线性代数第1讲数学归纳法
线性代数第一章知识点总结
(1)
解向量
若 x 1 11 , x 2 21 , , x n n1 为(1)的解, 则 11 21 x 1 n1 称为方程组(1)的解向量, 它也就是向量方程 2) ( 的解.
解向量的性质 性质1 若x 1 , x 2 为( 2)的解, 则x 1 2 也
a1 j a1 j ( 2)设 a j , b j , ( j 1,2, , m ) a rj a rj a r 1, j 即向量 a j 添上一个分量后得到向 b j .若向量 量
1 向量的定义
定义
n个有次序的数 a 1 , a 2 , , a n 所组成的 数组称为n维向量.这n个数称为该向量的分量 ,
第i个数 a i 称为第i个分量.
分量全为实数的向量称为实向量. 分量全为复数的向量称为复向量.
n维向量写成列的形式 称为列向量, 即 , a1 a2 a an
若向量空间没有基 那么V的维数为 .0维向 , 0 量空间只含一个零向量 . O 若把向量空间V看作向量组, 则V的基就是
向量组的最大线性无关 ,V的维数就是向量组 组 的秩.
10 齐次线性方程组
向量方程
记齐次线性方程组 a 11 x 1 a 12 x 2 a 1n x n 0, a 21 x 1 a 22 x 2 a 2 n x n 0, a m 1 x 1 a m 2 x 2 a mn x n 0, 的系数矩阵和未知量为
件是矩阵A (a 1 , a 2 , , a m )的秩等于矩阵B (a 1 , a 2 , , a m , b )的秩.
线性代数第一章PPT讲解1-4
aaijij 0 0
D
1 i1
1
a j 1 i1, j
ai1, j1
ai1,n
anj an, j1 ann
aaiijj
0
0
1 i j2 ai1, j ai1, j1 ai1,n
anj an, j1 ann
aijj
0
0
1 i j ai1, j ai1, j1 ai1,n
anj an, j1 ann
aaiijj
0
0
元 素aij在 行 列 式ai1, j ai1, j1 ai1,n 中 的
anj an, j1 ann
余 子 式 仍 然 是aij在 a11 a1 j a1n
D 0 aaiijj 0 中的余子式 Mij .
an1 anj ann
二、行列式按行(列)展开法则
定理3 行列式等于它的任一列(行)的各元 素与其对应的代数余子式乘积之和,即
D a1 j A1 j a2 j A2 j anj Anj j 1,2,, n
证 a11 a1 j 0 0 a1n
D
a21
0 a2 j 0
a2n
an1 0 0 anj ann
1பைடு நூலகம்
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
依次做行变换:
rn x1rn1 , rn1 x1rn2 , ....., r2 x1r1
有
1
1
1
1
0
Dn 0
x2 x1
x2 ( x2 x1 )
x3 x1
线性代数知识点总结(第1、2章)
线性代数知识点总结(第1、2章)(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
(六)矩阵的运算12、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
《线性代数》知识点归纳整理
《线性代数》知识点归纳整理线性代数是一门重要的数学学科,在许多领域都有广泛的应用,如计算机科学、物理学、工程学等。
下面将对线性代数的一些关键知识点进行归纳整理。
一、行列式行列式是线性代数中的一个基本概念。
它是一个数值,可以通过特定的计算规则得到。
对于二阶行列式,其计算公式为:\\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc \对于三阶行列式,计算相对复杂些,可通过按行(列)展开来计算。
行列式具有一些重要的性质,例如:1、行列式转置后其值不变。
2、某行(列)元素乘以一个数加到另一行(列)的对应元素上,行列式的值不变。
行列式的应用包括求解线性方程组、判断矩阵是否可逆等。
二、矩阵矩阵是线性代数中的核心概念之一。
矩阵的定义:由\(m×n\)个数排成的\(m\)行\(n\)列的数表称为\(m×n\)矩阵。
矩阵的运算包括加法、减法、数乘、乘法等。
1、矩阵加法和减法要求两个矩阵具有相同的行数和列数,对应元素相加减。
2、数乘矩阵是将矩阵中的每个元素乘以一个数。
3、矩阵乘法需要前一个矩阵的列数等于后一个矩阵的行数,乘法运算不满足交换律。
矩阵的转置是将矩阵的行和列互换得到的新矩阵。
逆矩阵是一个重要概念,若矩阵\(A\)可逆,则存在矩阵\(B\),使得\(AB = BA = I\),其中\(I\)为单位矩阵。
三、向量向量可以看作是一组有序的数。
行向量是一行数,列向量是一列数。
向量的运算包括加法、减法、数乘。
向量组的线性相关性是一个重要内容。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称该向量组线性相关;否则称线性无关。
四、线性方程组线性方程组可以表示为矩阵形式\(Ax = b\)。
线性方程组的解分为有解和无解的情况。
1、有解时,可能有唯一解或无穷多解。
2、无解时,方程组矛盾。
通过高斯消元法可以求解线性方程组。
五、特征值与特征向量对于矩阵\(A\),如果存在非零向量\(x\)和数\(\lambda\),使得\(Ax =\lambda x\),则\(\lambda\)称为矩阵\(A\)的特征值,\(x\)称为对应于特征值\(\lambda\)的特征向量。
线性代数知识点归纳,超详细
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
大一线性代数第一章知识点
大一线性代数第一章知识点线性代数是现代数学的一个重要分支,它研究向量空间和线性映射之间的关系。
在大一的线性代数课程中,第一章是介绍向量和矩阵的基本概念。
以下将对第一章的几个知识点进行论述。
一、向量的定义和性质在线性代数中,向量是一个有大小和方向的量。
它可以用一个有序的数组表示,每个数组元素代表向量在某个坐标轴上的分量。
向量有很多基本性质,包括加法、数乘、模长等。
其中,向量的加法和数乘是线性代数中最基本的运算。
向量的加法满足交换律和结合律,数乘满足结合律和分配律。
二、向量空间的定义和性质向量空间是指具有加法和数乘运算的集合,满足一定的公理。
在线性代数中,向量空间是向量运算的集合,它具有许多基本性质。
向量空间中的向量可以进行加法和数乘运算,并且满足一些规律,如交换律、结合律和分配律等。
三、矩阵的定义和性质矩阵是线性代数中另一个重要的概念。
它由若干行和列组成的矩形阵列。
矩阵可以表示为一个矩阵元素的矩阵,每个矩阵元素代表矩阵在某个位置上的值。
矩阵有许多基本性质,包括加法、数乘、乘法等。
矩阵的加法和数乘满足一些基本规律,如交换律和结合律。
矩阵的乘法是线性代数中比较复杂的运算,它是指将两个矩阵相乘得到一个新的矩阵,满足一定的规律。
四、矩阵的行列式和逆矩阵行列式是一个与矩阵相关的数值,它可以用来判断一个矩阵的特征。
对于一个n阶矩阵,它的行列式是一个数值,代表了矩阵的一些性质。
行列式有一些基本性质,如反演性、行列式的性质和行列式的计算方法等。
逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。
只有非奇异矩阵才有逆矩阵,奇异矩阵没有逆矩阵。
矩阵的逆矩阵具有一些基本性质,如逆矩阵的性质和逆矩阵的计算方法等。
五、线性方程组的解法线性方程组是线性代数中的一个重要概念,它由一系列线性方程组成。
线性方程组的解是指使得方程组成立的未知数的值。
线性方程组的解法有很多种,包括高斯消元法、矩阵求逆法和向量法等。
高斯消元法是一种常用的解线性方程组的方法,它通过一系列消元和代入操作,将方程组转化为简化的阶梯形矩阵,进而求得方程组的解。
线性代数知识点总结
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数知识点归纳
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
中国科学技术大学线性代数课程讲义1
本章主要介绍一般的 n 元线性方程组
aa2111
x1 x1
+ +
a12x2 a22x2
+ +
· ·
· ·
· ·
+ +
a1nxn a2nxn
= =
b1 b2
am1x1
+
ห้องสมุดไป่ตู้
··········· am2x2 + · · · +
· amnxn
=
bm
(1.1)
的求解方法,其中 a11, a12, · · · , amn, b1, b2 · · · , bm 是已知的数,x1, x2, · · · , xn 是待求解的变量.特 别,当 b1 = b2 = · · · = bm = 0 时,线性方程组 (1.1) 称为齐次线性方程组.
以把 a11 ̸= 0 情形化为 a11 = 1 情形.
例 1.1 中的同解变形消元过程可以表示为如下初等变换.
⃝⃝12 ⃝⃝34
−换−行→
⃝⃝21 ⃝⃝34
−消−去−−x→2
⃝⃝21 ⃝⃝67
=
⃝5
−
3
×
⃝1
−消−去−−x→1
⃝⃝21 ⃝⃝35
=
⃝4
−
⃝3
−消−去−−x→1
⃝⃝21 ⃝⃝65
=
⃝3
7
8
第一章 线性方程组
例 1.1. 求解线性方程组
xx12
− −
x3 = −1 2x2 = −4
⃝1 ⃝2
33xx11
− +
2x2 + x4 = −7 x2 + x3 + 3x4 =
数学归纳法 课件
数学归纳法
1.数学归纳法的定义
一般地,证明一个与正整数 n 有关的命题,可按下列步骤进行
只要完成这两个步骤,就可以断定命题对从 n0 开始的所 有正整数 n 都成立.这种证明方法叫做数学归纳法.
2.数学归纳法的框图表示
[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数 n0,这个 n0, 就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定 都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k”到“k+1”的过程中, 要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清 由 n=k 到 n=k+1 时,等式的两边会增加多少项,增加怎样的项.
(3)利用假设是核心 在第二步证明 n=k+1 成立时,一定要利用归纳假设, 即必须把归纳假设“n=k 时命题成立”作为条件来导出 “n=k+1”,在书写 f(k+1)时,一定要把包含 f(k)的式子 写出来,尤其是 f(k)中的最后一项,这是数学归纳法的核 心.不用归纳假设的证明就不是数学归纳法.
用数学归纳法证明不等式
[典例] 求证:n+1 1+n+1 2+n+1 3+…+31n>56(n≥2,n∈N*) [证明] (1)当 n=2 时,13+14+15+16>56,不等式成立. (2)假设当 n=k(k≥2,k∈N*)时,命题成立. 即k+1 1+k+1 2+…+31k>56.
则当 n=k+1 时,k+11+1+k+11+2+…+31k+3k1+1+
1 3k+2
+
1 3k+1
=
1 k+1
+
1 k+2
+
…
+
1 3k
线性代数 第一章(知识点汇总)
第一章 行列式1.2排列及其逆序数定义1.1 由n 个不同的数1,2,··· ,n 排成的一个有序数组,称为一个n 级全排列,简称n 级排列。
定义1.2 在一个n 级排列n i i i 21中,如果有某个较大的数t i 排在较小的数s i 的前面,即)(t s i i s t >>时,就称t i 与s i 构成了一个逆序。
一个排列的逆序总数称为这个排列的逆序数。
记为)(21n i i i t 。
定义1.3 逆序数为奇数的排列为奇排列,逆序数为偶数的排列为偶排列。
规定逆序数为零的排列为偶排列。
定义1.4 在一个排列n t s i i i i 1中,如果互换两个数s i 和t i 的位置,其他的数位置不变,由此得到一个新的排列n s t i i i i 1。
这种变换称为一个对换,记为对换),t s i i (。
定理1.1 任意一个排列经过一次对换后,其奇偶性发生改变。
定理1.2 在全体)1(>n n 级排列中,奇排列与偶排列各占一半。
1.3 n 阶行列式的定义定义1.5 由2n 个元素ij a 组成的符号nnn n nna a a a a a a a a 212222111211称为n 阶行列式。
n 阶行列式的值定义为所有取自不同行不同列的n 个元素的乘积项nj n j j a a a 2121的代数和,即∑-==nn n j j j nj j j j j j t nnn n nn a a a a a a a a a a a a D 21212121)(212222111211)1(其中)(21n j j j t 为排列n j j j 21的逆序数,和式是对自然数1,2,··· ,n 的所有可能的n 级排列n j j j 21所对应的乘积项求代数和。
在n 阶行列式D 中,横排为行,纵排为列。
),,2,1(n i a ij =称为行列式第i 行,第j 列的元素。
线性代数第一章总结
线性代数第一章总结线性代数作为一门重要的数学学科,是研究向量空间及其变换性质的数学理论。
通过线性代数的学习,我们可以更好地理解和描述现实世界中的各种现象和问题。
本文将对线性代数第一章的主要内容进行总结和归纳。
1. 向量和向量空间向量是线性代数的基本概念之一,它可以用来表示空间中的点或物体。
在向量空间中,向量具有平移、缩放和加法等运算性质。
向量空间是由一组满足加法和数乘运算定义的向量组成的结构,可以用来描述和求解各种线性方程组的性质和解。
2. 矩阵和矩阵运算矩阵是线性代数中另一个重要的概念,它是一个二维数组,具有行和列的特性。
矩阵可以通过线性变换来描述空间中的映射关系。
矩阵可以进行加法和数乘运算,还可以通过矩阵乘法来描述线性变换的复合。
3. 线性方程组和矩阵方程线性方程组是线性代数的一个经典问题,它可以通过矩阵方程的形式来表示。
利用矩阵的性质和运算,可以求解线性方程组的解,并进一步研究其解的特性和性质。
矩阵方程的求解通过矩阵的逆、转置、秩和特征值等方法进行。
4. 特征值和特征向量特征值和特征向量是描述线性变换性质的重要指标。
特征值表示线性变换中不变的方向,而特征向量表示该方向的具体向量。
通过求解特征值和特征向量,可以得到线性变换的不变轴和其对应的缩放比例。
特征值和特征向量在机器学习中有着广泛的应用。
5. 行列式和矩阵的逆行列式是矩阵的一个特殊的数值,它可以用来描述线性变换的伸缩性质。
行列式的值非零表示线性变换具有可逆性,可以求解矩阵的逆。
矩阵的逆在求解线性方程组和求解特征值特征向量等问题中起着重要的作用。
通过对线性代数第一章的学习,我们了解了向量和向量空间的基本概念,矩阵及其运算的性质,线性方程组的求解方法,特征值和特征向量的应用,以及行列式和矩阵逆的概念和作用。
这些知识为我们后续学习和应用线性代数打下了坚实的基础。
线性代数作为数学的一支,不仅在理论上具有重要意义,也在实际应用中有着广泛的应用。
它被广泛应用于物理学、经济学、计算机科学、工程学等领域,为实际问题的建模、求解和分析提供了有效的数学工具。
辅导讲义(线性代数第一讲)
4、利用行列式行列 展开及余子式和代数余子式解题
12345 11122 【例1.21】 设 D 3 2 1 4 6 ,则(1)A31 A32 A33 ( 22211 43210
(A)当 m n 时,必有行列式 AB 0
(B)当 m n 时,必有行列式 AB 0
(C)当 n m时,必有行列式 AB 0
【分析】
(D)当 n m 时,必有行列式 AB 0
【例1.12】 已知 n 阶 (n 3) 行列式 A a ,将 A 中的每一列都减去其余各列之和得到新的行列
0
i j
其中 Ast 是 ast 的代数余子式。
注意:见到代数余子式马上想到展开定理,想到伴随矩阵。
43000
14300
例 行列式 0 1 4 3 0 =
。
00143
00014
分析 对于此类三对角行列式,一般采用的是递推法。 按第一列展开,有
4300
3000
430
1 D5 4 0
4 1
3 4
0 (1)21 1
x 4 ,其系数显然是 2。而含 x3 的项只能是在 2x (x 3) (x 2) (x 1) 和 x 1 (x 2) (x 1) 中,
故 x3 的系数为 11。
1.2 行列式的性质 性质 1.行列式和它的转置行列式相等; 性质 2.行列式的两行(列)互换,行列式改变符号;
1
性质 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数 乘此行列式的任意一行(列);
n
6.若 A 是 n 阶矩阵, i (i 1,2,, n) 是 A 的特征值,则 A i ; i 1
7.若 A ~ B ,则 A B 。
大一线性代数知识点总结
大一线性代数知识点总结一、向量与矩阵1.1 向量的概念与性质向量是线性代数中的基本概念,它是指具有大小和方向的量。
在数学中,向量通常用箭头表示,并且可以表示为n维空间中的有序数组。
向量的加法与数乘定义为:- 两个向量的加法:设有两个向量a=(a1, a2, ..., an)和b=(b1, b2, ..., bn),则它们的和定义为:a + b = (a1+b1, a2+b2, ..., an+bn)。
- 数乘:设有一个向量a=(a1, a2, ..., an),一个标量k,那么k乘以a定义为:ka = (ka1, ka2, ..., kan)。
1.2 矩阵的概念与基本运算矩阵是由m行n列元素组成的长方形阵列,它的基本形式可以表示为:A= ( a11 a12 ... a1n )( a21 a22 ... a2n )( ... ... ... ... )( am1 am2 ... amn )其中,aij表示第i行第j列的元素。
矩阵的加法与数乘定义为:- 矩阵的加法:设有两个矩阵A与B,它们是同型矩阵,其相应元素相加即得到矩阵的和:A+B。
- 数乘:设有一个数k,以及一个矩阵A,那么可以通过数量k乘以矩阵A的每一个元素得到新的矩阵kA。
1.3 零向量与单位矩阵零向量是指所有分量都为零的向量,通常用0表示,对于n维空间而言,它的零向量可以表示为(0, 0, ..., 0)。
单位矩阵是指在主对角线上的元素都为1,其余元素都为0的方阵,通常用I表示。
对于n×n的单位矩阵可以表示为:I = ( 1 0 ... 0 )( 0 1 ... 0 )( ... ... ... )( 0 0 ... 1 )1.4 范数与内积向量的范数是指向量的长度,通常可以表示为||v||。
对于n维向量v=(v1, v2, ..., vn),它的范数定义为:||v|| = √(v1^2 + v2^2 + ... + vn^2)。
(完整版)线代知识点总结-数学一.doc
线性代数知识点、难点1、 n 阶行列式的定义对于 n 阶行列式的定义, 重点应把握两点: 一是每一项的构成, 二是每一项的符号。
每一项的构成是不同行不同列的 n 个元素构成,一个 n 阶行列式共有 n! 项。
乘积项为a 1 j 1 a 2 j 2 ...a nj n 的符号取决于 j 1, j 2 ,... j n 的逆序数,即当 j 1 , j 2 ,... j n 为偶排列时取正号,当j 1 , j 2 ,... j n 为奇排列时取负。
例1 行列式3 1 D为二阶行列式,每一项由 2 个元素构成,第一项为 3*2 ,符号为2 2正,第二项为 1*2,符号为负。
2、余子式和代数余子式余 子 式 和 代 数 余 子 式 的概 念 容 易 出错 ,在 计 算中 应注 意 。
代 数余 子 式A ij ( 1)i j M ij ,其中 M ij 为余子式。
一般这类题,重点考察对代数余子式的理解和其基 本性质的应用,所以考生一定要灵活掌握,掌握基本思想。
下面请看一例: 例2 设行列式3 04 0 2 2 2 2D7 0 05 32 2则第 4 行元素余子式之和的值为 __________【分析】 M 41M42M 43M44A41A42A 43A443 0 43 4 0 2 2 227)( 1)322 22287 0( 011 11 111部分考生答案为 0。
原因是将余子式和代数余子式混淆了。
本题中第四行元素的代数余子式之和为 0。
因为A 41 A 42 A 43 A 44 1 (2 A 41 2A 42 2A 43 2 A 44 ) 0 。
23、行列式按一行(列)展开设 A (a ij ) n n ,则a i1A j1a i 2Aj 2... a in A jn| A |,ij 0,ij或a 1iA 1 ja 2iA2 j... a niAnj| A |,ij 0,ij注意:公式中使用的是代数余子式,而不是余子式。
谈谈数学归纳法在线性代数中的应用
谈谈数学归纳法在线性代数中的应用摘要:数学归纳法在数学中具有重要地位,是数学中重要的基本方法之一,许多数学问题的解决离不开数学归纳法,尤其是在线性代数中,用数学归纳法证明某些有关自然数的命题具有不可替代性,因此,在线性代数教学中应用数学归纳是十分必要的. 本文.根据线性代数课程的内容体系,主要探讨数学归纳法在线性代数中的行列式、矩阵乘法、矩阵的秩、矩阵的初等变换、向量组的线性相关性、相似矩阵、二次型等方面的具体应用.关键词:数学归纳法;线性代数;应用1.数学归纳法简述定理1(第一数学归纳法):设p(n)表示任意一个与自然数n有关的命题,如果命题对于p(1)或p(2)成立,又假设命题对于p(n)成立时,能够推出p(n+1)也成立,则对于任意的自然数n,p(n)恒成立.定理2 (第二数学归纳法):设p(n)表示任意一个与自然数n有关的命题,如果p(1)成立,又假设命题对于n≤k时成立时,可以推导出n=k+1时命题成立,则对于任意的自然数n,p(n)恒成立.二、数学归纳法在线性代数中的运用数学归纳法不仅能够培养学生发现问题、分析问题、解决问题、推广问题的能力,而且是培养学生核心素养的好素材.另外,数学归纳法在数学中具有重要地位,是数学中重要的基本方法之一,许多数学问题的解决离不开数学归纳法,尤其是在线性代数中,用数学归纳法证明某些有关自然数的命题具有不可替代性,因此,在线性代数教学中应用数学归纳是十分必要的. 下面举例说明数学归纳法在线性代数中的具体应用.1.在行列式中应用数学归纳法例1.证明:证明:(利用第二数学归纳法)当时,,结论成立,假设对于所有阶数小于n的行列式结论都成立,则对于n阶行列式,按最后一行展开,有,又由于所以即对于n阶行列式结论也成立,由第二数学归纳法,命题得证。
2.在矩阵乘法中应用数学归纳法例2.已知k阶方阵,证明:。
证明:(利用第一数学归纳法)当时,命题成立,假设命题对于n时也成立,即,则对于n+1时,我们有.由第一数学归纳法,命题得证。
最完整的线代基础知识点
最完整的线代基础知识点第1章行列式1.1 n阶行列式1.1.1 二阶、三阶行列式起源:发现规律了,继续~从上述推倒可以看出,行列式说白了就是对方程求解的简化过程。
后续的所有变换也都是基于此的。
了解到根源了,就不难理解了。
知识点:(所有的知识其实都是不成体系的,体系都是人为归纳的,其实知识就是一个一个的点而已)1.对角线法则这个法则只能用在二阶和三阶,高阶有另外的算法,后面会介绍到,耐心往下看吧。
以后看到二三阶可以直接用这个算哦。
2.行列式应用(克莱姆法则)法则啥的就是别人先发现了,就是一个规律。
不用理解,直接记住。
(因为本来就是一个现象)小技巧:再算d1d2d3的时候默念一下d1换1(列)d2换2(列)d3换3(列)。
1.1.2 排列既逆序数起源:逆序数为奇数,为奇排列,偶数为偶排列。
知识点:1.任一排列经过对换后,必改变其奇偶性。
2.所有n阶排列中,奇排列与偶排列个数相同,各有n!/2个。
1.1.3 n阶行列式知识点:1.计算方法前面说了,n阶有其他方法,这个就是其中之一不过比较笨重难算一点。
只要看懂这个式子,这节就ok啦,看不懂的可以评论问我。
2.对角行列式对角行列式等于其对角元素的连乘,再加上一个逆序数。
因为除了去取对角之外但凡取到其他位置上的0,就会让这项变成0。
上三角行列式和下三角行列式与对角行列式类似,不能取0。
好题:1.对行列式中数字的选取规则理解如果不用分块矩阵的话,直接从定义出发,三行用两个书,必有一行选不到非零数。
1.2 行列式的性质知识点:1.行列式与它的转置行列式相同,即行与列为完全等价的。
2.互换行列式的两行或两列,行列式值变号3.若行列式有两行或两列元素相同则其行列式的值为04.行列式的某一行中所有元素都乘以k,等于用k数乘行列式5.如果行列式中某一行的元素都为0,则其值为06.若行列式有两列或两行元素成比例,则其为07.若两个行列式除了一行外相同,则可以相合。
相同的行不变,不同的行相加。
线性代数知识点总结 大一线性代数知识点
线性代数知识点总结大一线性代数知识点线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
下面是想跟大家分享的线性代数知识点总结,欢迎大家浏览。
第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断。
线性代数第1讲数学归纳法
2关键词:数学归纳法数学归纳法又称有限归纳法. 它是证明数学命题的一种常用方法.:1=n 时,公式(1)的左边 = 1,右边 .1)11(121=+⨯⨯= 公式(1)成立. 现假设k n =时公式(1)已成立,即.)1(21321+=++++k k k 当1+=k n 时,.)1()321()1(321++++++=++++++k k k k 由归纳假设)(1213+2+1+=++k k k ,因此 ]1)1([)1(21)2()1(21)1()1(21)1(321+++=++=+++=++++++k k k k k k k k k 即当1+=k n 时,公式(1)也成立,因而命题得证.现在,如果我们把公式(1)的左端记为)(1n S , 此时公式(1)可写为?n 321S 2222)n (2=++++= 结论是:)2(6)12)(1(3212222)(2++=++++=n n n n S n公式(2)是如何想出来的?正确否?怎么证?因为它涉及正整数n ,一般是用数学归纳法来回答此问题..304321,14321,521,112222222222=+++=++=+=如果我们多算几项并列成下表:3173153133113937351:S S 2041409155301451:S 3628211510631:S 87654321:n )n (1)n (2)n (2)n (1 似乎可以看出有下面的规律:,312)(1)(2+=n S S n n (这里只是对 8,,3,2,1 =n 成立)从而 )2(6)12()1(312)(1)(2++=+=n n n S n S n n8,,3,2,1 =n 是成立的. 但对任意正整数n 是否都成立? 2)对任何正整数n 都对.)(2n S 知道了,能否利用归纳、类比的方法进一步探索出)(3n S 与)(1n S 的联系呢?这就是由个别(或特殊)去发现 一般的思维方法. 先作如下观察:.)4321(1004321,)321(36321,)21(921,112333323332333+++==+++++==+++==+=似乎已经看出有如下十分有趣的规律:虽然公式(3)当定它对于一切正整数都对. 此时我们就会想到用数学归纳法来证明公式(3)的正确性.我们已验证(3)对4,3,2,1=n 成立. 设 k n =时公式(3)已成立,即有,][2)(1)(3k kS S=则当1+=kn 时,有.][)]2)(1(21[)2()1(41])1(4[)1(41)1(4)1()1(][)1(2)1(12222232232)(13)(3)1(3++=++=++=+++=+++=++=++=kk kkSk kk k k kkkk kkSk SS亦即式(3)当1+=kn 时仍成立.由于已知式(3)当1=n时成立,故知公式(3)对一切正整数n均成立.注意有时归纳基础可能不从1开始.例试证:当3≥n时,.22nn>证 这时归纳基础要从3=n 开始,当3=n 时,823=而,632=×,68> 故有.3223⨯> 即命题对3=n 成立 (此为归纳基础).假定k n =时有.22k k > 然后讨论1+=k n 时的情形. .222221k k k k +=⋅=+由假定,22k k >因此.2222k k k k +>+由于3≥k 时,22>k 故.)1(22222+=+>+k k k k于是.)1(221+>+k k 命题得证.高斯(Fredrich Gauss 1777 – 1855)是当时德国最伟大的数学家. 在德国,10马克是最通行的货币, 其上印有数学王子高斯的头像和 他在研究天文问题时所发现的正态分布曲线图,一个民族对于在科 学上做出重大贡献的数学家如此尊敬和爱戴, 令世人盛赞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
关键词:
数学归纳法
数学归纳法又称有限归纳法. 它是证明数学命题的一种常用方法.
:
1=n 时,公式(1)的左边 = 1,右边 .1)11(12
1=+⨯⨯= 公式(1)成立. 现假设k n =时公式(1)已成立,即
.)1(2
1321+=++++k k k 当1+=k n 时,
.)1()321()1(321++++++=++++++k k k k 由归纳假设)(12
13+2+1+=++k k k ,因此 ]1)1([)1(2
1)2()1(2
1)1()1(2
1)1(321+++=++=+++=
++++++k k k k k k k k k 即当1+=k n 时,公式(1)也成立,因而命题得证.
现在,如果我们把公式(1)的左端记为)(1n S , 此时公式(1)可写为
?n 321S 2222)n (2=++++= 结论是:
)2(6)
12)(1(3212222)(2++=++++=n n n n S n
公式(2)是如何想出来的?正确否?怎么证?
因为它涉及正整数n ,一般是用数学归纳法来回答此问题.
.304321,14321,521,112222222222=+++=++=+=
如果我们多算几项并列成下表:
3
173153133113937351:S S 2041409155301451:S 36
28211510631:S 8
7654321:n )n (1)n (2)n (2)n (1 似乎可以看出有下面的规律:
,3
12)(1)(2+=n S S n n (这里只是对 8,,3,2,1 =n 成立)从而 )2(6)12()1(312)(1)(2++=+=n n n S n S n n
8,,3,2,1 =n 是成立的. 但对任意正整数n 是否都成立? 2)对任何正整数n 都对.
)(2n S 知道了,能否利用归纳、类比的方法进一步探索出
)(3n S 与)(1n S 的联系呢?这就是由个别(或特殊)去发现 一般的思维方法. 先作如下观察:
.)4321(1004321,
)321(36321,)21(921,112333323332333+++==+++++==+++==+=
似乎已经看出有如下十分有趣的规律:
虽然公式(3)当
定它对于一切正整数都对. 此时我们就会想到用数学归纳法来证明公式(3)的正确性.
我们已验证(3)对4,3,2,1=n 成立. 设 k n =时公式(3)
已成立,即有,][2)(1
)
(3
k k
S S
=
则
当1
+
=
k
n 时
,
有
.
][
)]
2
)(1
(
2
1[
)
2
(
)
1
(
41
]
)
1
(
4
[)
1(
4
1)
1
(
4
)
1(
)1
(
]
[)
1
(
2
)1
(
1
22
2
2
23
2
23
2
)(
1
3)(3)1(3
+
+=+
+
=++=
+++
=+
++
=
++=++=
k
k k
k
S
k k
k k k k
k
k
k k
k
S
k S
S
亦即式(
3)当
1
+
=
k
n 时仍成立
.
由于已知式(3
)当
1
=n
时成立,故知公式(
3
)对一切正整数n
均成立
.
注意
有时归纳基础可能不从
1
开始
.
例
试证
:
当
3
≥n
时,
.2
2
n
n
>
证 这时归纳基础要从
3
=n 开始,当3=n 时,823=
而,632=×
,68> 故有.3223⨯> 即命题对3=n 成立 (此为归纳基础).
假定k n =时有
.22k k > 然后讨论1+=k n 时的情形. .222221k k k k +=⋅=+由假定,22k k >因此
.2222k k k k +>+
由于3≥k 时,22>k 故
.)1(22222+=+>+k k k k
于是.)1(221+>+k k 命题得证.
高斯(Fredrich Gauss 1777 – 1855)是当时德国最伟大的数学家. 在德国,10马克是最通行的货币, 其上印有数学王子高斯的头像和 他在研究天文问题时所发现的正态分布曲线图,一个民族对于在科 学上做出重大贡献的数学家如此尊敬和爱戴, 令世人盛赞.。