二次函数与一元二次方程关系公开课
二次函数与一元二次方程二次函数优秀ppt课件
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
《二次函数与一元二次方程》优质公开课1
(2)球的飞行高度能否达到20m?如果能,需
要多少飞行时间?
h=20t-5t2
∴|x1-x2|2=(x1-x2)2 1<0,所以方程无解.
20 h
解方程: 例如,已知二次函数y = -x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解是____________.
C
A.两个交点
B.一个交点
C.没有交点
D.画出图象后才能说明
4.不画图象,抛物线y=x2-3x-4与x轴的交点坐标是 __(__-_1_,__0_)__,__(__4_,. 0)
5.抛物线y=(k-1)x2-2x-4与x轴没有交点,则k的取值范
围是__k_<__3_且__k__≠1 .
4
易错点:K-1≠0
二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一 元二次方程ax2+bx+c=0根的关系
二次函数 y=ax2+bx+c的 图象与x轴交点
有两个交点
有两个重合 的交点 没有交点
一元二次方程 ax2+bx+c=0的根
b2-4ac
有两个不相等 的实数根
b2-4ac > 0
有两个相等的实 数根
没有实数根
(4)球从飞出到落地要用多少时间?
h
h=20t-5t2
O
t
0=20t-5t2,
t2-4t=0, t1=0,t2=4.
当球飞行0秒和4秒时,它的高度为0米. 即0秒时球地面飞出,4秒时球落回地面.
2二次函数与一元二次方程课件
(x1,0)(x2,0)
有两个重合的公共点
与x轴没有交点
一元二次方程ax2+bx+c=0
(a≠0)的根
图象
y
O
x
y
O
有两个相等的实数根
x
y
O
有两个不同的
解x=x1,x=x2
没有实数根
x
图象伐解一元二次方程
由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。
由于作图或观察可能存在误差,由图象求得的根,一般是近似的。
33
22
11
-3 -2 -1 O
-1-1
-2-2
-3-3
-4-4
x
1
2 3 4 5 6
y x 6x 9
2
探索二次函数和x轴公共点与一元二次方程的根的关系
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程
ax2+bx+c=0的根有什么关系?
抛物线y=ax2+bx+c(a≠0) 一元二次方程ax2+bx+c=0
当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s
时球落回地面。
例如:已知二次函数y=-x2+4x的值为3。求自变量x的
值。可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。
反过来,解方程x2-4x+3=0又可以看作已知二次函数y=
x2-4+3的值为0,求自变量x的值。一般地,我们可以利
(2) x>3或x<-1时,函数值大于0.
(3) -1<x<3时,函数值小于0.
-3
《二次函数与一元二次方程、不等式(第二课时)》示范公开课教学设计【高中数学人教版】
《二次函数与一元二次方程、不等式(第二课时)》教学设计◆教学目标1.通过从实际情境中抽象出一元二次不等式模型的过程,体会一元二次不等式的现实意义,提升数学建模的核心素养.2.能利用一元二次不等式解决一些实际问题,提升数学运算素养.◆教学重难点◆教学重点:实际问题中的一元二次不等式解法.教学难点:从实际问题所蕴含的不等关系中抽象出一元二次不等式.◆课前准备PPT课件◆教学过程一、知识回顾★资源名称:【知识点解析】一元二次不等式的解法★使用说明:本资源为一元二次不等式的解法讲解视频,通过具体例子,引导学生理解并归纳出一元二次不等式求解的一般步骤.注:此图片为微课截图,如需使用资源,请于资源库调用.问题1:二次函数与一元二次方程、一元二次不等式解集的对应关系是怎样的?请你完成下面的表格。
师生活动:学生默写,完成之后教师展示,学生互相检查纠错.预设的答案:Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅(1)函数的角度:一元二次不等式ax2+bx+c>0表示二次函数y=ax2+bx+c的函数值大于0,图象在x轴的上方;一元二次不等式ax2+bx+c>0的解集即二次函数图象在x 轴上方部分的自变量的取值范围.(2)方程的角度:一元二次不等式ax2+bx+c>0的解集的端点值是一元二次方程ax2+bx+c=0的根.设计意图:复习旧知识,并通过默写的形式让师生都了解是否掌握了,为本节课的学习扫清知识障碍。
问题2:求解一元二次不等式的步骤是怎样的?师生活动:学生写出步骤,教师用如下的程序框图呈现.预设的答案:设计意图:本节课重点依然是一元二次不等式的解法,学生需要借助三个“二次”的联系,获得一元二次不等式的一般性解法,从整体上把握所学内容,让学生明确不等式解法,有助于学生良好认知结构的建立和完善,并为后面知识的学习提供帮助.二、新知探究 利用一元二次不等式解决实际问题例1 一家车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:x x y 2200202+-=.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?问题3:这个实际问题中蕴含的不等关系是什么?求解不等式的步骤是什么?对于实际问题还需要注意什么?师生活动:学生分析题目,得出一元二次不等式,并求解。
二次函数与一元二次方程不等式一元二次函数方程和不等式课件市公开课一等奖省优质课获奖课件
{x|10≤x≤30} [设矩形高为y,
锐角三角形空地中,欲 建一个面积不小于
由三角形相似得:4x0=404-0 y,且
300m2 的内接矩形花园(阴影部分), x>0,y>0,x<40,y<40,xy≥300,
则其边长 x(单位:m)的取值范围是 整理得y+x=40,将y=40-x代入
________.
第栏37页目导航
37
1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为 一元二次不等式(组)求解.当不等式含有等号时,分母不为零.
2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因 为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然, 这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论:
第栏34页目导航
34
法三:由 x2+2x+a2-3>0,得 a2>-x2-2x+3, 即 a2>-(x+1)2+4,要使该不等式在 R 上恒成立,必须使 a2 大于- (x+1)2+4 的最大值,即 a2>4,故 a>2 或 a<-2.
第栏35页目导航
35
1.不等式 ax2+bx+c>0 的解是全体实数(或恒成立)的条件是:当 a =0 时,b=0,c>0;
第栏8页目导航
8
思考 2:解一元二次不等式应用题的关键是什么? 提示:解一元二次不等式应用题的关键在于构造一元二次不等式模 型,选择其中起关键作用的未知量为 x,用 x 来表示其他未知量,根据题 意,列出不等关系再求解.
第栏9页目导航
9
1.若集合 A={x|-1≤2x+
B [∵A={ x|-1≤x≤1} ,B= { x|0< x≤2} ,∴A∩B={ x|0< x≤
《二次函数与一元二次方程的关系》ppt课件
结论和要点
通过本课件,我们了解到二次函数与一元二次方程之间的密切关系,以及它们在实际应用中的重 要性和用途。
密切关系
二次函数与一元二次方程存在密切的对应关系。
实际应用
二次函数与一元二次方程在建筑设计、汽车行驶路程、项目成本控制等实际应用中发挥重要 作用。
二次函数与一元二次方程的关系
二次函数与一元二次方程是密切相关的,通过二次函数的系数可以求解一元二次方程的根,反之亦然。
1
系数的求解
通过一元二次方程的系数可以确定二次函数的形式。
2
根的求解
通过二次函数的图像可以推导出一元二次方程的根。
3
相互转换
二次函数与一元二次方程可以相互转换,实现从函数到方程的求解和从方程到函数的绘 图。
如何由一元二次方程求解二次函数的 系数
通过一元二次方程的系数可以确定二次函数的形式,具体步骤包括:
1 步骤一
找出一元二次方程的a、b、c。
2 步骤二
将a、b、c代入二次函数的表达式。
3 步骤三
得到二次函数的形式。
如何由二次函数求解一元二次方程的 根
通过二次函数的图像可以推导出一元二次方程的根,具体步骤包括:
1 步骤一
观察二次函数的图像。2 Leabharlann 骤二根据图像找到方程的根。
实际应用中的例子
二次函数与一元二次方程在实际应用中有广泛的应用,例如:
建筑设计
二次函数的抛物线形状可以用于 建筑设计中的拱形结构。
汽车行驶路程
通过二次函数的图像可以预测汽 车行驶的路程。
项目成本控制
通过二次函数的图像可以进行项 目成本的控制和优化。
《二次函数与一元二次方 程的关系》
本课件将介绍二次函数与一元二次方程之间的关系,包括定义与图像、基本 形式、系数的求解、根的求解、实际应用的例子以及结论和要点。
《二次函数与一元二次方程的联系》教案 (公开课)2022年湘教版数学
1.4二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y=x2-6x+c的图象时,发现其顶点在x轴上,请你帮小唐确定字母c的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】二次函数图象与x 轴交点情况的判断以下函数的图象与x轴只有一个交点的是()A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac =(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D 的函数图象与x轴只有一个交点.应选D.变式训练:见《学练优》本课时练习“课后稳固提升〞第1题【类型二】利用函数图象与x轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y=kx2-6x+3的图象与x轴有交点,那么k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0解析:∵二次函数y=kx2-6x+3的图象与x轴有交点,∴方程kx2-6x+3=0(k≠0)有实数根,即Δ=36-12k≥0,k≤3.由于是二次函数,故k≠0,那么k的取值范围是k≤3且k≠D.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.变式训练:见《学练优》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y =x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,那么关于x的方程x2+bx=5的解为()A.⎩⎪⎨⎪⎧x1=0,x2=4B.⎩⎪⎨⎪⎧x1=1,x2=5C.⎩⎪⎨⎪⎧x1=1,x2=-5D.⎩⎪⎨⎪⎧x1=-1,x2=5解析:∵对称轴是经过点(2,0)且平行于y轴的直线,∴-b2=2,解得bx2-4x=5,解得x1=-1,x2D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《学练优》本课时练习“课堂达标训练〞第1题探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x2+2x-3=-8的实数根(精确到0.1).解析:对于y=-x2+2x-3,当函数值为-8时,对应点的横坐标即为一元二次方程-x2+2x-3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y=-x2+2x-3的图象,如图.由图象可知方程-x2+2x-3=-8的根是抛物线y=-x2+2x-3与直线y=-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:xy因此x≈-1.4是方程的一个实数根.(2)另一个根可以类似地求出:xyx≈3.4是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y=h的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中?(2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A(0,209),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-19(x-4)2+4.将点C的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x=1代入函数关系式,得y=3.因为3.1>3,所以盖帽能获得成功.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系. 第2课伟大的历史转折1教学分析【教学目标】知识与能力知道中共十一届三中全会召开时间;了解它的背景,理解其重大意义;拨乱反正加强了民主与法制建设,推动了社会主义现代化建设;学会在开展的进程中认识历史人物、历史事件的地位和作用过程与方法学会运用原因与结果、联系与综合等概念,理解中共十一届三中全会的背景与历史意义情感态度与价值观认同中国共产党完全有能力领导中国人民取得社会主义建设事业的成功识改革开放是我国的强国之路【重点难点】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
专题—二次函数与一元二次方程-abc意义市公开课获奖课件省名师示范课获奖课件
。
y
y
o
x
ox
图1
图2
y abc 0
(4)与直线x 1交点
y
a
b
c
0
当x=1时,相应旳纵坐标y旳值 y a b c 0
y X=1
y abc0
o
y abc0
x
y abc0
y abc 0
与直线x 1交点 y a b c 0
y a b c 0
当x=-1时,相应旳纵坐标y旳值
A、abc>0
y
B、b2-4ac>0
C、2a+b>0 D、4a-2b+c<0
-1 o 1 x
已知:二次函数y=ax2+bx+c旳图象如图所示,下 列结论中:①b>0;②c<0;③4a+2b+c > 0;④ (a+c)2<b2,其中正确旳个数是 ( B)
A、4个 B、3个
C、2个 D、1个
y
o
x
x=1
y
y
y
ox
ox
ox
ห้องสมุดไป่ตู้
△>0--y>0,<0,=0 △=0--y≥0恒成立 △<0--y>0恒成立
若抛物线 y (m 1)x2 2mx m 3 位于x轴上方,求m旳取值范围.
抛物线y=ax2+bx+c如图所示,试拟定a、b、c、 △旳符号:
y
a>0,
b<0,
c>0,
0
x
△>0.
抛物线y=ax2+bx+c如图所示,试拟定a、b、c、 △旳符号:
y
a>0,
b=0,
二次函数与一元二次方程之间的关系PPT课件
抛物线y=ax2+bx+c(a≠0) 一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
课堂小结
二次函数与一元二次方程
一元二次方程
解方程 一元二次方程的根
y=0 二次函数
63 86
59 30 20 27
79 57
辨析:求和用加法,求加数用和减另一个加数。
小试牛刀(源于《典中点》) 1.想一想,填一填。
32+40= 72 先算:30 +40 = 70 再算:2 + =70 72
3.看一看,填一填。 22 30 52
89 30 59
1 课堂探究点
两位数加、减整十数
感悟新知
知1-讲
知识点 1 二次函数与一元二次方程之间的关系
一般地,从二次函数y=ax2+bx+c(a ≠ 0)的 图象可知:如果抛物线y=ax2+bx+c(a ≠ 0)与x 轴有公共点,公共点的横坐标是x0,那么当x=x0 时,函数值是0,因此x=x0 是方程ax2+bx+c=0(a ≠ 0)的一个根.
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
感悟新知
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元
《2.3 二次函数与一元二次方程、不等式》公开课优秀教案教学设计(高中必修第一册)
2.3 二次函数与一元二次方程、不等式教学设计三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2. 使学生能够运用二次函数及其图像,性质解决实际问题.3. 渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集; 难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题.类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本50-52页,思考并完成以下问题1. 二次函数与一元二次方程、不等式的解的对应关系.2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二 次方程的关系如下表:判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0 (a>0)的根 有两相异 实根x 1,x 2 (x 1<x 2)有两相等实根 x 1=x 2没有实数根ax 2+bx+c>0 (a>0)的解集{x|x >x 2或x <x 1}{x|x ≠−2b a} Rax 2+bx+c<0 (a>0)的解集{x|x 1<x <x 2}∅∅ab 2-=2.一元二次不等式ax 2+bx+c>0 (a>0)的求解的算法.(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果.四、典例分析、举一反三题型一解不等式例1求下列不等式的解集(1)x2−5x+6>0(2)9x2−6x+1>0(3)−x2+2x−3>0【答案】(1){x|x<2,或x>3}(2){x|x≠13}(3)∅解题方法(解不等式)(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果;跟踪训练一1、求下列不等式的解集(1)(x+2)(x−3)>0;(2)3x2−7x≤10;(3)−x2+4x−4<0(4)x2−x+14≤0【答案】(1){x|x<−2,或x>3}(2){x|x≤−3,或x≥103}(3) {x|x ≠2} (4) {x|x =12}题型二 一元二次不等式恒成立问题 例2 (1). 如果方程20ax bx c ++=的两根为2-和3且0a <,那么不等式20ax bx c ++>的解集为____________.(2).已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤C .k 0<或1k >D .0k ≤或1k >【答案】(1){}|23x x -<< (2)A【解析】(1)由韦达定理得231236bac a⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩,6b a c a =-⎧∴⎨=-⎩,代入不等式20ax bx c ++>,得260ax ax a -->,0a <,消去a 得260x x --<,解该不等式得23x -<<,因此,不等式20ax bx c ++>的解集为{}|23x x -<<,故答案为:{}|23x x -<<.(2)当0k =时,不等式为80≥恒成立,符合题意;当0k >时,若不等式2680kx kx k -++≥对任意x ∈R 恒成立, 则2364(8)0k k k ∆=-+≤,解得01k <≤;当k 0<时,不等式2680kx kx k -++≥不能对任意x ∈R 恒成立。
《二次函数与一元二次方程》课件
x1=-1,x2=-5
0的根为_________________.
2.抛物线y=x2+2x-3与y轴的交点坐标是_________,
(0,-3)
(1,0) (-3,0)
与x轴的交点坐标是________________.
3.抛物线y=-x2+bx+c的部分图象如下图所示,则
1.在平面直角坐标系内画出二次函数的图象;
2.观察图象,确定抛物线与 x 轴的公共点的坐标;
3.公共点的横坐标就是对应的一元二次方程的解.
当函数图象与 x 轴有两个公共点,且公共点的横坐标不
是整数时,可通过不断缩小根所在的范围估计一元二次
方程的解:
①观察函数图象与 x 轴的一个公共点的横坐标在哪两个
连续整数之间,从而确定这个公共点的横坐标的取值范
围.
②由①可确定方程 ax2+bx+c=0 的一个根在整数 m 和 n
(m<n)之间,再通过取平均数的方法不断缩小根所在的
范围,直到得出的根满足题目要求为止,具体过程如
下:取 m 和 n
+
的平均数
,计算出当
2
=
+
时的
2
函数值y2,将y2与自变量分别为 m 和 n 时的函数值ym,
量x的值时,二次函数问题就转化了一元二
次方程问题.
y=ax2+bx+c(a≠0)0
令y=m
m=ax2+bx+c(a≠0)0
二次函数
转化
思想
一元二次方程
新知探究
知识点1
y=ax2+bx+c(a≠0)0
同课异构《二次函数与一元二次方程》公开课教案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
22.2二次函数与一元二次方程第1课时二次函数与一元二次方程及方程组的关系1.理解用二次函数图象解一元二次方程的方法.2.会求出二次函数y=ax2+bx+c与坐标轴的交点坐标.3.了解二次函数y=ax2+bx+c与一元二次方程之间的关系.4.会把求一元二次方程的根的问题转化为函数图象问题,同时,会利用一元二次方程解决函数问题.【重点难点】1.理解用二次函数图象解一元二次方程的方法.2.会求出二次函数y=ax2+bx+c与坐标轴的交点坐标.【新课导入】如图,以40 m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.球的飞行高度h(m)与飞行时间t(s)之间具有关系:h=-5t2+20t,球的飞行高度能否达到15 m?如果能,需要飞行多少时间?【课堂探究】一、二次函数图象与一元二次方程1.(2013内江)若抛物线y=x2-2x+c与y轴的交点坐标为(0,-3),则下列说法不正确的是( C )(A)抛物线的开口向上(B)抛物线的对称轴是直线x=1(C)当x=1时y的最大值为-4(D)抛物线与x轴的交点坐标为(-1,0)、(3,0)2.利用函数图象求方程x2-2x-2=0的实数解.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数解为x1≈-0.7,x2≈2.7.二、二次函数图象与方程组的解3.求抛物线y=x2+1与直线y=x+3的交点坐标.解:解方程组得∴交点坐标为(2,5)、(-1,2).4.利用函数的图象,求方程组的解.解:在同一直角坐标系中画出函数y=x2+2x和y=3x+6的图象,如图,得到它们的交点(-2,0)、(3,15),则方程组的解为1.一元二次方程的图象解法二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的解.2.两函数图象的交点与方程组的解二次函数与一次函数图象的交点坐标就是两函数的解析式所组成的方程组的解.1.若一元二次方程ax2+bx+c=0的两根为x1=-3,x2=-1,那么二次函数y=ax2+bx+c的对称轴是( A )(A)直线x=-2 (B)直线x=2(C)y轴(D)不能确定2.(2013苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( B )(A)x1=1,x2=-1 (B)x1=1,x2=2(C)x1=1,x2=0 (D)x1=1,x2=33.若二次函数y=-x2+2(m-1) x+2m-m2的图象的对称轴为y轴,此图象的顶点A和它与x轴两交点B、C所构成的三角形的面积是( B )(A) (B)1 (C) (D)24.抛物线y=3x2-2x-5与y轴的交点坐标为(0,-5) ,与x轴的交点坐标为(-1,0)、,0.5.已知函数y=x2-4x+3与x轴交于A、B两点,与y轴交于C点,求△ABC的面积.解:把y=0代入y=x2-4x+3得x2-4x+3=0,解得x1=1,x2=3.∴A(1,0),B(3,0).把x=0代入y=x2-4x+3得y=3,∴C(0,3).∴S△ABC=×2×3=3.6.已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面积为,求a的值.解:设直线l的解析式为y=kx+b.把A(4,0)和B(0,4)代入y=kx+b,得解得∴直线l的解析式为y=-x+4.作PN⊥x轴于N(图略),∵S△AOP=,∴PN·OA=,即×4×PN=,解得PN=.把y=代入y=-x+4得=-x+4.解得x=.将x=,y=代入y=ax2得=·a,解得a=[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。