第5章高频局部放电检测技术(DOC)
GIS局部放电超高频检测技术(四川电科院丁登伟)
局放特高频检测的测试注意事项
1. 特高频局放检测仪适用于检测盆式绝缘子为非屏蔽状态的GIS 设备,若GIS的盆式绝缘子为屏蔽状态则无法检测;
2. 检测中应将同轴电缆完全展开,避免同轴电缆外皮受到刮蹭 损伤;
3. 传感器应与盆式绝缘子紧密接触,且应放置于两根禁锢盆式 绝缘子螺栓的中间,以减少螺栓对内部电磁波的屏蔽及传感 器与螺栓产生的外部静电干扰;
3.当该间隔检测出异常信号时,可检测该间隔相邻间隔的 信号。看是否也存在相近的异常信号,若没有异常信号存 在,则该间隔的异常信号可能为内部信号;
4、异常局放信号诊断注意事项
4. 检测出异常信号时,查看人工智能分析软件给出的结 论是否为放电;
5. 检测出异常信号时,查看检测出的三维图谱与典型放电 图谱是否相似;
信号处理
UHF传感的信号耦合方式
体内耦合:信号耦合器 安装在GIS体内。
UHF耦合器
体外耦合:UHF耦合器存在 GIS体外盘式绝缘子处。
局放
盘式绝缘子 屏蔽 耦合器
GIS壳体
体内和体外信号耦合的性能比较
体内耦合
体外耦合
• 放电在内,干扰在外, • 受外部干扰较多一些;
体内耦合有较好的灵敏 • 盘式绝缘子多时,也能
4. 在测量时应尽可能保证传感器与盆式绝缘子的接触,不要因 为传感器移动引起的信号而干扰正确判断;
局放特高频检测的测试注意事项
5. 在检测时应最大限度保持测试周围信号的干净,尽量减少人 为制造出的干扰信号,例如:手机信号、照相机闪光灯信号、 照明灯信号等;
6. 在检测过程中,必须要保证外接电源的频率为50Hz; 7. 对每个GIS间隔进行检测时,在无异常局放信号的情况下只需
研究背景
第五章 局部放电试验
下面所述的电压,电容,电荷及电能的单位分别采用(V),(F),(C)及(J) 表 示。根据式(5-5),各个局部放电脉冲的放电电荷为
qr Q Cgr V p Vr
(5-6)
设 Cg Cb 部放电的能量
Vr 0 ,则可得 qr Cg V p 应用式(5-4)及式(5-6),各个局
Vg t V p 1 C gr
Qt
t 0
(5-3)
Page 5
中,Cgr是从Cg两端看到的电容,它等于
C gr C g
所以得到
Cm Cb Cg Cg
(5-4)
1 Q (5-5) C gr 这里,将Vg从Vp大致变成Vr的时间称为局部放电脉冲的形成时间。当将这些量 表示成时间的函数时,成为图5-2的曲线。
Page 10
(1)内部放电 如果绝缘材料中含有气隙、杂质、油隙等,由于介质内电场分布不均匀,或空穴与 介质完好部分电压分布造成的电场强度分布不均,发生在绝缘体内的称为内部局部放电。 通常所指的测量局部放电是指测量电气设备绝缘内部发生的放电。 当绝缘介质内出现局部放电后,外施电压在低于起始电压的情况下,放电也能继续 维持。该电压在理论上可比起始电压低一半,也即绝缘介质两端的电压仅为起始电压的一 半,这个维持到放电消失时的电压称之为局放熄灭电压。而实际情况与理论分析有差别, 在固体绝缘中,熄灭电压比起始电压约低5%-20%。在油浸纸绝缘中,由于局部放电引起 气泡迅速形成,所以熄灭电压低得多。这也说明在某种情况下电气设备存在局部缺陷而正 常运行时,局部放电量较小,也就是运行电压尚不足以激发大放电量的放电。当其系统有 一过电压干扰时,则触发幅值大的局部放电,并在过电压消失后如果放电继续维持.最后 导致绝缘加速劣化及损坏。
局部放电检测原理及一般试验技术
干扰及其进入试验回路的途径(三)
5、电晕放电和各连接处接触放电的干扰。电晕放电 产生于试验回路处于高电位的导电部分,例如试品的 法兰、金属盖帽、试验变压器、耦合电容器端部及高 压引线等尖端部分。试验回路中由于各连接处接触不 良也会产生接触放电干扰。这两种干扰的特性是随试 验电压的升高而增大。消除这种干扰是在高压端部采 用防晕措施(如防晕环等),高压引线采用无晕的导电 圆管,以及保证各连接部位的良 好接触等。
Tr—试验变压器;Cx—被试品;Ck—耦合电容器;Zm—测量阻抗; DD—检测仪;M—邻近试验回路的金属物件;UA—电源干扰; UB—接地干扰;UC—经试验回路杂散电容C耦合产生的干扰;
UD—悬浮电位放电产生的干扰;UE—高压各端部电晕放电的干扰; IA—试验变压器的放电干扰;IB—经试验回路杂散电感M耦合产生的辐
3、电晕放电---在气体中,高电压导体周围所产生的 局部放电称为电晕。如高压传输线、高压变压器等高 压电气设备,因高压接线端暴露在空气中,都有可能 产生这种局部放电。
表征局部放电的参数
视在放电电荷 放电重复率 放电的能量 放电的平均电流 放电的均方率 放电功率 局部放电起始电压 局部放电熄灭电压
通常情况下局部放电试验现场干扰的处理 的注意事项
一、要有一个好的地线系统 试验现场应该有独立的地线系统,它与建筑物
的地网是分离的,接地电阻应该尽可能小,注 意,动力电网的中性线不可连接到试验现场地。
通常情况下局部放电试验现场干扰的处理 的注意事项
二、试验回路的布线 试验回路的布线应该尽可能简洁,连接线应尽
局部放电的测量《高电压技术》课件知识介绍
03
局部放电的测量仪器
脉冲电流法测量仪器
脉冲电流法测量仪器是利用局部放电 时产生的脉冲电流信号来检测局部放 电的一种仪器。
该仪器具有较高的灵敏度和分辨率, 能够准确反映局部放电的特征和变化 趋势。
它通常由电流传感器、信号处理单元 和显示单元等组成,能够实时监测和 记录局部放电的强度、频率等信息。
电测法
总结词
通过测量局部放电产生的电信号来检测局部放电的方法。
详细描述
电测法是最常用的局部放电测量方法,通过在试品两端施加一定电压,测量试 品中的电信号,如电流、电压等参数的变化,从而判断局部放电的存在和程度。
光测法
总结词
通过测量局部放电产生的光信号来检测局部放电的方法。
详细描述
光测法利用局部放电过程中产生的光信号进行检测,通过测 量光信号的强度、波长等参数,可以判断局部放电的存在和 程度。
光学测量仪器广泛应用于高压 电气设备的局部放电检测和故 障诊断。
超声波测量仪器
01 02 03 04
超声波测量仪器是利用局部放电时产生的超声波信号来检测局部放电 的一种仪器。
它通常由超声波传感器、信号处理单元和显示单元等组成,能够实时 监测和记录局部放电的超声波信号强度、频率等信息。
该仪器具有非接触、远程检测等优点,能够准确反映局部放电的特征 和变化趋势。
案例三:GIS设备局部放电的测量
总结词
GIS设备是一种封闭式的高压电气设备,局部放电的测量对于保障GIS设备的正常运行 具有重要意义。
详细描述
GIS设备局部放电的测量通常采用超高频法、超声波法等,通过测量GIS设备中产Байду номын сангаас的 电磁波或声波信号,可以判断GIS设备是否存在局部放电。在测量过程中,需要注意
变电设备专业巡检实施细则—高频局部放电检测要求课件
变电设备专业巡检实施细则——高频局部放电带电检测要求内蒙古超高压供电局二〇一六年四月目录1 范围 (1)2 规范性引用文件 (1)3 检测条件 (1)3.1环境要求 (1)3.2待测设备要求 (1)3.3人员要求 (1)3.4安全要求 (2)3.5仪器要求 (2)4 检测准备 (2)5 检测方法 (3)5.1检测原理图 (3)5.2检测步骤 ....................................................... 错误!未定义书签。
5.3检测验收 ....................................................... 错误!未定义书签。
6 检测数据分析与处理 (3)7 检测原始数据和记录 (4)7.1原始数据 (4)7.2检测记录 (4)附录 A (规范性附录)高频局部放电检测记录模板和高频局部放电判断标准 (5)附录 B (资料性附录)高频局部放电典型图谱 ........................ 错误!未定义书签。
附录 C (资料性附录)干扰信号的典型图谱 .. (13)附录 D (资料性附录)电缆局部放电的典型图谱 (14)I高频局部放电检测要求1 范围本要求规定了高频局部放电检测要求、现场检测方法,给出了数据分析经验,并对高频局部放电检测管理工作提出了具体要求。
本要求适用于内蒙古超高压供电局高压电力电缆、变压器、避雷器、带末屏引下线的容性设备。
高频局部放电检测方法仅适用于具备接地引下线电力设备的局部放电检测,主要包括高压电力电缆及其附件、变压器铁心及夹件、避雷器、带末屏引下线的耦合电容器、电容式电压互感器、高压套管和电流互感器等容性设备2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改本)适用于本文件。
特高频局部放电检测技术分析
局部放电检测应提供局部放电信号的幅值、相位、放电频 次等信息中的一种或几种,并可采用PRPS、PRPD等常用 谱图进行展示。
二、特高频局部放电检测仪的组成
特高频传感器:耦合器,感应300M-1.5GHz的特高频无线 电信号;
信号放大器(可选):某些局放检测仪会包含信号放大器 ,对来自前端的局放信号做放大处理;
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
雷 达 干 扰
干扰信号有规律重复产生但无工频相关性,幅值有规律变化。
4) 背景测量抗干扰
设备传感器 测量设备
背景传感器
5)
定位测量抗干扰-平面分法
传感器A
P
传感器A’’
传感器B’
P’
传感器B
传感器A’ຫໍສະໝຸດ 6)利检测频段选择和滤波抗干扰:针对固定存在信号较 强的干扰,可通过频谱仪分析干扰存在的频段,使用 滤波器将其过滤掉达到抗干扰目的
1 )设备连接:按照设备接线图连接测试仪各部件,将传 感器固定在盆式绝缘子上,将检测仪主机及传感器正确接地, 电脑、检测仪主机连接电源,开机。 2 )工况检查:开机后,运行检测软件,检查主机与电脑 通信状况、同步状态、相位偏移等参数;进行系统自检,确 认各检测通道工作正常。
3 )设置检测参数:设置变电站名称、检测位置并做好标 注。根据现场噪声水平设定各通道信号检测阈值。
4 )信号检测:打开连接传感器的检测通道,观察检测到 的信号。如果发现信号无异常,保存少量数据,退出并改变 检测位置继续下一点检测;如果发现信号异常,则延长检测 时间并记录多组数据,进入异常诊断流程。必要的情况下, 可以接入信号放大器。
7、常见注意事项
1、在检测过程中,必须保证电源零线火线的正确性。通常要求 插座为左侧零线,右侧火线; 2、使用内同步时,必须要从现场检修电源箱或室内墙上插座去 电,不能使用逆变电源或发电机供电; 3、对每个GIS间隔进行检测时,在无异常局放信号的情况下只需 存储断路器仓盆式绝缘子的三维信号,其它盆式绝缘子必须 检测但可不用存储数据。在检测到异常信号时,必须对该间 隔每个绝缘盆子进行检测并存储相应的数据; 4、在开始检测时,不需要加装放大器进行测量。若发现有微弱 的异常信号时,可接入放大器将信号放大以方便判断。 5、绝缘缺陷并非一定导致局部放电或持续的局部放电。局部放 电经常是断续发生的。投运前和检修后的GIS交接试验中进行 局部放电带电检测时,建议用橡胶锤敲击GIS壳体,激发悬浮 电位局部放电以增加检测的有效性。 6、局部放电类型识别的准确程度取决于经验和数据的不断积累,
高频局放检测技术-理论介绍
(3)同类设备横向对比;
具体步骤:
(1)根据设备台账信息,寻找同一类型、型号相近、投运时间 相差不远且运行工况,维护历史都比较接近的一批设备;
(2)测量该批设备局放及其它参数信息,进行横向比较;
(3)如果所测数据都比较接近,则该批设备绝缘没有问题的可 能性较大,如有一台的某一项或某几项的数据相对其它设备 较高,则出问题的可能性较大。
三、高频局放检测系统
三、高频局放检测系统
3.1 基本构成 3.2 信号检测单元性能 3.3 实验室测试
3.1 基本构成
检测系统包含三部分:高频传感器、采集器和主机
3.1 基本构成
• 局部放电通道的主要性能指标: – 模拟带宽:30kHz~30MHz – 采样率:100MSa/s – 输入电压范围:4Vpp – AD转换垂直分辨率10bit
高频局放检测技术 ——理论介绍
主要内容
一、局放测量技术 二、高频局放检测技术 三、高频局放检测系统 四、小结
一、局放测量技术
一、局放测量技术
• 在电场作用下,绝缘系统中只有部分区域发生放电,而放 电没有贯穿施加电压的导体之间,即尚未击穿,这种现象
称之为局部放电。
• 分类:
– 内部放电
•局部老化 •腐蚀 •内部放电通道(电树枝) •击穿
• 特点: – 采用宽频带、高速、大容量的模拟和数据采集系统,可以检测到局部 放电所产生的电流脉冲中的大部分能量,因而具有很高的灵敏度。 – 能够容易获取到局部放电的波形信息,具有很高的脉冲分辨率,因而 使采用基于波形特征的抗干扰技术和模式识别技术成为可能。 – 内嵌基于脉冲波形特征的放电脉冲分类和放电类型识别技术,可以有 效地剔除干扰,识别放电模式,为故障诊断和检修提供依据。 – 结构小巧坚固,使用方便灵活。既适合于离线测量、带电检测,也适 合于在线监测,还适合于组网运行,为开展设备的状态检修提供了强 大的工具。
第章 高频局部放电检测技术
《电网设备状态检修技术(带电检测分册)》第五章高频局部放电检测技术目录第1节高频局部放电检测技术概述发展历程高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。
高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。
高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。
电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。
罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。
早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。
罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。
罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。
20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。
如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。
特高频局部放电检测技术
主要内容
1 2 3 4 5 特高频局部放电检测的原理 特高频局部放电检测仪器及工具 特高频局部放电检测方法及注意事项 数据、图谱的分析及诊断 典型案例分析
一、特高频局部放电检测的原理
电力设备绝缘体中绝缘强度和击穿场强都很高,当局部放电 在很小的范围内发生时,击穿过程很快,将产生很陡的脉冲 电流,其上升时间小于1ns,并激发频率高达数GHz的电磁波。 应用宽带高频天线(300MHz-1.5GHz传感器)检测GIS内部 局放电流激发的电磁波信号,从而反应GIS内部局部放电的类 型及大体位置。根据传感器安装位置不同,该方法分为内置 法与外置法两种。 由于现场的晕干扰主要集中在300MHz频段以下,因此特高频 法能有效地避开现场的电晕等干扰,具有较高的灵敏度和抗 干扰能力,可实现局部放电带电检测、定位以及缺陷类型识 别等优点。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
荧 光 干 扰
干扰信号幅值较分散,一般情况下工频相关性弱。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
移 动 电 话 干 扰
干扰信号工频相关性弱,有特定的重复频率,幅值有规律变化。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
马 达 干 扰
干扰信号无工频相关性,幅值分布较为分散,重复率低。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
空 穴 放 电
放电信号通常在工频相位的正、负半周均会出现,且具有一定对称性,放电 幅值较分散,放电次数较少。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
自 由 金 属 颗 粒 放 电 局放信号极性效应不明显,任意相位上均有分布,放电次数少,放电幅值无 明显规律,放电信号时间间隔不稳定。提高电压等级放电幅值增大但放电间 隔降低。
特高频局部放电检测技术知识讲解
特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
特高频局部放电检测技术解析
特高频局放测试仪组成示意图UHBiblioteka 外置传感器UHF 内置传感器
导体
局部放电源
法兰
UHF 内置传感器
绝缘子
内置式特高频传感器
外置式特高频传感器
UHF信号在GIS中的传播衰减
GIS的金属同轴结构可视为一个良好的电磁波导, 放电所形成的高阶电磁波TE和TM(f>300MHz), 可沿波导方向无衰减地进行转播; 绝缘屏障会造成2dB信号衰减 转角结构会造成6dB信号分散
传感器应与盆式绝缘子紧密接触,且应放置于两根禁锢盆式 绝缘子螺栓的中间,以减少螺栓对内部电磁波的屏蔽及传感 器与螺栓产生的外部静电干扰; 在测量时应尽可能保证传感器与盆式绝缘子的接触,不要因 为传感器移动引起的信号而干扰正确判断;
6、特高频局部放电检测操作流程
在采用特高频法检测局部放电时,典型的操作流程如下:
特高频局部放电检测技术
主要内容
1 2 3 4 5 特高频局部放电检测的原理 特高频局部放电检测仪器及工具 特高频局部放电检测方法及注意事项 数据、图谱的分析及诊断 典型案例分析
一、特高频局部放电检测的原理
电力设备绝缘体中绝缘强度和击穿场强都很高,当局部放电 在很小的范围内发生时,击穿过程很快,将产生很陡的脉冲 电流,其上升时间小于1ns,并激发频率高达数GHz的电磁波。 应用宽带高频天线(300MHz-1.5GHz传感器)检测GIS内部 局放电流激发的电磁波信号,从而反应GIS内部局部放电的类 型及大体位置。根据传感器安装位置不同,该方法分为内置 法与外置法两种。 由于现场的晕干扰主要集中在300MHz频段以下,因此特高频 法能有效地避开现场的电晕等干扰,具有较高的灵敏度和抗 干扰能力,可实现局部放电带电检测、定位以及缺陷类型识 别等优点。
局部放电检测原理及一般试验技术课件
06
局部放电检测案例分析
案例一:GIS的局部放电检测
01
02
03
04
GIS(Gas-Insulated Substation)是一种高压电 气设备,其内部结构紧凑, 运行电压高,因此局部放电 检测对于保障GIS的安全运行
至关重要。
GIS的局部放电检测通常采用 电测法,通过测量GIS内部产 生的电信号来判断是否存在
局部放电检测原理及一般 试验技术课件
• 局部放电检测原理 • 局部放电检测方法 • 局部放电检测设备 • 局部放电试验技术 • 局部放电检测标准与规范 • 局部放电检测案例分析
01
局部放电检测原理
局部放电定义
局部放电是指在绝缘介质中,由于电 场的作用,在导体间或导体与介质间 产生的非常短暂的、局部的、非贯穿 性的电荷释放现象。
企业标准与规范
企业标准Q/GDW 1522006
这是国家电网公司制定的关于高压开关设备 局部放电检测的企业标准,适用于国家电网 公司系统内的高压开关设备的局部放电检测 。
企业规范Q/GDW 1532006
这是国家电网公司制定的关于高压电缆局部 放电检测的企业规范,适用于国家电网公司
系统内的高压电缆的局部放电检测。
这些带电粒子在电场作用下又会撞击更多的气体或液体分子,产生连锁反应,最终 导致局部放电。
局部放电的电气特征
局部放电的电气特征主要包括: 放电时产生的电流脉冲、电磁 波、声波等。
其中,电流脉冲是局部放电最 直接的表现形式,其大小和波 形取决于放电的类型和程度。
电磁波和声波可以通过专门的 传感器进行测量,是检测局部 放电的重要手段。
结果处理
对检测数据进行处理和分析,如计算放电强度、放电位置等,并评估 其对设备的影响。
局部放电超高频检测技术
•信号处理
UHF传感的信号耦合方式
体内耦合:信号耦合器 安装在GIS体内。
•UHF耦合器
体外耦合:UHF耦合器存在 GIS体外盘式绝缘子处。
•局放
•盘式绝缘子 •屏蔽 •耦合 器
•GIS壳体
体内和体外信号耦合的性能比较
体内耦合
• 体外耦合
• 放电在内,干扰在外, • 受外部干扰较多一些;
体内耦合有较好的灵敏 • 盘式绝缘子多时,也能
ቤተ መጻሕፍቲ ባይዱ
•局部放电特高频检测法检测流程
•2.局部放电特高频检测的接线
• 在采用特高频法检测局部放电时,典型的操作流程如下: • 1)设备连接:按照设备接线图连接测试仪各部件,将传感 器固定在盆式绝缘子上,将检测仪主机及传感器正确接地, 电脑、检测仪主机连接电源,开机。 • 2)工况检查:开机后,运行检测软件,检查主机与电脑通 信状况、同步状态、相位偏移等参数;进行系统自检,确认 各检测通道工作正常。 • 3)设置检测参数:设置变电站名称、检测位置并做好标注 。根据现场噪声水平设定各通道信号检测阈值。 • 4)信号检测:打开连接传感器的检测通道,观察检测到的 信号。如果发现信号无异常,保存少量数据,退出并改变检 测位置继续下一点检测;如果发现信号异常,则延长检测时 间并记录多组数据,进入异常诊断流程。必要的情况下,可 以接入信号放大器。
2GIS局部放电超高频检测 技术
•主要内容
•局部放电特高频检测的原理 •局部放电特高频检测方法及注意事项 •局部放电特高频检测数据、图谱的分析及诊断 •特高频局部放电检测典型案例分析
• 研究背景
• 气体绝缘组合电器(简称GIS)用六氟化硫气体绝缘,可靠性 较高,作为免维护设备在国内外的电力系统中广泛运用。近年国内 1000 kV变电站均采用GIS设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电网设备状态检修技术(带电检测分册)》第五章高频局部放电检测技术目录第1节高频局部放电检测技术概述 (2)1.1 发展历程 (2)1.2 技术特点 (3)1.2.1 技术优势及局限性 (3)1.2.1 局限性 (3)1.2.3 适用范围 (4)1.3 应用情况 (4)第2节高频局部放电检测技术基本原理 (4)2.1 罗氏线圈基本知识 (4)2.2 高频局部放电检测基本原理 (6)2.3 高频局部放电检测装置组成及原理 (7)第3节高频局部放电检测及诊断方法 (9)3.1 检测方法 (9)3.1.1 电力电缆 (9)3.1.2 其他电力设备 (10)3.2 诊断方法 (11)第四节典型高频局部放电案例分析 (14)4.1 110kV 电缆GIS终端内部气隙局部放电缺陷案例 (14)参考文献 (16)第1节高频局部放电检测技术概述1.1 发展历程高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。
高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。
高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。
电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。
罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。
早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。
罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。
罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。
20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显著的成果。
如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。
总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20世纪60年代兴起,在80年代取得突破性进展,并有多种样机挂网试运行,90年代开始进入实用化阶段。
尤其进入21世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。
20世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。
例如意大利的博洛尼亚大学的G.C. Montanari和A. Cavallini等人及TECHIMP公司成功研制了高频局部放电检测仪,并被广泛应用。
近几年国内的一些科研院所和企业均开始研制基于罗氏线圈传感器以及高频局放检测装置,虽然起步比较晚,有些技术还处于跟踪国外大公司的水平,但随着发展罗氏线圈电子式传感器的时机逐渐成熟,国内如清华大学、西安交通大学、上海交通大学、华北电力大学等对于罗氏线圈传感器进行了深入的研究和探索,并取得了大量成果[4]。
1.2 技术特点1.2.1 技术优势及局限性高频局放检测技术的技术优势及局限性主要表现在以下几个方面:(1)可进行局部放电强度的量化描述。
由于高频局放检测技术应用高频电流传感器,与传统的脉冲电流法具有类同的检测原理,若传感器及信号处理电路相对确定的情况下,可以对被测局部放电的强度进行理化描述,以便于准确评估被检测电力设备局部放电的绝缘劣化程度。
(2)具有便于携带、方便应用、性价比高等优点。
高频电流传感器作为一种常用的传感器,可以设计成开口CT的安装方式,在非嵌入方式下能够实现局放脉冲电流的非接触式检测,因此具有便于携带、方便应用的特点。
(3)检测灵敏度较高。
高频电流传感器一般由环形铁氧体磁芯构成,铁氧体配合经磁化处理的陶瓷材料,对于高频信号具有很高灵敏度。
局部放电发生后,放电脉冲电流将沿着接地线的轴向方向传播,即会在垂直于电流传播方向的平面上产生磁场,电感型传感器是从该磁场中耦合放电信号。
除此之外利用HFCT进行测量,还具有可校正的优点。
1.2.1 局限性(1)高频电流传感器的安装方式也限制了该检测技术的应用范围。
由于高频电流传感器为开口CT的形式,这就需要被检测的电力设备的接地线或末屏引下线具有引出线,而且其形状和尺寸能够卡入高频电流传感器。
而对于变压器套管、电流互感器、电压互感器等容性设备来说,若其末屏没有引下线,则无法应用高频局放检测技术进行检测。
(2)抗电磁干扰能力相对较弱。
由于高频电流传感器的检测原理为电磁感应,周围及被测串联回路的电磁信号均会对检测造成干扰,影响检测信号的识别及检测结果的准确性。
这就需要从频域、时域、相位分布模式等方面对干扰信号进行排除。
1.2.3 适用范围高频法仅适用于具备接地引下线电力设备的局部放电检测,主要包括电力电缆、变压器铁心及夹件、避雷器、带末屏引下线的容性设备等。
1.3 应用情况随着高频局部放电检测技术的不断成熟,国网公司在高频局部放电检测应用实践上积累了大量的宝贵经验,发现了大量潜在缺陷,目前该方法已广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备局部放电检测。
随着状态检修工作的不断深入,高频局部放电检测技术已列入状态检修试验规程,成为提前发现电力设备潜在缺陷的重要手段。
国家电网公司在推广应用高频局部放电检测技术方面做了大量卓有成效的工作。
2010年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国家电网公司颁布了《电力设备带电检测技术规范(试行)》和《电力设备带电检测仪器配置原则(试行)》,在国家电网公司范围内统一了高频局部放电检测的判据、周期和仪器配置标准,初步建立起完整的高频局部放电检测技术标准体系,高频局部放电检测技术在国家电网公司范围全面推开。
第2节高频局部放电检测技术基本原理2.1 罗氏线圈基本知识罗格夫斯基线圈(Rogowski coils),简称罗氏线圈,又被称为磁位计,最早被用于磁路的测量。
一般情况下罗氏线圈为圆形或矩形,线圈骨架可以选择空心或磁性骨架,导线均匀绕制在骨架上。
罗氏线圈的结构示意图如图5-所示。
图 5-1 罗氏线圈结构示意图罗氏线圈的原边为流过被测电流的导体,副边为多匝线圈。
当有交变的电流流过穿过线圈中心的导体时,会产生交变的磁场。
副边线圈与被测电流产生的磁通相交链,整个罗氏线圈副边产生的磁链正比于导体中流过的电流大小。
变化的磁链产生电动势,且电动势的大小与磁链的变化率成正比。
令流过导体的电流为()I t ,线圈副边感应出的电动势为()e t ,基于安培环路定律和法拉第电磁感应定律,可由Maxwell 方程[8]解得: ()()I t e t Mt ∂=∂ (5-1)其中M 为罗氏线圈的互感系数。
根据罗氏线圈负载的不同,线圈可分为外积分式和自积分式[9]。
外积分式罗氏线圈又称作窄带型电流传感器,具有较好的抗干扰能力。
当采用外积分式罗氏线圈时,为得到电流()I t 的波形,线圈的输出通常需要经过无源RC 外积分电路、由运放构成的有源外积分电路,以及数自积分电路等负载。
外积分式罗氏线圈受积分电路频率性能影响较大,测量频率上限受到限制,一般用于测量兆赫兹以下的中低频率电流。
自积分式罗氏线圈又称作宽带型电流传感器,具有相对较宽的检测频带。
由于其直接采用积分电阻,因此频率响应较快,适用于测量上升时间较短的脉冲电流信号。
罗氏线圈根据其结构不同可分为挠性罗氏线圈、刚性罗氏线圈和PCB 型罗氏线圈[10-11]。
挠性罗氏线圈以能够完全的挠性材料作为线圈骨架,将导线均匀绕在骨架上。
测量时将骨架弯曲成一个闭合的环,使通电导体冲线圈中心穿过。
这种线圈使用方便,但测量精确度低、稳定性不高。
刚性罗氏线圈采用刚性结构线圈骨架,在结构上更容易使得绕线能够均匀分布,大大提高了抗外磁场干扰的能力,从而提高了测量的精确度。
这种线圈的测量精确度和可靠性较高,但在实际使用中会受到现场安装条件的限制。
PCB 型罗氏线圈是一种基于印刷电路板(PCB )骨架的罗氏线圈,相比传统的罗氏线圈,其线圈密度、骨架截面积以及线圈截面与中心线的垂直程度都有极大提高,是一种高精度的罗氏线圈。
这种线圈现在还处于起步阶段,其实际应用还有一定的距离。
2.2 高频局部放电检测基本原理用于局部放电检测的罗氏线圈称为高频电流传感器,其有效的频率检测范围一般为3MHz ~30MHz 。
由于所测量的局部放电信号是微小的高频电流信号,传感器需要在较宽的频带内有较高的灵敏度。
因此HFCT 选用高磁导率的磁芯作为线圈骨架,并通常采用自积分式线圈结构[13]。
使用HFCT 进行局部放电检测的等效电路图如图 5-2所示。
其中()I t 为被测导体中流过的局部放电脉冲电流,M 为被测导体与HFCT 线圈之间的互感,L s 为线圈的自感,R s 为线圈的等效电阻,C s 为线圈的等效杂散电容,R 为负载积分电阻,u o (t )为HFCT 传感器的输出电压信号。
图 5-2 高频电流传感器局部放电检测等效电路图在传感器参数满足自积分条件的情况下,忽略杂散电容C s ,计算可得系统的传递函数为[15]:o ()()()S U S M R H S R I S L N =≈= (5-2)其中N 为线圈的绕线匝数。
因此,在满足自积分条件的一段有效频带内,HFCT 的传递函数是与频率无关的常数。
并且,HFCT 的灵敏度与绕线匝数N 成反比,与积分电阻R 成正比。
事实上,在高频段C s 的影响是不能忽略的。
在考虑C s 影响的情况下,系统的传递函数H (S )为:o 2()()()()1S S S S S S U S MS H S L R I S L C S R C S R R ==++++ (5-3)HFCT 等效电路类似于高频小信号并联谐振回路,采用高频小信号并联谐振回路理论分析可得电流传感器的频带为:下限截止频率:S S 1S S S S 2()2R R R R f L RR C L ππ++=≈+ (5-4)上限截止频率:S S S 2S S S 122L RR C f L RC RC ππ+=≈ (5-5)在实际使用中,一般希望HFCT 有尽可能高的灵敏度,并且在较宽的频带范围内有平滑的幅频响应曲线。