⅲ)循环 水式真空泵,电子天平 FA2004,电热恒温水浴锅,超 声 波 清 洗 器 KQ2200 , 减 压 干 燥 器 ,HSⅢ- 日 立 L- 2000 高效液相色谱仪,抽滤装置,万能粉碎机等。 1.2 试剂 银杏叶,槲皮素、山柰素、异鼠李素标准 品(中国食品药品检定研究院),无水乙醇(分析纯)、 甲醇(色谱纯、分析纯),磷酸水溶液,纯净水。 2 研究方法 2.1 研究因素及方案 参考相关文献研究结果,确 定了影响总黄酮提取率的 4 个考察因素,分别为溶 剂浓度 A、料液比 B、提取时间 C、提取次数 D,正 交试验考察因素见表 1。 考虑各种影响因素,选择 L9(34)的正交试验方案。 2.2 色 谱 及 检 测 条 件 色 谱 柱 :Agilent ZORBAX SB- C18;(4.6 mm×250 mm,5 μm);流动相:甲醇 - 0.2% 磷 酸 (52/48,V/V); 流 速 :1.0 mL·min-1; 检 测 波 长 :
相关文档
最新文档