七上线段的计算(题型总结)

合集下载

2021-2022学年北师大版七年级数学上册线段的有关计算含答案

2021-2022学年北师大版七年级数学上册线段的有关计算含答案

几何专题复习:线段的有关计算1、如图,点B,D在线段AC上,BD=AB,AB=CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.2、如图,点C在线段AB上,D是线段AC的中点,E是线段BC的中点.①若AC=8,BC=3,求DE;②若DE=5,求AB.3、如图,AB=12,点C是AB的中点,点D在AB所在直线上,且AD:DB=5:7,请画出示意图,并求CD的长.4、(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度;(2)对于(1)题,如果将“点C在线段AB上”改写成“点C在线段AB延长线上”,其他条件不变,画出图形并求线段MN的长度.5、如图,已知线段AB=8.(1)按要求作图:反向延长线段AB至C,使得BC=3AB.(2)在(1)的条件下,取BC的中点D,求AD的长,6、如图,已知B、C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.7、如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.8、角与线段的计算(1)如图1,已知AC=6,D为AB中点,E为CB中点,求DE;(2)如图2,已知∠AOC:∠COD=5:11,∠AOB:∠BOD=5:7,若∠COB=10°,求∠AOD.9、把线段AB延长到D,使BD=AB,再延长线段BA到C,使CB=3AB.(1)请根据题意将下列图形补充完整,并求出CD是AB的多少倍.(2)补充完后图中共有几条线段?若图中所有线段长度和为87,求线段AB 的长度.(3)若AB=4cm,点E、F分别是线段AC、CD的中点,动点M从点A出发,沿直线CD以2cm/秒的速度向右运动,当点F是线段EM的中点时,求点M运动的时间t的值.10、把线段AB延长到D,使BD=AB,再延长线段BA到C,使CA=AB.(1)请补充图形并求出CD是AB的几倍?(2)补充完后的图中共有几条线段?若图中所有线段长度和为46,求线段AB的长度.(3)若AB=6cm,点E、F分别是线段AC,CD的中点,当线段AB以2cm/秒的速度向右运动t秒,是否存在点F是线段BE的中点,若存在,请求出t的值;若不存在,请说明理由.11、已知点B在线段AC上,点D在线段AB上,(1)如图1,若AB=6cm,BC=4cm,D为线段AC的中点,求线段DB的长度:(2)如图2,若BD=AB=CD,E为线段AB的中点,EC=12cm,求线段AC 的长度.12、点C在线段AB上,BC=2AC.(1)如图1,P、Q两点同时从C、B出发,分别以1cm/s、2cm/s的速度沿直线AB向左运动.①在P还未到达A点时,的值为;②当Q在P右侧时(点Q与C不重合),取PQ中点M,CQ的中点N,求的值;(2)若D是直线AB上一点,且|AD﹣BD|=CD,则的值为或或或.13、如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1)①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=AD时,请直接写出t的值.14、已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.(1)若AB=18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,则=.15、如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=,若BE=mCF,则m=.(2)当点E沿直线l移动到图2位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上有一点D,BD=7,且DF=3DE,则AF=.16、如图,线段AB=15,点A在点B的左边.(1)点C在直线AB上,AC=2BC,则AC=.(2)点D在线段AB上,AD=6.动点P从点D出发,以每秒2个单位长度的速度沿直线AB向右运动,点Q为AP的中点,设运动时间为t秒,①当t为何值时,DQ=2?②动点R从点B出发,以每秒1个单位长度的速度沿直线AB向左运动,若P、R两点同时出发,相遇后分别保持原来运动方向不变,速度都增加2个单位长度每秒.在整个运动过程中,当PR+2BP+4DQ=17时,t=.参考答案1、如图,点B,D在线段AC上,BD=AB,AB=CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.【解答】解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=AB=1.5x,DF=2x,∵EF=20,∴1.5x+2x﹣x=20,解得:x=8,∴AE+EF+CF=1.5x+20+2x=12+20+16=48.2、如图,点C在线段AB上,D是线段AC的中点,E是线段BC的中点.①若AC=8,BC=3,求DE;②若DE=5,求AB.【解答】解:(1)∵D是线段AC的中点,E是线段BC的中点,∴CD=AC==4,CE===,∴DE=CD+CE=4=;(2)∵DE=CD+CE,D是线段AC的中点,E是线段BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2CD+2CE=2(CD+CE)=2DE=2×5=10.3、如图,AB=12,点C是AB的中点,点D在AB所在直线上,且AD:DB=5:7,请画出示意图,并求CD的长.【解答】解:如图,当D在A的右侧,∵AB=12,点C是AB的中点,∴AC=BC=AB=6,∵AD:DB=5:7,∴AD=×AB=5,∴CD=AC﹣AD=1;当D在A的左侧,∵AB=12,点C是AB的中点,∴AC=BC=AB=6,∵AD′:D′B=5:7,∴AD′=5××AB=30,∴CD′=AC+AD′=6+30=36.(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、4、BC的中点,求线段MN的的长度;(2)对于(1)题,如果将“点C在线段AB上”改写成“点C在线段AB延长线上”,其他条件不变,画出图形并求线段MN的长度.【解答】解:(1)∵AC=6cm,点M是AC的中点,∴MC=3cm;∵BC=4cm,点N是BC的中点,∴CN=2cm;∴MC+CN=5cm.∴线段MN的的长为5cm;(2)如图所示:∵AC=6cm,点M是AC的中点,∴MC=3cm;∵BC=4cm,点N是BC的中点,∴CN=2cm;∴MN=MC﹣CN=3﹣2=1cm.5、如图,已知线段AB=8.(1)按要求作图:反向延长线段AB至C,使得BC=3AB.(2)在(1)的条件下,取BC的中点D,求AD的长,【解答】解:如图,(1)反向延长线段AB至C,使得BC=3AB.(2)在(1)的条件下,AB=8,BC=3AB=24,∵D是BC的中点,∴CD=BD=BC=12,∴AD=BD﹣AB=12﹣8=4.答:AD的长为4.6、如图,已知B、C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.【解答】解:∵B、C两点把线段AD分成2:5:3三部分,∴AB=AD,CD=AD.∵M为AD的中点,∴AM=.∵BM=AM﹣AB,∴=6.解得:AD=20cm.∴CD=cm.∵M为AD的中点,∴MD==10cm.∴CM=MD﹣CD=10﹣6=4cm.7、如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.8、角与线段的计算(1)如图1,已知AC=6,D为AB中点,E为CB中点,求DE;(2)如图2,已知∠AOC:∠COD=5:11,∠AOB:∠BOD=5:7,若∠COB=10°,求∠AOD.【解答】(1)解:设AD=x,CE=y,∵D为AB中点,∴AD=DB=x,∵E为BC中点,∴CE=EB=y,∵AC=6,∴AC=AB﹣CB,即6=2x﹣2y,∴x﹣y=3,则DE=DB﹣EB=x﹣y=3.(2)解:设∠AOC=5x°,∵∠AOC:∠COD=5:11,∴∠COD=11x°,则∠AOD=∠AOC+∠COD=5x+11x=16x°,∵∠AOB:∠BOD=5:7,∴==°,∵∠COB=10°,∴∠COB=∠AOB﹣∠AOC,即,解得x=6,则∠AOD=16×6=96°.9、把线段AB延长到D,使BD=AB,再延长线段BA到C,使CB=3AB.(1)请根据题意将下列图形补充完整,并求出CD是AB的多少倍.(2)补充完后图中共有几条线段?若图中所有线段长度和为87,求线段AB 的长度.(3)若AB=4cm,点E、F分别是线段AC、CD的中点,动点M从点A出发,沿直线CD以2cm/秒的速度向右运动,当点F是线段EM的中点时,求点M运动的时间t的值.【解答】解:(1)如图,∵BD=AB,CB=3AB,∴CD=CB+BD=3AB+AB=AB,∴CD是AB的倍;(2)图中共有6条线段,∵AC+BC+CD+AB+AD+BD=2AB+3AB+4.5AB+AB+2.5AB+1.5AB=14.5AB=87,∴AB=6;(3)如图,当AB=4cm时,BC=12cm,CD=18cm,AC=12﹣4=8(cm),∵点E、F分别是线段AC、CD的中点,∴CF=18÷2=9(cm),CE=AE=8÷2=4(cm),∴EF=9﹣4=5(cm),AF=5﹣4=1(cm).∵FM=EF=5(cm),∴2t﹣1=5,解得t=3.10、把线段AB延长到D,使BD=AB,再延长线段BA到C,使CA=AB.(1)请补充图形并求出CD是AB的几倍?(2)补充完后的图中共有几条线段?若图中所有线段长度和为46,求线段AB的长度.(3)若AB=6cm,点E、F分别是线段AC,CD的中点,当线段AB以2cm/秒的速度向右运动t秒,是否存在点F是线段BE的中点,若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)如图,∵BD=AB,CA=AB,∴CD=AC+AB+BC=AB+AB+AB=AB,∴CD是AB的3.5倍;(2)图中共有6条线段,∵AC+BC+CD+AB+AD+BD=AB+2AB+3.5AB+AB+2.5AB+1.5AB=11.5AB=46,∴AB=4;(3)假设存在点F是线段BE的中点,如图,由题意得,AC=6+2t,∵点E、F分别是线段AC,CD的中点,∴AE=CE=AC=3+t,CF=DF=CD=AB=,∴EF=CF﹣CE=﹣t,∵CB=AC+AB=6+2t+6=12+2t,∴BF=BC﹣CE﹣EF=+2t,当EF=BF时,即﹣t=+2t,解得:t=2,∴存在点F是线段BE的中点,t的值为2.11、已知点B在线段AC上,点D在线段AB上,(1)如图1,若AB=6cm,BC=4cm,D为线段AC的中点,求线段DB的长度:(2)如图2,若BD=AB=CD,E为线段AB的中点,EC=12cm,求线段AC 的长度.【解答】解:(1)如图1所示:∵AC=AB+BC,AB=6cm,BC=4cm∴AC=6+4=10cm又∵D为线段AC的中点∴DC=AC=×10=5cm∴DB=DC﹣BC=6﹣5=1cm(2)如图2所示:设BD=xcm∵BD=AB=CD∴AB=4BD=4xcm,CD=3BD=3xcm,又∵DC=DB+BC,∴BC=3x﹣x=2x,又∵AC=AB+BC,∴AC=4x+2x=6xcm,∵E为线段AB的中点∴BE=AB=×4x=2xcm又∵EC=BE+BC,∴EC=2x+2x=4xcm又∵EC=12cm∴4x=12,解得:x=3,∴AC=6x=6×3=18cm.12、点C在线段AB上,BC=2AC.(1)如图1,P、Q两点同时从C、B出发,分别以1cm/s、2cm/s的速度沿直线AB向左运动.①在P还未到达A点时,的值为;②当Q在P右侧时(点Q与C不重合),取PQ中点M,CQ的中点N,求的值;(2)若D是直线AB上一点,且|AD﹣BD|=CD,则的值为或或或.【解答】解:(1)①AP=AC﹣PC,CQ=CB﹣QB,∵BC=2AC,P、Q速度分别为1cm/s、2cm/s,∴QB=2PC,∴CQ=2AC﹣2PC=2AP,∴=.故答案为.②MN=MQ﹣NQ=PQ﹣CQ=(PQ﹣CQ)=PC ∵PC=QB,∴MN=×QB=QB,∴=;(2)∵BC=2AC.设AC=x,则BC=2x,∴AB=3x,①当D在A点左侧时,|AD﹣BD|=BD﹣AD=AB=CD,∴CD=6x,∴==;②当D在AC之间时,|AD﹣BD|=BD﹣AD=CD,∴2x+CD﹣x+CD=CD,x=﹣CD(不成立),③当D在BC之间时,|AD﹣BD|=AD﹣BD=CD,∴x+CD﹣2x+CD=CD,CD=x,∴==;|AD﹣BD|=BD﹣AD=CD,∴2x﹣CD﹣x﹣CD=CD,CD=x,∴;④当D在B的右侧时,|AD﹣BD|=AB=CD,∴CD=6x,∴==.综上所述,的值为或或或;故答案为或或或;13、如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1)①直线l上以A,B,C,D为端点的线段共有 6 条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为10 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=AD时,请直接写出t的值.【解答】解:(1)①线段有:AB,AC,AD,BC,BD,CD,共6条;故答案为:6;②∵AC=5cm,BD=6cm,BC=1cm,∴AD=AC+BD﹣BC=5+6﹣1=10∵当点P位于线段AD上时,PA+PD的值最小∴PA+PD的最小值为10cm故答案为:10;(2)当点B在点C左边时,AD﹣BC=2MN;当点B在点C右边时,AD+BC=2MN.理由:当点B在点C左边,如图AD+BC=AC+BD=2MC+2BN=2(MC+BN)=2(MN+BC),AD﹣BC=2MN,当点B不在点C左边时,如图,AD﹣BC=AC+BD=2MC+2BN=2(MC+BN)=2(MN﹣BC),AD+BC=2MN,(3)∵C是AD的一个三等分点,DC>AC,且AD=9cm,∴AC=3cm,设A点为数轴AD上的原点,向右为正方向,由题意得,E点表示的数为:3﹣2t,F表示的数为:9﹣t,∵Q是EF的中点,∴Q点表示的数为:(3﹣2t+9﹣t)=6﹣t,∵AQ+AE+AF=AD,∴|6﹣t|+|3﹣2t|+|9﹣t|=,化简得,|12﹣3t|+|6﹣4t|+|18﹣2t|=27,当0<t≤1.5时,有12﹣3t+6﹣4t+18﹣2t=27,得t=1;当1.5<t≤4时,有12﹣3t+4t﹣6+18﹣2t=27,得t=﹣3<0(舍去);当4<t≤9时,有﹣12+3t﹣6+4t+18﹣2t=27,得t=5.4;当t≥9时,有﹣12+3t﹣6+4t﹣18+2t=27,得t=7<9(舍去);故t=1或5.4.14、已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.(1)若AB=18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,则=或.【解答】解:(1)AC=2BC,AB=18,DE=8,∴BC=6,AC=12,①如图,∵E为BC中点,∴CE=3,∴CD=5,∴AD=AB﹣DB=18﹣11=7;②如图,Ⅰ、当点E在点F的左侧,∵CE+EF=3,BC=6,∴点F是BC的中点,∴CF=BF=3,∴AF=AB﹣BF=18﹣3=15,∴AD=AF=5;Ⅱ、当点E在点F的右侧,∵AC=12,CE+EF=CF=3,∴AF=AC﹣CF=9,∴AF=3AD=9,∴AD=3.综上所述:AD的长为3或5;(2)∵AC=2BC,AB=2DE,满足关系式=,Ⅰ、当点E在点C右侧时,如图,设CE=x,DC=y,则DE=x+y,∴AB=2(x+y)AC=AB=(x+y)∴AD=AC﹣DC=x+yBC=AB=(x+y)∴BE=BC﹣CE=y﹣x∴AD+EC=x+y∵2(AD+EC)=3BE∴2(x+y)=3(y﹣x)解得,17x=4y,∴===.Ⅱ、当点E在点A左侧时,如图,设CE=x,DC=y,则DE=y﹣x,∴AB=2(y﹣x)AC=AB=(y﹣x)∴AD=DC﹣AC=x﹣yBC=AB=(y﹣x)∴BE=BC+CE=y+x∴AD+EC=x﹣y∵2(AD+EC)=3BE∴2(x﹣y)=3(y+x)解得,11x=8y,∴==.点D在C点右侧,及点D在B点右侧,无解,不符合题意;当DE在线段AC内部时,如图,设CE=x,DC=y,则DE=y﹣x,∴AB=2(y﹣x),AC=AB=(y﹣x),∴AD=AC﹣DC=y﹣x,BC=AB=(y﹣x),∴BE=BC+CE=y+x,∴AD+EC=﹣x+y,∵2(AD+EC)=3BE∴2(﹣x+y)=3(y+x),解得,﹣5x=4y(不符合题意,舍去),∴==<,不符合题意,舍去.故答案为或.15、如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= 4 ,若BE=mCF,则m= 2 .(2)当点E沿直线l移动到图2位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上有一点D,BD=7,且DF=3DE,则AF= 1 .【解答】解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,设CF=a,则BE=am,∵CE=6,CF=a,∴EF=CE﹣CF=6﹣a,∵F为AE的中点,∴AE=2EF=12﹣2a,∴BE=AB﹣AE=12﹣12+2a=am,∴m=2;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3DE.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣2x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣2x),解得x=1,∴AF=EF=2.故答案是:4;2;2.16、如图,线段AB=15,点A在点B的左边.(1)点C在直线AB上,AC=2BC,则AC=10或30 .(2)点D在线段AB上,AD=6.动点P从点D出发,以每秒2个单位长度的速度沿直线AB向右运动,点Q为AP的中点,设运动时间为t秒,①当t为何值时,DQ=2?②动点R从点B出发,以每秒1个单位长度的速度沿直线AB向左运动,若P、R两点同时出发,相遇后分别保持原来运动方向不变,速度都增加2个单位长度每秒.在整个运动过程中,当PR+2BP+4DQ=17时,t=2或4 .【解答】解:(1)点C在线段AB上,∵AC=2BC,AB=15,∴AC=15×=10;点C在线段AB的延长线上,∵AC=2BC,AB=15,∴AC=15×=30.故AC=10或30.故答案为:10或30;(2)①点Q在点D的左侧,依题意有(6+2t)=6﹣2,解得t=1;点Q在点D的右侧,依题意有(6+2t)=6+2,解得t=5.故当t为1或5时,DQ=2;②PR=,BP=,DQ=,当t≤3时,依题意有9﹣3t+2(9﹣2t)+4(3﹣t)=17,解得t=2;当3<t<时,依题意有7(t﹣3)+2(﹣4t+15)+4×2(t﹣3)=17,解得t=(舍去);当t≥时,依题意有7(t﹣3)+2(4t﹣15)+4×2(t﹣3)=17,解得t=4.故t=2或4.故答案为:2或4.。

七年级上线段的综合计算(教师版)

七年级上线段的综合计算(教师版)

1、如图,点C 、D 为线段AB 上两点,AC +BD =a ,且AD +BC =57AB ,则CD 等于 。

(用含a 的式子表示)。

(a 32)2、已知,如图,B 、C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长。

知识点一 基础线段问题 【知识梳理】1、常考题型:线段基本概念、线段计数、线段中点问题、方程思想求线段长度、分类讨论线段上点的位置关系、线段与数轴、绝对值结合的动点压轴问题等;2、常用方法:设元法、方程思想、分类讨论等;3、线段的中点、等分点对应的线段关系(1)概念:把线段分为两条相等的线段的点,叫做这条线段的中点。

(2)画图并思考①若点C 为线段AB 上任意一点(点C 不与A 、B 重合),点M 为线段AC 的中点,点N 为线段BC 的中点,则线段MN 与AB 有什么数量关系?②若点C 为线段AB 上任意一点(点C 不与A 、B 重合),且2AC=5BC ,问AC 与AB 、BC 与AB 的数量关系?【例题精讲一】线段的基础计算1、已知线段AB ,在AB 的延长线上取一点C ,使AC =2BC ,在AB 的反向延长线上取一点D ,使DA =2AB ,则线段AC 是线段DB 的 倍。

(32)2、已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,求线段MN的长度。

3、(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度;(2)对于(1)题,如果将“点C在线段AB上”改写成“点C在线段AB延长线上”,其他条件不变,画出图形并求线段MN的长度。

【课堂练习】1、已知点A、B、C在直线l上,若BC=53AC,则BCAB=。

(2585或)2、如图,点E是线段AB的中点,C是EB上一点,AC=12cm。

(1)若EC:CB=1:4,求线段AB的长;(20cm)(2)若F为CB的中点,求线段EF的长。

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。

解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。

二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。

巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。

2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。

三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。

解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习(含答案)

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习(含答案)

2021年人教版数学七年级上册期末复习《线段有关的计算》专题练习一、选择题1.如图,如果点C是线段AB的中点,那么:①AB=2AC;②2BC=AB;③AC=BC;④AC+BC=AB.上述四个式子中,正确的有( )A.1个B.2个C.3个D.4个2.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是( )A.2cmB.3cmC.4cmD.6cm3.如图,AB=18,点M是AB的中点,点N将AB分成MN:NB=2:1,则AN的长度是___A.12B.14C.15D.164.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,MN=5.4cm,那么线段AB的长等于( )A.7.6cm B.7.8cm C.8cm D.8.2cm5.如图,O是线段AC中点,B是AC上任意一点,M、N分别是AB、BC的中点,下列四个等式中,不成立的是( )A.MN=OCB.MO=(AC-BC)C.ON=(AC-BC)D.MN=(AC-BC)6.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm或22cmD.4cm或44cm7.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .318.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )A .8B .9C .8或9D .无法确定二、填空题9.如图,M ,N 在线段AB 上,且MB=4cm ,NB=16cm ,且点N 是AM 的中点,则AB=______cm.10.如图,已知线段AB=16cm,点M 在AB 上,AM:BM=1:3,P,Q 分别为AM,AB 的中点,则PQ 的长为 .11.如图,点M ,N ,P 是线段AB 的四等分点,则BM 是AM 的 倍.12.如图,AB ∶BC ∶CD=2∶3∶4,AB 的中点M 与CD 的中点N 的距离是3 cm ,则BC =__13.已知线段AB=1 996 cm ,P 、Q 是线段AB 上的两个点,线段AQ=1 200 cm ,线段BP=1 050 cm ,则线段PQ=___________.14.如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10 cm,BC=4 cm,则AD 的长等于 .15.已知A ,B ,C ,D 是同一条直线上从左到右的四个点,且AB ∶BC ∶CD=1∶2∶3,若BD=15cm ,则AC=______cm ,_______是线段AD 的中点.16.如图,数轴上A ,B 两点表示的数分别为和6,数轴上的点C 满足,点D 在线段AC 的延长线上,若,则BD= ,点D 表示的数为 .A B D C三、解答题17.已知数轴上有A,B,C三点,它们所表示的数分别是2,-4,x.(1)求线段AB的长度;(2)若AC=5,求x的值.18.如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.19.如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.20.如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB 的中点,求线段EF的长.21.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任意一点,满足AC +CB=acm ,其他条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在AB 的延长线上,且满足AC -CB=bcm ,其他条件不变,MN 的长度为_________.(直接写出答案)22.如图,点A 、B 、C 在数轴上,点O 为原点.线段AB 的长为12,BO=12AB ,CA=13AB.(1)求线段BC 的长;(2)求数轴上点C 表示的数;(3)若点D 在数轴上,且使DA=23AB ,求点D 表示的数.23.如图,AB=30cm ,点P 从点A 出发,沿AB 以3cm/s 的速度匀速向终点B 运动;同时点Q 从点B 出发,沿BA 以5cm/s 的速度匀速向终点A 运动,设运动时间为t.(1)填空:PA= cm ;BQ= cm(用含t 的代数式表示);(2)当P 、Q 两点相遇时,求t 的值;(3)直接写出P 、Q 两点相距6cm 时,t 的值 为 .24.如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.参考答案1.D2.B3.C4.B5.D6.C ;7.B8.C9.答案为:2810.答案为:6cm11.答案为:312.答案为:1.5cm .13.答案为:254 cm.14.答案为:3cm.15.答案为:9 点C ;16.答案为:2,417.解:(1)AB=2-(-4)=6;(2)2-x=5,x=-3或x -2=5,x=7.18.解:∵线段AB=8cm ,E 为线段AB 的中点,∴BE4cm ,∴BC=BE ﹣EC=4﹣3=1cm ,∴AC=AB ﹣BC=8﹣1=7cm ,∵点D 为线段AC 的中点,∴CD=3.5cm ,∴DE=CD ﹣EC=3.5﹣3=0.5cm .19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB ﹣PB=40﹣28=1220.解:∵F 为线段AB 的中点,∴BF=AB=16,∵AC=BC ,∴BC=AB=24, ∵E 为线段BC 的中点,∴BE=12,∴EF=BF ﹣BE=16﹣12=4.21.解:(1)因为点M 、N 分别是AC 、BC 的中点,所以MC=12AC=12×8=4cm ,CN=12CB=12×6=3cm ,MN=MC +CN=4+3=7cm.(2)因为点M 、N 分别是AC 、BC 的中点,所以MC=12AC ,CN=12CB ,MN=MC +CN=12AC +12CB=12(AC +CB)=a 2cm. (3)b 2cm 22.解:(1)答案为:8.(2)答案为:-2.(3)答案为:-14或2.23.解:(1)3t ;5t ;(2)3t+5t=30,t=;(3)相遇前相距6个单位:5t+3t+6=30,t=3;相遇后相距6个单位:5t-3t+6=30,t=4.5;24.解:。

七上线段的计算(题型总结)

七上线段的计算(题型总结)

F E B C A专题一 线段的计算---方程思想1.如图所示,P 是线段AB 上一点,M ,N 分别是线段AB ,AP•的中点,若AB=16,BP=6,求线段MN 的长.举一反三:1.如图,AB=24cm ,C 、D 点在线段AB 上,且CD=10cm ,M 、N 分别是AC 、BD 的中点,求线段MN 的长。

2.如图,E 、F 分别是线段AC 、AB 的中点,若EF=20cm ,求BC 的长。

3.如图,已知AB=20,C 为AB 的中点,D 为CB 上一点,E 为BD 的中点,且EB=3,求CD 的长。

4.如图,C 、D 、E 将线段分成2:3:4:5四部分,M 、P 、Q 、N 分别是线段AC 、CD 、DE 、EB 的中点,且MN=21,求PQ 的长。

5.如图,延长线段AB 到C ,使BC=2AB ,若AC=6cm ,且AD=DB ,BE :EF :FC=1:1:3,求DE 、DF 的长。

6、如图,同一直线上有A 、B 、C 、D 四点,已知,25,32CB AC AD DB ==CD=4cm ,求AB 的长。

. . . . A B C DBE D C A 第3题 Q N C A D 第4题 C 第5题专题二线段的计算---分类思想2.线段AB、BC均在直线l上,若AB=12cm,AC==4cm,M、N分别是AB、AC的中点,则MN的长为_______.举一反三:1、已知线段AB=8,在直线AB上画线段BC,使它等于3,求线段AC的长2、已知,点A在数轴上的点为-10,点B在数轴上的点为14,点C在数轴上,且AC:BC=1:5,求点C对应的数3、P是定长线段AB的三等分点,Q是直线AB上一点,且AQ-BQ=PQ,求PQ:AB的值4、已知,线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长专题三 线段的计算---动态问题3.如图,直线AB 上有一点P ,点M 、N 分别为线段PA 、PB 的中点,AB=14.(1) 若点P 在线段AB 上,且AP=8,求线段MN 的长度。

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

七年级数学上册《第四章-几何图形初步》有关线段的计算问题练习题(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学 《第四章 几何图形初步》有关线段的计算问题练习题(新版)新人教版1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度. (2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律.5. 已知P 为线段AB 上的一点,且25AP AB =,M 是AB 的中点,若2PM cm =,求AB 的长.人教版数学七年级上册 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A 、B 、C 三点,已知8.9. 人教版七年级数学上册必须要记、背的知识点1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1.(5)相反数的绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1a a>⇔= ; 0a 1a a <⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小: (1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

部编数学七年级上册专题11线段的计算专题复习(课堂学案及配套作业)(解析版)含答案

部编数学七年级上册专题11线段的计算专题复习(课堂学案及配套作业)(解析版)含答案

专题11 线段的计算专题复习(解析版)第一部分教学案类型一单中点1.(2020秋•开福区校级月考)已知线段AB=13cm,C为线段AB上一点,BC=5cm,点D 为AC的中点.求DB的长度.思路引领:根据线段图,先求出AC的长,再求出DC的长,就可以求出DB的长.解:∵AB=13cm,BC=5cm,∴AC=AB﹣BC=8cm.∵D是AC中点.∴CD=12AC=4cm,∴DB=DC+CB=9cm.总结提升:本题主要考查线段的长度计算,分别考查了线段的做差、中点、求和等问题.属于简单题.主要锻炼学生书写解题过程,和逻辑推理能力.2.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,点E是DC的中点,则线段DE的长为 .思路引领:分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.解:∵AB=10cm,点D是线段AB的中点,∴DB=12AB=12×10=5(cm),①C在线段AB上,∵BC=2cm,∴DC=AB﹣BC=5﹣2=3(cm),∵点E是DC的中点,∴DE=12DC=12×3=32(cm),②C在线段AB延长线上,∵BC=2cm,∴DC=DB+BC=5+2=7(cm),∵点E是DC的中点,∴DE=12DC=12×7=72(cm),故答案为:32或72.总结提升:本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.3.(2019秋•潮阳区期末)如图,点C、D在线段AB上,D是线段AB的中点,AC=13 AD,CD=4,求线段AB的长.思路引领:根据AC=13AD,CD=4,求出CD与AD,再根据D是线段AB的中点,即可得出答案.解:∵AC=13AD,CD=4,∴CD=AD﹣AC=AD―13AD=23AD,∴AD=32CD=6,∵D是线段AB的中点,∴AB=2AD=12;总结提升:此题考查了两点间的距离公式,主要利用了线段中点的定义,比较简单,准确识图是解题的关键.类型二双中点4.(2019秋•秦淮区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=4,BC=6,则线段MN= ;(2)若AB=m,求线段MN的长度.思路引领:(1)由已知可求得CM,CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.解:(1)∵N是BC的中点,M是AC的中点,AC=4,BC=6,∴MC=2,CN=3,∴MN=MC+CN=2+3=5;(2)∵M是AC的中点,N是BC的中点,AB=m,∴NM=MC+CN=12AB=12m.故答案为:5.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.5.(2022春•垦利区期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.思路引领:(1)根据“点M是AC的中点”,先求出MC的长度,再利用BC=MB﹣MC,CN=12BC,MN=CM+CN即可求出线段BC,MN的长度.(2)先画图,再根据线段中点的定义得MC=12AC,NC=12BC,然后利用MN=MC﹣NC得到MN=12 acm.解:(1)∵M是AC的中点,∴MC=12AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=12BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图1(或图2):∵M是AC的中点,∴CM=12 AC,∵N是BC的中点,∴CN=12 BC,∴MN=CM﹣CN=12AC―12BC=12(AC﹣BC)=12acm.总结提升:本题主要考查了两点间的距离,线段的中点定义,线段的中点把线段分成两条相等的线段.6.(2019秋•长兴县期末)如图,已知点C 为线段AB 上一点,AC =15cm ,CB =35AC ,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.思路引领:根据线段的中点定义即可求解.解:∵AC =15cm ,CB =35AC ,∴BC =9,∴AB =AC +BC =24,∵点D ,E 分别为线段AC ,AB 的中点,∴AD =12AC =152AE =12AB =12∴DE =AE ﹣AD =92.答:线段AB 与DE 的长为24、92.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.7.已知A 、B 、C 三点在同一条直线上,AB =8,BC =4,M 、N 分别为AB 、BC 的中点,求线段MN 的长.思路引领:由题意将C 点位置分两种情况分别求解:①当C 点在AB 之间时,M 与C 点重合;②当C 在线段AB 延长线上时,MN =BM +BN .解:①当C 点在AB 之间时,由已知,M 与C 点重合,∵AB =8,BC =4,M 、N 分别为AB 、BC 的中点,∴MN =BN =2;②当C 在线段AB 延长线上时,MN =BM +BN =4+2=6;综上所述,MN 的长为2或6.总结提升:本题考查线段两点间距离;能够准确确定C 点的位置是解题的关键.类型三 方程思想8.(2019秋•克东县期末)如图,N 为线段AC 中点,点M 、点B 分别为线段AN 、NC 上的点,且满足AM :MB :BC =1:4:3.(1)若AN =6,求AM 的长.(2)若NB=2,求AC的长.思路引领:(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=1143×AC=1 8×12=32;(2)根据线段中点的定义得到AN=12AC,得到AB=14143AC=58AC,列方程即可得到结论.解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=1143×AC=18×12=32;(2)∵N为线段AC中点,∴AN=12 AC,∵AM:MB:BC=1:4:3,∴AB=14143AC=58AC,∴BN=AB﹣AN=58AC―12AC=18AC=2,∴AC=16.总结提升:本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.9.(2019秋•江夏区期末)如图,点B,D在线段AC上,BD=13AB,AB=34CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.思路引领:设BD=x,求出AB=3x,CD=4x,求出BE=12AB=1.5x,DF=2x,根据EF=20得出方程1.5x+2x﹣x=5,求出x即可.解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=12AB=1.5x,DF=2x,∵EF=20,∴1.5x+2x﹣x=20,解得:x=8,∴AE+EF+CF=1.5x+20+2x=12+20+16=48.总结提升:本题考查了求两点之间的距离,能根据题意得出方程是解此题的关键.10.(鄂城区期末)已知A,B,C,D四点在同一条直线上,点C是线段AB的中点,点D 在线段AB上.(1)若AB=6,BD=13BC,求线段CD的长度;(2)点E是线段AB上一点,且AE=2BE,当AD:BD=2:3时,线段CD与CE具有怎样的数量关系?请说明理由.思路引领:(1)根据线段中点的性质求出BC,根据题意计算即可;(2)设AD=2x,用x表示出AB,根据题意用x表示出CD、CE,得到CD与CE的数量关系.解:(1)如图1,∵点C是线段AB的中点,AB=6,∴BC=12AB=3,∵BD=1 3,∴BD=1,∴CD=BC﹣BD=2;(2)如图2,设AD=2x,则BD=3x,∴AB=AD+BD=5x,∵点C是线段AB的中点,∴AC=12AB=52x,∴CD=AC﹣AD=12 x,∵AE=2BE,∴AE=23AB=103x,CE=AE﹣AC=56 x,∴CD:CE=12x:56x=3:5.总结提升:本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.11.(2019秋•樊城区期末)如图,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC的长度.思路引领:根据AB=97,AD=40,可得BD=AB﹣AD=57,由DC:CE=1:2,CE:EB=3:5,可以设DC=x,可得CE=2x,EB=10x3,进而列出等式解得x的值,再求AC的长即可.解:因为AB=97,AD=40,所以BD=AB﹣AD=57因为DC:CE=1:2,CE:EB=3:5,所以设DC=x,则CE=2x,EB=10x 3,因为BD=DC+CE+EB所以x+2x+10x3=57解得x=9所以AC=AD+DC=40+9=49.答:AC的长度为49.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段之间的关系列出等式.类型四整体思想12.如图,点P在线段AB的延长线上,点C为线段AB的中点.试探究PA+PB与PC之间的数量关系,并说明理由.思路引领:设AC=BC=x,PB=y,求出PA+PB的长,然后与PC的长进行比较即可发现它们之间的数量关系.解:PA+PB与PC之间的数量关系为:PA+PB=2PC.设AC=BC=x,PB=y,由图中所给信息可得:则PC=x+y,PA=2x+y,所以PA+PB=2x+y+y=2(x+y),所以PA+PB=2PC.总结提升:本题考查线段的和差问题,关键是正确表示出线段的长.13.(2021秋•覃塘区期末)如图,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=12,则线段AB的长为 .思路引领:设EC=x,根据点E为线段AC的中点,得AC=2EC=2x,再根据点C,D 为线段AB的三等分点,得AB=3AC,结合ED=12,求出x,进而得出线段AB的长.解:设EC=x,∵点E为线段AC的中点,∴AC=2EC=2x,∵点C,D为线段AB的三等分点,∴AC=CD=BD=2x,∵ED=EC+CD,ED=12,∴x+2x=12,解得x=4,∴AB=3AC=24,故答案为:24.总结提升:本题主要考查了两点间的距离,掌握线段三等分点的定义,线段之间的数量转化是解题关键.14.如图,已知C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长.(2)若AB=a,CD=b,请用含,b的式子表示出MN的长.思路引领:(1)利用M,N分别是AC,BD的中点,可以得出MC=12AB,DN=12BD,再利用线段的和差关系表示即可求出答案;(2)和方法(1)一样,利用线段的和差关系表示出关系式即可.解:(1)∵M,N分别是AC,BD的中点,∴MC=12AB,DN=12BD,∴MN=MC+CD+DN=12AC+12BD+CD=12(AC+BD)+CD=12(AB―CD)+CD=12AB+12CD=12(AB+CD)=12(24+10)=17,故MN的长是17.答:MN的长是17.(2)由(1)可知,MN =12(AB +CD ),∵AB =a ,CD =b ,∴MN =12(a +b ),答:MN 的长是12(a +b ).总结提升:本题主要考查两点间的距离,熟练掌握中点的定义和线段的和差关系是解题的关键.类型五 分类讨论思想15.(聊城期末)已知A ,B ,C 三点在同一条直线上,若AB =60cm ,BC =40cm ,则AC 的长为 .思路引领:根据题意,分两种情况讨论:(1)C 在AB 内,则AC =AB ﹣BC ;(2)C 在AB 外,则AC =AB +BC .解:(1)C 在AB 内,则AC =AB ﹣BC =20cm ;(2)C 在AB 外,则AC =AB +BC =100cm .∴AC 的长为100cm 或20cm .总结提升:本题渗透了分类讨论的思想,体现了思维的严密性.灵活运用线段的和、差转化线段之间的数量关系.在今后解决类似的问题时,要防止漏解.16.( 永新县期末)已知线段AB =6,在直线AB 上取一点P ,恰好使AP =2PB ,点Q 为PB 的中点,求线段AQ 的长.思路引领:根据中点的定义可得PQ =QB ,根据AP =2PB ,求出PB =13AB ,然后求出PQ 的长度,即可求出AQ 的长度.解:如图1所示,∵AP =2PB ,AB =6,∴PB =13AB =13×6=2,AP =23AB =23×6=4;∵点Q 为PB 的中点,∴PQ =QB =12PB =12×2=1;∴AQ =AP +PQ =4+1=5.如图2所示,∵AP =2PB ,AB =6,∴AB =BP =6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.总结提升:本题考查了两点间的距离:两点的连线段的长叫两点间的距离,解题时注意分类思想的运用.17.如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.若AB=24,CD=10,求MN的长.思路引领:根据点M、N分别为AC、BD的中点,可求出MC+ND的值,进而求出MN 的值.解:∵点M、N分别为AC、BD的中点,∴MA=MC=12AC,NB=ND=12BD,∴MC+ND=12(AC+BD)=12(AB﹣CD)=12(24﹣10)=7(cm),∴MN=MC+ND+CD=7+10=17(cm),即MN的长为17cm.总结提升:本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.18.已知:线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长.思路引领:因为C、D的位置不确定,需要分四种情况讨论,分别画出图形,即可求出线段CD的长.解:分四种情况:①图1中,CD=CB+BD=(AB﹣AC)+BD=4+8=12;②图2中,CD=AB﹣AD﹣BC=AB﹣(AB﹣BD)﹣(AB﹣AC)=10﹣2﹣4=4;③图3中,CD=CA+AB+BD=24;④图4中,CD=CA+AD=CA+(AB﹣BD)=6+2=8.综上可得:线段CD的长为12或4或24或8.总结提升:本题考查了两点间的距离,解答本题的关键是分类讨论C、D的位置,容易漏解.类型六动点问题19.如图,数轴上A、B所对应的数分别为﹣5、10,O为原点,点C为数轴上一动点且对应的数为x.点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动(不改变方向).设运动时间为t秒.(1)若点P、Q相向而行且OP=OQ,求t的值.(2)若点P、Q在点C处相遇,求出C点对应的数x.(3)当PQ=5时,求t的值.(4)若点P、Q相向,同时一只宠物鼠每秒4个单位长度从B点出发,与点P相向而行,宠物鼠遇到P后立即返回,又遇到Q点后立即返回,又遇到P后立即返回…直到A、B 相遇为止,求宠物鼠整个过程中的行驶路程.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程﹣10=Q的路程﹣5,列出关于t的方程求解即可;(2)求出P点运动的路程,进一步求解即可;(3)根据PQ=5,分三种情况列出关于t的方程求解即可;(4)根据路程=速度×时间,列式计算即可求解.解:(1)依题意有(2+3)t=10﹣(﹣5),解得t=3;或3t﹣10=2t﹣5,解得t=5.答:t的值是3或5.(2)﹣5+3×2=﹣5+6=1,或10﹣[10﹣(﹣5)]÷(3﹣2)×3=10﹣15÷1×3=﹣35.故C点对应的数是1或﹣35.(3)依题意有①(2+3)t=10﹣(﹣5)﹣5,解得t=2;②(2+3)t=10﹣(﹣5)+5,解得t=4;答:t的值是2或4.(4)4×3=12个单位长度.答:宠物鼠整个过程中的行驶路程是12个单位长度.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.如图,数轴上A、B所对应的数分别为﹣5,10,O为原点,点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动,设运动时间为t 秒.(1)若点P、Q相向而行,且OP=OQ,求t的值;(2)若P、Q相向而行,且PQ=5,求t的值;(3)若P、Q同时向左运动,且PQ=5,求t的值.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程−10=Q的路程−5,列出关于t的方程求解即可;(2)由于运动的时间为t秒,根据P、Q相向而行,且PQ=5,列出方程求得t的值即可;(3)根据P、Q同时向左运动,且PQ=5,列出关于t的方程求解即可.解:(1)依题意有(2+3)t=10−(−5),解得t=3;或3t−10=2t−5,解得t=5.答:t的值是3或5.(2)依题意有|15﹣3t﹣2t|=5,即15﹣3t﹣2t=5或15﹣3t﹣2t=﹣5,解得t=2或4;(3)依题意有|3t﹣15﹣2t|=5,3t﹣15﹣2t=5或3t﹣15﹣2t=﹣5,解得t=20或10,答:t的值是20或10.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(2020秋•西湖区期末)如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=5OB.(1)求a,b的值.(2)若动点P,Q分别从A,B同时出发,向数轴正方向匀速运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=3.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M追上点Q后立即返回,以同样的速度向点P 运动,遇到点P后点M就停止运动.求点M停止时,点M在数轴上所对应的数.思路引领:(1)由AO=5OB可知,将12平均分成6份,AO占5份为10,OB占一份为2,由图可知,A在原点的左边,B在原点的右边,从而得出结论;(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP﹣OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.解:(1)∵AB=12,AO=5OB,∴AO=10,OB=2,∴A点所表示的数为﹣10,B点所表示的数为2,∴a=﹣10,b=2.故答案为:﹣10;2;(2)当0<t<5时,如图1,AP =2t ,OP =10﹣2t ,BQ =t ,OQ =2+t ,∵2OP ﹣OQ =3,∴2(10﹣2t )﹣(2+t )=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t ﹣10,OQ =2+t ,则2(2t ﹣10)﹣(2+t )=3,解得t =813,综上所述,当t 为3或813时,2OP ﹣OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t ―103)=2+t ,解得t =6,∴OP =2(t ﹣5)=2,此时OM =3(t ―103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8﹣3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.总结提升:本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.第二部分 配套作业一.填空题(共3小题)1.(2006•鄂州)已知AB=8cm,若点C在AB的延长线上,且B为AC的一个三等分点,则AC= cm.思路引领:已知AB的长度,根据B为AC的一个三等分点,因B点不确定,要分类讨论.解:本题要分两种情况讨论:①如果,BC占线段AC的三分之一,则AC等于12cm;②如果AB占线段AC的三分之一,AC等于24cm.∴AC=12或24cm.总结提升:要分类讨论,以确定AC的长度.2.(2022•天河区校级模拟)如图,点C是线段AB的中点,点D在CB上,BC=4cm,BD =1.5cm,则线段AD= cm.思路引领:首先根据线段中点定义求出AC、BC长.再根据线段和差关系求出AD的长.解:∵点C是线段AB的中点,∴AC=BC=4(cm),∵BD=1.5cm,∴CD=2.5(cm),∴AD=AC+CD=6.5(cm),故答案为:6.5.总结提升:本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.3.(2021秋•宣化区期末)已知点P是射线AB上一点,当PAPB=2或PAPB=12时,称点P是射线AB的强弱点,若AB=6,则PA= .思路引领:分三种情况讨论,分别画出符合题意的图形,结合P的位置得到PA与PB的具体的数量关系,结合AB=6,从而可得答案.解:①如图,AB=6,当PAPB =12时,∴PA=13AB=13×6=2;②如图,AB=6,当PAPB=2且P在线段AB上时,∴PA =23AB =23×6=4;③如图,AB =6,当PA PB=2且P 在线段AB 的延长线上时,∴PA =2AB =2×6=12;综上:PA =2或4或12.故答案为:2或4或12.总结提升:本题考查的是线段的和差倍分关系,有理数的乘法运算,分类思想的运用,掌握线段的和差倍分是解题的关键.二.解答题(共15小题)4.已知点A ,B ,C 是同一条直线上的任意三点,如果AC =7,BC =3,求线段AC 和BC 的中点间距离.思路引领:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离;②当B 在线段AC 上时,那么AB =AC ﹣CB ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离.解:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,而AC =7,BC =3,∴AB =AC +BC =10,∴线段AC 和BC 的中点之间的距离为12AC +12BC =12(AC +BC )=5;②当B 点在线段AC 上,此时AB =AC ﹣BC ,而AC =7,BC =3,∴AB =AC ﹣BC =4,∴线段AC 和BC 的中点之间的距离为12AC ―12BC =12(AC ﹣BC )=2.故答案为:5或2.总结提升:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.(2020秋•盱眙县期末)如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.思路引领:作出图形后首先求得AC的长,然后求其一半的长,最后求线段BP的长即可.分点C在AB上和点C在AB的延长线上两种情况讨论即可.解:当点C在AB上时,如图:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵P为线段AC的中点,∴PC=12AC=12×6=3(cm),∴BP=PC+BC=3+4=7(cm);当点C在AB的延长线上时,如图:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵P为线段AC的中点,∴PC=12AC=12×14=7(cm),∴BP=PC﹣BC=7﹣4=3(cm);∴BP的长为7cm或3cm总结提升:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.(2021秋•钦北区期末)如图,线段AB=8,点C是AB的中点,点D是BC的中点,E 是AD的中点.(1)求线段BD的长;(2)求线段EC的长.思路引领:(1)由点C是AB的中点可得AC=BC=4cm,由点D是BC的中点可得BD=CD=2即可;(2)由(1)可知AE、AD的长,再根据EC=AC﹣AE,即可得出线段EC的长.解:(1)∵点C是AB的中点,AB=8,∴12AB=AC=BC=4,又∵点D是BC的中点,∴12BC=BD=CD=2.(2)由(1)得AC=4,AD=AC+CD=6,∵E是AD的中点,∴12AD=AE=ED=3,∴EC=AC﹣AE=4﹣3=1.总结提升:本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.7.(2019秋•南关区校级期末)如图,延长线段AB至点D,使点B为线段AD的中点,点C在线段BD上,CD=2BC,若BC=3,求AD的长.思路引领:先由CD=2BC,BC=3,求得CD=6,进而得BD,再由点B为线段AD的中点,得AD.解:∵CD=2BC,BC=3,∴CD=6,∴BD=BC+CD=3+6=9,∵点B为线段AD的中点,∴AD=2BD=18.总结提升:本题主要考查了线段的和差计算,线段的中点定义,关键是弄清各线段之间的关系,正确运用线段和差和线段中点,进行解答.8.(2022秋•江都区月考)在直线m上取点A、B,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点,求线段MN的长.思路引领:根据题意,正确画出图形,此题要分情况讨论:(1)当点P在线段AB上;(2)当点P在线段BA的延长线上.解:(1)如图,当点P在线段AB上时,PB=AB﹣PA=8cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PM+PN=12AP+12BP=1+4=5(cm);(2)如图,当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PN﹣PM=12BP―12AP=6﹣1=5(cm).∴线段MN的长是5cm.总结提升:本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.要分情况进行讨论,以防遗漏.9.如图,点C是线段AB的中点,点D是线段AC上一点,CD=2AD.(1)若线段AB=12,求CD的长;(2)若E是线段BC上一点,CE:BE=1:5,且CD比CE的3倍长1,求BE的长.思路引领:(1)根据线段中点的定义可得AC=6,再根据已知可得CD=23AC=4,即可解答;(2)根据题意可设CE=x,则CD=3x+1,再根据已知可得BC=6x,AC=9x32,然后根据线段中点的定义列出关于x的方程,进行计算即可解答.解:(1)∵点C是线段AB的中点,AB=12,∴AC=12AB=6,∵CD=2AD,∴CD=23AC=4,∴CD的长为4;(2)如图:∵CD比CE的3倍长1,∴设CE=x,则CD=3x+1,∵CE:BE=1:5,∴BC=6CE=6x,∵CD=2AD,∴AC=32CD=9x32,∵点C是线段AB的中点,∴AC=BC,∴9x32=6x,∴x=1,∴BE=5CE=5,∴BE的长为5.总结提升:本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.10.(2022秋•高密市期中)如图所示,B,C两点把线段AD分成4:5:7的三部分,E是线段AD的中点,CD=14厘米.(1)求EC的长.(2)求AB:BE的值.思路引领:(1)由题意知,B,C两点把线段AD分成4:5:7三部分,则令AB,BC,CD分别为4x厘米,5x厘米,7x厘米.根据CD=14厘米,得出x=2.根据E是线段AD的中点,可得ED=12AD=16厘米,代入EC=ED﹣CD可求;(2)分别求出AB,BE的长后计算AB:BE的值.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米,∵CD=7x=14,∴x=2.(1)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=AB+BC+CD=8+10+14=32(厘米).∵E是线段AD的中点,∴ED=12AD=16厘米,∴EC=ED﹣CD=16﹣14=2(厘米);(2)∵BC=10厘米,EC=2厘米,∴BE=BC﹣EC=10﹣2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.总结提升:本题考查了两点的间的距离,通过设适当的参数,由CD=7x=14求出参数x =2后,再求出各线段的值,同时利用线段的中点把线段分成相等的两部分的性质.11.(2020秋•巴南区期末)已知点B、D在线段AC上,(1)如图1,若AC=20,AB=8,点D为线段AC的中点,求线段BD的长度;(2)如图2,若BD=13AB=14CD,AE=BE,EC=13,求线段AC的长度.思路引领:(1)由线段的中点,线段的和差求出线段DB的长度;(2)由线段的中点,线段的和差倍分求出AC的长度.解:(1)∵D为线段AC的中点∴DC=12AC=12×20=10,∵AB=8,∴BD=AD﹣AB=10﹣8=2;(2)设BD=x,∵BD=13AB=14CD,∴AB=3x,CD=4x,∴AC=3x+x+4x=8x,∵AE=BE,∴AE=12AB=1.5x,∴EC=8x﹣1.5x=13,解得x=2,∴AC=8x=16.总结提升:本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.12.(2022秋•南丹县期末)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.思路引领:(1)根据线段的和差,可得答案;(2)根据线段的和差,可得答案;(3)根据线段中点的定义和线段的和差即可得到结论.(1)设BC=xcm,则AC=3xcm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm;(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm;(3)∵M为AB的中点,∴AM=12AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.总结提升:本题考查了求两点之间的距离的应用,主要考查学生的计算能力.13.(2020秋•喀喇沁旗期末)先画图,再解答:(1)画线段AB,在线段AB的反向延长线上取一点C,使AB=12AC,再取AB得中点D;(注:非尺规作图)(2)在(1)中,若C、D两点间的距离为6cm,求线段AB的长.思路引领:(1)直接根据题意画出图形即可;(2)根据中点的定义和已知条件求出CD=5AD,再根据CD=6cm,得出AD的长,再根据AD=12AB,即可得出答案.解:(1)根据题意画图如下:(2)∵点D是AB的中点,∴AD=12 AB,∵AB=12 AC,∴CD=5AD,∵CD=6cm,∴AD=65 cm,∴AB=125cm.总结提升:此题考查了两点间的距离,根据题意正确画出图形是解题的关键,比较简单.14.(2021秋•江阴市校级月考)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC =6,BC =4,则求线段AB 和线段MN 的长度;(2)若AB =a ,则线段MN = 12a ;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出线段MN 的长度.思路引领:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度;(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB ;(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC +CN =5;(2)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC ,CN =12BC ,∴MN =MC +CN =12(AC +BC )=12AB =12a .故答案为:12a ;(3)当点C 在线段AB 内时,由(1)可知:MN =5,当点C 在线段AB 外时,此时点C 在点B 的右侧,∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC ﹣CN =1,综上所述,MN =5或1.总结提升:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.15.(2020秋•淮北月考)如图,已知B ,C 是线段AD 上的任意两点,M 是AB 的中点,N是CD 的中点.(1)若AB =4,BC =1,CD =6,求线段MN 的长度;(2)若AD=11,BC=1,求线段MN的长度;(3)请你说明:2MN=BC+AD.思路引领:(1)由已知可求得MB,CN的长,从而不难求得MN的长度;(2)由已知条件可知,MN=MB+CN+BC,AD=2(MB+CN)+BC,先求出MB+CN的值,则可求MN的长度;(3)由MN=MB+CN+BC,利用等式性质可得2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.解:(1)∵M是AB的中点,N是CD的中点,∴MN=MB+BC+CN=12AB+BC+12CD,∵AB=4,BC=1,CD=6,∴MN=12×4+1+12×6=6;(2)∵AD=AB+BC+CD=2(MB+CN)+BC,∵AD=11,BC=1,∴MB+CN=5,∴MN=MB+BC+CN=6;(3)∵MN=MB+BC+CN,∴2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.16.(2006秋•中山区期末)如图,线段AB=30cm,点O在AB线段上,M、N两点分别从A、O同时出发,以2cm/s,1cm/s的速度沿AB方向向右运动.(1)如图1,若点M、点N同时到达B点,求点O在线段AB上的位置.(2)如图2,在线段AB上是否存在点O,使M、N运动到任意时刻,(点M始终在线段AO上,点N始终在线段OB上),总有MO=2BN?若存在,求出点O在线段AB上的位置;若不存在,请说明理由.思路引领:(1)设AO的长度为xcm,则OB=(30﹣x)cm,根据时间相等建立方程求出其解即可;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由MO=2BN 建立方程求出其解即可.解:(1)设AO的长度为xcm,则OB=(30﹣x)cm,由图形,得30 2=30x1,解得:x=15,∴点O在AB的中点;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由题意,得y﹣2t=2(30﹣y﹣t),解得:y=20,∴AO=20cm时,MO=2BN.总结提升:本题考查了线段与行程问题的关系的运用,线段之间的数量关系的运用,一元一次方程的运用,解答时找到题意的等量关系是关键.17.(2016秋•和平区期末)已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为﹣2,4,且AC=13AB,则点C表示的数是 ﹣4或0 ;(2)若点A,B表示的数分别为m,n,且m<n.①点C在点A的右边,且AC=13AB,求点C表示的数(用含m,n的式子表示);②已知n﹣m=10,点P,Q分别是这条数轴上的两个动点,点P以每秒2个单位长度的速度从点A向左运动,同时点Q以每秒3个单位长度的速度从点B向左运动,当点Q追上点P后立即返回向点B运动,点P继续向左运动,当点Q到达点B时,点P,Q同时停止运动.在此运动过程中,点P的运动时间为多少秒时,BP=2BQ(P,Q两点的运动速度始终保持不变).思路引领:(1)由已知条件得到AB=6,设点C表示的数是x,列方程即可得到结论;(2)①设点C表示的数是x,根据题意列方程即可得到结论;②Ⅰ、当点Q没追上点P时,设点P的运动时间为t秒时,BP=2BQ,Ⅱ、设点P运动x秒时,点Q追上点P,列方程得到x=10,当点Q追上点P后,设点P再运动t秒时,BP=2BQ,根据题意列方程即可得到结论.解:(1)∵点A,B表示的数分别为﹣2,4,∴AB=6,设点C表示的数是x,∴AC=|﹣2﹣x|,∵AC=13 AB,∴|﹣2﹣x|=13×6,解得:x=﹣4或x=0,∴点C表示的数是﹣4或0;故答案为:﹣4或0;。

七年级数学人教版(上册)小专题(十四)线段的计算

七年级数学人教版(上册)小专题(十四)线段的计算

(3)若点 C 为线段 AB 上任意一点,且 AB=n cm,其他条件不变, 你能猜想 MN 的长度吗?并用一句简洁的话描述你发现的结论.
1n 解:猜想:MN=2AB=2 cm. 结论:若点 C 为线段 AB 上一点,且点 M,N 分别是 AC,BC
1 的中点,则 MN=2AB.
【变式 1】 若 MN=k cm,求线段 AB 的长.
(1)若 AB=10 cm,2 cm<AM<4 cm,当点 C,D 运动了 2 s 时, 求 AC+MD 的值.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm, 因为 AB=10 cm, 所以 AC+MD=AB-CM-BD=10-2-6=2(cm).
1 (2)若点 C,D 运动时,总有 MD=3AC,则 AM= 4 AB.
n 解:MN=2 cm 成立.理由如下: 当点 C 在线段 AB 的延长线上时,如图.
因为点 M,N 分别是 AC,BC 的中点,
1
1
所以 MC=2AC,CN=2BC.
又因为 MN=MC-CN,
1
1n
所以 MN=2(AC-BC)=2AB=2 cm.
如图,如果点 C 在线段 AB 所在的直线上,点 M,N 分别是 AC, 1
(1)当 0<t<5 时,用含 t 的式子填空: BP= 5-t ,AQ= 10-2t .
(2)当 t=2 时,求 PQ 的值. 解:(2)当 t=2 时,AP=1×2=2<5,点 P 在线段 AB 上;OQ=2×2 =4<10,点 Q 在线段 OA 上,如图所示:
此时 PQ=OP-OQ=(OA+AP)-OQ=(10+2)-4=8.
第四章 几何图形初步
小专题(十四) 线段的计算

部编数学七年级上册专题29和数轴上册的线段有关的计算(解析版)含答案

部编数学七年级上册专题29和数轴上册的线段有关的计算(解析版)含答案

专题29 和数轴上的线段有关的计算1.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度).慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|6|a +与2(18)b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱动脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA PC PB PD +++为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.【解答】解:(1)|6|a +Q 与2(18)b -互为相反数,2|6|(18)0a b \++-=,60a \+=,180b -=,解得6a =-,18b =,\此时刻快车头A 与慢车头C 之间相距18(6)24--=单位长度;(2)(248)(64)1610 1.6-¸+=¸=(秒),或(248)(64)3210 3.2+¸+=¸=(秒),答:再行驶1.6秒钟或3.2秒钟两列火车行驶到车头AC 相距8个单位长度;(3)2PA PB AB +==Q ,当P 在CD 之间时,PC PD +是定值4,4(64)4100.4t =¸+=¸=(秒),此时()()246PA PC PB PD PA PB PC PD +++=+++=+=(单位长度),故这个时间是0.4秒,定值是6单位长度.2.如图,点A 、B 和线段CD 都在数轴上,点A 、C 、D 、B 起始位置所表示的数分别为2-、0、3、12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当0t =秒时,AC 的长为 2 ,当2t =秒时,AC 的长为 .(2)用含有t 的代数式表示AC 的长为 .(3)当t = 秒时5AC BD -=,当t = 秒时15AC BD +=.(4)若点A 与线段CD 同时出发沿数轴的正方向移动,点A 的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得2AC BD =,若存在,请求出t 的值;若不存在,请说明理由.【解答】解:(1)当0t =秒时,|20||2|2AC =--=-=;当2t =秒时,移动后C 表示的数为2,|22|4AC \=--=.故答案为:2;4.(2)点A 表示的数为2-,点C 表示的数为t ;|2|2AC t t \=--=+.故答案为2t +.(3)t Q 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,C \表示的数是t ,D 表示的数是3t +,2AC t \=+,|12(3)|BD t =-+,5AC BD -=Q ,2|12(3)|5t t \+--+=.解得:6t =.\当6t =秒时5AC BD -=;15AC BD +=Q ,2|12(3)|15t t \++-+=,11t =;当11t =秒时15AC BD +=,故答案为6,11;(4)假设能相等,则点A 表示的数为22t -,C 表示的数为t ,D 表示的数为3t +,B 表示的数为12,|22||2|AC t t t \=--=-,|312||9|BD t t =+-=-,2AC BD =Q ,|2|2|9|t t \-=-,解得:116t =,2203t =.故在运动的过程中使得2AC BD =,此时运动的时间为16秒和203秒.3.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上一个动点(不与点A ,B 重合).M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为 6 ;若点P 表示的有理数是6,那么MN 的长为 .(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.【解答】解:(1)若点P 表示的有理数是0(如图1),则6AP =,3BP =.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.243MP AP \==,223NP BP ==,6MN MP NP \=+=;若点P 表示的有理数是6(如图2),则12AP =,3BP =.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.283MP AP \==,223NP BP ==,6MN MP NP \=-=.故答案为:6;6.(2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是(6a a >-且3)a ¹.当63a -<<时(如图1),6AP a =+,3BP a =-.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.22(6)33MP AP a \==+,22(3)33NP BP a ==-,6MN MP NP \=+=;当3a >时(如图2),6AP a =+,3BP a =-.M Q 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.22(6)33MP AP a \==+,22(3)33NP BP a ==-,6MN MP NP \=-=.综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.4.已知数轴上三点A ,O ,B 表示的数分别为6,0,4-,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是 1 ;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【解答】解:(1)A Q ,B 表示的数分别为6,4-,10AB \=,PA PB =Q ,\点P 表示的数是1,故答案为:1;(2)设点P 运动x 秒时,在点C 处追上点R ,则:6AC x = 4BC x =,10AB =,AC BC AB -=Q ,6410x x \-=,解得,5x =,\点P 运动5秒时,追上点R ;(3)线段MN 的长度不发生变化,理由如下分两种情况:①当点P 在A 、B 之间运动时(如图①1111):()52222MN MP NP AP BP AP BP AB =+=+=+==.②当点P 运动到点B 左侧时(如图②),1111()52222MN PM PN AP BP AP BP AB =-=-=-==;综上所述,线段MN 的长度不发生变化,其长度为5.5.如图,数轴上A ,B 两点对应的有理数分别为10-和20,点P 从点O 出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q 同时从点A 出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t 秒.(1)分别求当2t =及12t =时,对应的线段PQ 的长度;(2)当5PQ =时,求所有符合条件的t 的值,并求出此时点Q 所对应的数;(3)若点P 一直沿数轴的正方向运动,点Q 运动到点B 时,立即改变运动方向,沿数轴的负方向运动,到达点A 时,随即停止运动,在点Q 的整个运动过程中,是否存在合适的t 值,使得8PQ =?若存在,求出所有符合条件的t 值,若不存在,请说明理由.【解答】解:(1)当运动时间为t 秒时,点P 对应的数为t ,点Q 对应的数为210t -,|(210)||10|PQ t t t \=--=-.当2t =时,|210|8PQ =-=;当12t =时,|1210|2PQ =-=.答:当2t =时,线段PQ 的长度为8;当12t =时,线段PQ 的长度为2.(2)根据题意得:|10|5t -=,解得:5t =或15t =,当5t =时,点Q 对应的数为2100t -=;当15t =时,点Q 对应的数为21020t -=.答:当5PQ =时,t 的值为5或15,此时点Q 所对应的数为0或20.(3)当运动时间为t 秒时,点P 对应的数为t ,点Q 对应的数为210(015)202(15)(1530)t t t t -<ìí--<î…….当015t <…时,|(210)||10|PQ t t t =--=-,|10|8t -=,解得:12t =,218t =(舍去);当1530t <…时,|[202(15)]||350|PQ t t t =---=-,|350|8t -=,解得:3583t =,414t =(舍去).综上所述:在点Q 的整个运动过程中,存在合适的t 值,使得8PQ =,此时t 的值为2或583.6.在数轴上点A 表示的数是8,B 是数轴上一点,且12AB =,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为(0)t t >秒.(1)①写出数轴上点B 表示的数,②写出点P 表示的数(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q ?(3)在(2)的情况下,若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN 的长.【解答】解:(1)①8124-=-,81220==,\数轴上点B 表示的数4-或20,②动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左运动,则点P 表示的数86t -;(2)分两种情况:当点B 在点A 的左侧时,点P 运动追上点Q ,即8644t t -=--,解得6t =;当点B 在点A 的右侧时,点P 运动追上点Q ,即86204t t -=-,解得6t =-(舍去),\点P 运动6秒追上点Q ;(3)分两种情况:①若点P 在AB 之间运动,则M Q 为AP 的中点,N 为PB 的中点,12PM AP \=,12PN BP =,11()622MN PM PN AP BP AB \=+=+==;②若点P 在AB 的延长线上运动,则M Q 为AP 的中点,N 为PB 的中点,12PM AP \=,12PN BP =,11()622MN PM PN AP BP AB \=-=-==;综上所述,点P 在运动的过程中,MN 的长度不会发生变化.7.A ,B 两点在数轴上的位置如图所示,其中点A 对应的有理数为4-,且10AB =.动点P 从点A 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒(0)t >.(1)当1t =时,AP 的长为 2 ,点P 表示的有理数为 ;(2)当2PB =时,求t 的值;(3)M 为线段AP 的中点,N 为线段PB 的中点.在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【解答】解:(1)设运动时间为t 秒,则2AP t =,点P 表示的有理数为42t -+,当1t =时,2AP =,点P 表示的有理数为422-+=-,故答案为:2,2-;(2)当点P 在点B 左侧时,10AB =Q ,2AP t =,102PB t \=-,由题意得:1022t -=,解得:4t =;当点P 在点B 右侧时,由题意可得2102t -=,解得:6t =;综上,4t =或6.(3)如图1,当点P 在线段AB 上时,1111()52222MN MP PN AP PB AP PB AB =+=+=+==;如图2,当点P 在AB 延长线上时,1111()52222MN MP BP AP PB AP PB AB =-=-=-==;综上所述,线段MN 的长度不发生变化,其值为5.8.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.9.如图,A ,B 两点在数轴上,点A 表示的数为10-,4OB OA =,点M 以每秒2个单位长度的速度从点A 开始向左运动,点N 以每秒3个单位长度的速度从点B 开始向左运动(点M 和点N 同时出发)(1)数轴上点B 对应的数是 40 线段AB 的中点C 对应的数是 (2)经过几秒,点M ,点N 到原点的距离相等(3)当M 运动到什么位置时,点M 与点N 相距20个单位长度?【解答】解:(1)Q 点A 表示的数为10-,10OA \=,4OB OA =Q ,40OB \=,\数轴上点B 对应的数是40,线段AB 的中点C 对应的数是15;故答案为:40,15;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等①点M 、点N 在点O 两侧,则102403x x +=-,解得6x =;②点M 、点N 重合,则340102x x -=+,解得50x =.所以经过6秒或50秒,点M 、点N 分别到原点O 的距离相等;(3)设经过t 秒,点M 与点N 相距20个单位长度,①502320t t +-=,解得30t =.此时M 点在70-处,②3(502)20t t -+=,解得70t =.此时M 点在150-处,\当M 运动到70-或150-的位置时,点M 与点N 相距20个单位长度.10.如图,已知数轴上有A 、B 、C 三个点,它们表示的数分别是18,8,10-.(1)填空:AB = 10 ,BC = ;(2)若点A 以每秒1个单位长度的速度向右运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC AB -的值是否随着时间t 的变化而改变?请说明理由;(3)现有动点P 、Q 都从A 点出发,点P 以每秒1个单位长度的速度向终点C 移动;当点P 移动到B 点时,点Q 才从A 点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C 点时,点Q 就停止移动.设点P 移动的时间为t 秒,试用含t 的代数式表示P 、Q 两点间的距离.【解答】解:(1)18810AB =-=,8(10)18BC =--=,故答案为:10;18;(2)不变,由题意得,102103AB t t t =++=+,1825183BC t t t =-+=+,8BC AB -=,故BC AB -的值不随着时间t 的变化而改变;(3)当010t <…时,PQ t =,当1015t <…时,3(10)302PQ t t t =--=-,当1528t <…时,3(10)230PQ t t t =--=-,故P 、Q 两点间的距离为t 或302t -或230t -.11.课题研究:如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是2-,已知点A ,B 是数轴上的点,请参照下图并思考.(1)如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 4 ,A ,B 两点间的距离是 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .【解答】解:(1)Q 点A 表示数3-,\点A 向右移动7个单位长度,终点B 表示的数是374-+=,A ,B 两点间的距离是|34|7--=;故答案为:4,7;(2)Q 点A 表示数3,\将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3751-+=,A ,B 两点间的距离为312-=;故答案为:1,2;(3)Q 点A 表示数4-,\将A 点向右移动2008个单位长度,再向左移动2009个单位长度,那么终点B 表示的数是4200820095-+-=-,A 、B 两点间的距离是|45|1-+=;故答案为:5-,1.12.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足2|24||10|(10)0a b c ++++-=;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.【解答】解:(1)2|24||10|(10)0a b c ++++-=Q ,240a \+=,100b +=,100c -=,解得:24a =-,10b =-,10c =;(2)10(24)14---=,①点P 在AB 之间,22814213AP =´=+,28442433-+=-,点P 的对应的数是443-;②点P 在AB 的延长线上,14228AP =´=,24284-+=,点P 的对应的数是4;(3)当P 点在Q 点的右侧,且Q 点还没追上P 点时,3414t t +=+,解得5t =;当P 在Q 点左侧时,且Q 点追上P 点后,3414t t -=+,解得9t =;当Q 点到达C 点后,当P 点在Q 点左侧时,14433434t t +++-=,12.5t =;当Q 点到达C 点后,当P 点在Q 点右侧时,14433434t t +-+-=,解得14.5t =,综上所述:当Q 点开始运动后第5、9、12.5、14.5秒时,P 、Q 两点之间的距离为4.13.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB = 10 ,线段AB 的中点表示的数为 ;②用含t 的代数式表示:t 秒后,点P 表示的数为 ;点Q 表示的数为 .(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【解答】解:(1)①10,3;②23t -+,82t -;(2)Q 当P 、Q 两点相遇时,P 、Q 表示的数相等2382t t \-+=-,解得:2t =,\当2t =时,P 、Q 相遇,此时,232324t -+=-+´=,\相遇点表示的数为4;(3)t Q 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,|(23)(82)||510|PQ t t t \=-+--=-,又1110522PQ AB ==´=,|510|5t \-=,解得:1t =或3,\当:1t =或3时,12PQ AB =;(4)Q 点M 表示的数为2(23)3222t t -+-+=-,点N 表示的数为8(23)3322t t +-+=+,3333|(2)(3)||23|52222t t t t MN \=--+=---=.14.如图,数轴上的点O 和A 分别表示0和10,点P 是线段OA 上一动点,沿O A O ®®以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(010)t …….(1)线段BA 的长度为 5 ;(2)当3t =时,点P 所表示的数是 ;(3)求动点P 所表示的数(用含t 的代数式表示);(4)在运动过程中,若OP 中点为Q ,则QB 的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t 的代数式QB 的长度.【解答】解:(1)B Q 是线段OA 的中点,152BA OA \==;故答案为:5;(2)当3t =时,点P 所表示的数是236´=,故答案为:6;(3)当05t ……时,动点P 所表示的数是2t ,当510t ……时,动点P 所表示的数是202t -;(4)QB 的长度发生变化,当05t ……时,5QB t =-,当510t ……时,15(202)52QB t t =--=-.15.已知数轴上有三点A 、B 、C ,其位置如图1所示,数轴上点B 表示的数为40-,120AB =,2AC AB=(1)图1中点C 在数轴上对应的数是 160- (2)如图2,动点P 、Q 两点同时从C 、A 出发向右运动,同时动点R 从点A 向左运动,已知点P 的速度是点R 的速度的3倍,点Q 的速度是点R 的速度2倍少5个单位长度/秒,点P 在点Q 左侧运动时,经过5秒,点P 、Q 之间的距离与点Q 、R 之间的距离相等,求动点Q 的速度(3)如图3,若T 点是A 点右侧一点,点T 在数轴上所表示的数为n ,TB 的中点为M ,N 为TA 的4等分点且靠近于T 点,若2TM AN =,求n 的值.【解答】解:(1)120AB =Q ,点B 表示的数为40-,\点A 表示的数为80.2AC AB =Q ,\点C 表示的数为801202160-´=-.故答案为:160-.(2)设点R 的速度为x 个单位长度/秒,则点P 的速度为3x 个单位长度/秒,点Q 的速度为(25)x -个单位长度/秒,当点P 在点Q 左边时,P 、R 相遇时QP QR =,5(3)240x x AC +==,解得12x =,2524519x -=-=,\点Q 的速度为19个单位长度/秒,(3)设AT y =,TB Q 的中点为M ,111(120)60222TM TB y y \==+=+,N Q 为TA 的4等分点且靠近于T 点,34AN y \=,2TM AN =Q ,136022y y \+=,解得60y =,8060140n \=+=.16.如图,数轴上线段2AB =(单位长度),4CD =(单位长度),点A 在数轴上表示的数是10-,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时8BC =(单位长度)?(2)当运动到8BC =(单位长度)时,点B 在数轴上表示的数是 4或16 ;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式3BD AP PC-=,若存在,求线段PD 的长;若不存在,请说明理由.【解答】解:(1)设运动t 秒时,8BC =单位长度,①当点B 在点C 的左边时,由题意得:68224t t ++=解得:2t =;②当点B 在点C 的右边时,由题意得:68224t t -+=解得:4t =.(2)当运动2秒时,点B 在数轴上表示的数是4;当运动4秒时,点B 在数轴上表示的数是16.(3)方法一:存在关系式3BD AP PC-=.设运动时间为t 秒,1)当3t =时,点B 和点C 重合,点P 在线段AB 上,02PC <…,且4BD CD ==,3222AP PC AB PC PC +=+=+,当1PC =时,3BD AP PC =+,即3BD AP PC-=;2)当1334t <<时,点C 在点A 和点B 之间,02PC <<,①点P 在线段AC 上时,4BD CD BC BC =-=-,32222AP PC AC PC AB BC PC BC PC +=+=-+=-+,当1PC =时,有3BD AP PC =+,即3BD AP PC -=;点P 在线段BC 上时,4BD CD BC BC =-=-,34424AP PC AC PC AB BC PC BC PC +=+=-+=-+,当12PC =时,有3BD AP PC =+,即3BD AP PC-=;3)当134t =时,点A 与点C 重合,02PC <…,2BD CD AB =-=,34AP PC PC +=,当12PC =时,有3BD AP PC =+,即3BD AP PC-=;4)当13742t <<时,04PC <<,4BD CD BC BC =-=-,3424AP PC AB BC PC BC PC +=-+=-+,12PC =时,有3BD AP PC =+,即3BD AP PC-=.P Q 在C 点左侧或右侧,PD \的长有2种可能,即5或3.5.方法二:设线段AB 未运动时点P 所表示的数为x ,B 点运动时间为t ,则此时C 点表示的数为162t -,D 点表示的数为202t -,A 点表示的数为106t -+,B 点表示的数为86t -+,P 点表示的数为6x t +,202(86)288BD t t t \=---+=-,6(106)10AP x t t x =+--+=+,|162(6)||168|PC t x t t x =--+=--,202(6)20820(8)PD t x t t x t x =--+=--=-+,Q 3BD AP PC-=,3BD AP PC \-=,288(10)3|168|t x t x \--+=--,即:1883|168|t x t x --=--,①当C 点在P 点右侧时,1883(168)48243t x t x t x --=--=--,815x t \+=,20(8)20155PD t x \=-+=-=;②当C 点在P 点左侧时,1883(168)48243t x t x t x --=---=-++,3382x t \+=,3320(8)20 3.52PD t x \=-+=-=;PD \的长有2种可能,即5或3.5.17.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA OB <.(1)若A 、B 的位置如图所示,试化简:||||||||a b a b a b -+++-.(2)如图,若||||8.9a b +=,3MN =,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且215MN AB =-,3a =-,若点P 为数轴上一点,且23PA AB =,试求点P 所对应的数为多少?【解答】解:(1)由已知有:0a <,0b >OA OB<Q ||||a b \<0a b \+>,0a b -<||||||||a b a b a b a b a b b a b a \-+++-=--+++-=-(3分)(2)||||8.9a b +=Q 8.9AB \=(4分)又3MN =AN AO AM AB NO NM NB OM OB MB \+++++++++(6分)()()()()AN NB AO OB AM MB AB NO OM NM=+++++++++AB AB AB AB NM NM=+++++4248.92341.6AB NM =+=´+´=答:所有线段长度的和为41.6(8分)(3)3a =-Q 3OA \=M Q 为AB 的中点,N 为OA 的中点12AM AB \=,12AN OA =MN AM AN\=-1122AB OA =-1322AB =-(9分)又215MN AB =-1321522AB AB \-=-解得:9AB =263PA AB \==(10分)若点P 在点A 的左边时,点P 在原点的左边(图略)9OP =故点P 所对应的数为9-(11分)若点P 在点A 的右边时,点P 在原点的右边(图略)3OP =故点P 所对应的数为3答:P 所对应的数为9-或3.(12分)18.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,我们把M 、P 两点间距离的最小值称为点M 关于线段AB 的“靠近距离”,记作1d (点M ,线段)AB ;把M 、P 两点间的距离的最大值称为点M 关于线段AB 的“远离距离”,记作2d (点M ,线段)AB .特别的,若点M 与点P 重合,则M ,P 两点间的距离为0.已知点A 表示的数为5-,点B 表示的数为2.如图,若点C 表示的数为3,则1d (点C ,线段)1AB =,2d (点C ,线段)8AB =.(1)若点D 表示的数为7-,则1d (点D ,线段)AB = 2 ,2d (点D ,线段)AB = ;(2)若点M 表示的数为m ,1d (点M ,线段)3AB =,则m 的值为 ;若点N 表示的数为n ,2d (点N ,线段)12AB =,则n 的值为 .(3)若点E 表示的数为x ,点F 表示的数为2x +,2d (点F ,线段)AB 是1d (点E ,线段)AB 的3倍.求x 的值.【解答】解:(1)Q 点D 表示的数为7-,1d \(点D ,线段)5(7)2AB DA ==---=,2d (点D ,线段)2(7)9AB DB ==--=,故答案为:2,9.(2)①当点M 在点A 的左侧:有3AM =,8m \=-;当点M 在点B 的右侧:有3BM =,5m \=,m \的值为8-或5.②当点N 在点A 的左侧:有12BN =,10n \=-;当点N 在点B 的右侧:有12AN =,7n \=,n \的值为10-或7.(3)分两种情况:当点E 在点A 的左侧,2d (点F ,线段)2(2)AB BF x x ==-+=-,1d (点E ,线段)5AB AE x ==--,2d Q (点F ,线段)AB 是1d (点E ,线段)AB 的3倍,3(5)x x \-=--,7.5x \=-,当点E 在点B 的右侧,2d (点F ,线段)2(5)7AB AF x x ==+--=+,1d (点E ,线段)2AB EB x ==-,2d Q (点F ,线段)AB 是1d (点E ,线段)AB 的3倍,73(2)x x \+=-,6.5x \=,综上所述:x 的值为:7.5-或6.5.19.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足2|2|(7)0a c ++-=.(1)a = 2- ,b = ,c = ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.【解答】解:(1)2|2|(7)0a c ++-=Q ,20a \+=,70c -=,解得2a =-,7c =,b Q 是最小的正整数,1b \=,故答案为:2-,1,7.(2)由题意得,(72)2 4.5+¸=,对称点为7 4.5 2.5-=,2.5(2.51)4+-=,故答案为:4.(3)由题意,得,2333AB t t t =++=+,4959AC t t t =++=+,42626BC t t t =-+=+,故答案为,33t +,59t +,26t +.(4)点B 为AC 的中点,故有AB BC =得,3326t t +=+,得3t =.20.已知数轴上有A 、B 两个点.(1)如图1,若AB a =,M 是AB 的中点,C 为线段AB 上的一点,且34AC CB =,则AC ,CB = ,MC = (用含a 的代数式表示);(2)如图2,若A 、B 、C 三点对应的数分别为40-,10-,20.①当A 、C 两点同时向左运动,同时B 点向右运动,已知点A 、B 、C 的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M 为线段AB 的中点,点N 为线段BC 的中点,在B 、C 相遇前,在运动多少秒时恰好满足:3MB BN =.②现有动点P 、Q 都从C 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到B 点时,点Q 才从C 点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达A 点时,点Q 也停止移动(若设点P 的运动时间为)t .当PQ 两点间的距离恰为18个单位时,求满足条件的时间t 值.【解答】解:(1)AB a =Q ,C 为线段AB 上的一点,且34AC CB =,33347AC AB a \==+,44347CB AB a ==+,M Q 是AB 的中点,1312714MC AB AB a \=-=,故答案为:37a ,47a ,114a ;(2)①Q 若A 、B 、C 三点对应的数分别为40-,10-,20,30AB BC \==,设x 秒时,C 在B 右边时,恰好满足3MB BN =,1(8430)2BM x x =++Q ,1(3042)2BN x x =--,\当3MB BN =时,11(8430)3(3042)22x x x x ++=´--,解得:2x =,2\秒时恰好满足3MB BN =;②点P 表示的数为20t -,点Q 表示的数为203(30)t --,Ⅰ、当点P 移动18秒时,点Q 没动,此时,PQ 两点间的距离恰为18个单位;Ⅱ、点Q 在点P 的右侧,203(30)(20)18t t \----=,解得:36t =,Ⅲ、当点Q 在点P 的左侧,20[203(30)]18t t \----=,解得:54t =;综上所述:当t 为18秒、36秒和54秒时,P 、Q 两点相距18个单位长度.。

七年级数学线的计算的综合(部分解答)

七年级数学线的计算的综合(部分解答)

线的综合计算一、难点概要1、线段、角是初中阶段几何学习的基础,主要考察学生的计算能力、空间思考能力和逻辑推理能力。

2、常考题型:线段基本概念、线段计数、线段中点问题、方程思想求线段长度、分类讨论线段上点的位置关系、线段与数轴、绝对值结合的压轴问题等。

3、常用方法:设元法、方程思想、分类讨论等。

4、线段的中点(1)概念:把线段分为两条相等的线段的点,叫做这条线段的中点。

如下图,若点C为线段AB的中点,则AC==。

(2)画图并思考若点C为线段AB上任意一点(点C不与A、B重合),点M为线段AC的中点,点N为线段BC的中点,则线段MN与AB有什么数量关系?二、专题精讲例1:1、如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,求线段AC的长。

2、如图,点A 、B.、C 在同一条直线上,D 为AC 的中点,且AB =6cm ,BC =2cm 。

(1)试求AD 的长;(2)求AD :BD 的值。

变式训练:1、已知B 、C 、D 是线段AE 上的点,如果AB =BC =CE ,D 是CE 的中点,BD =6,则AE 是多少?2、如图,B 、D 在线段AC 上,BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求线段AB 的长度。

例2:如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点。

(1)若线段AB =a ,CE =b ,()215 4.50a b -+-=,求a 、b ;(2)如图1,在(1)的条件下,求线段DE ;(3)如图2,若AB =15,AD =2BE ,求线段CE 。

变式训练:已知m 、n 满足12m -+()210n m -+=0。

(1)求m 、n 的值;(2)已知线段AB =m ,在直线AB 上取一点P ,使AP =nPB ,点Q 为BP 的中点,求线段AQ 的长。

例3:如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,CD =2BD ,E 为线段AC 上一点,CE =2AE 。

专题08 几何图形初步中求线段长度重难点题型分类(解析版)—七年级数学上册重难点题型必刷题(人教版)

专题08 几何图形初步中求线段长度重难点题型分类(解析版)—七年级数学上册重难点题型必刷题(人教版)

专题08几何图形初步中求线段长度重难点题型分类(解析版)专题简介:本份资料包含《几何图形初步》这一章中求线段长度这一模块全部重要题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含五类题型:简单利用线段的和差求线段长度、双中点问题中的线段长度、按比例分配的线段长度、点在直线上的分情况讨论求线段长度、用方程方法求线段长度、线段长度中的动点问题,适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一:简单利用线段的和差求线段长度1.(雅礼)如图,线段AB =8cm ,点C 在BA 的延长线上,AC =2cm ,M 是BC 中点,则AM 的长是cm .【解答】解:∵AB =8cm ,AC =2cm ,∴BC =AB +AC =8cm +2cm =10cm ,∵M 是BC 的中点,∴CM =BC =×10cm =5cm ,∴AM =CM ﹣AC =5﹣2=3(cm ),故答案为:3.2.(北雅)已知点C ,D 在线段AB 上,且AC =BD =1.5,若AB =7,则CD 的长为.【解答】解:如图:∵AC =BD =1.5,AB =7,∴CD =AB ﹣AC ﹣BD =4,故答案为:4.3.(长梅)如图,已知M 是线段AB 的中点,N 在AB 上,25MN AM =,若2cm MN =,求AB 的长.【解答】解:∵MN =AM ,MN =2m ,∴AM =5cm ,∵M 是线段AB 的中点,∴AB =2AM =10cm ,即AB 的长是10cm 4.(雅礼)已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为4,求BE 的长.【解答】解:(1)图形如图所示:(2)∵AB =BC =4,AD =AB =2,∴CD =AD +AB +BC =10,∴DE =EC =CD =5,∴EB =EC ﹣BC =5﹣4=1.题型二:双中点问题中的线段长度两中点间线段长度=“大一半+小一半”或“大一半-小一半”5.(长郡)如图,C 为线段AB 的中点,D 是线段BC 的中点,BD =4cm ,AB =cm .【解答】解:∵点D 是线段BC 的中点,BD =4cm ,∴BC =2BD =2×4=8(cm ),∵点C 是线段AB 的中点,∴AB =2BC =16(cm ),故答案为:16.6.(青竹湖)如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为cm .【解答】解:∵点C 在线段AB 上,点M 、N 分别为AC 和BC 的中点,∴MC =AC ,NC =BC ,∴MN =MC +NC =(AC +CB )=AB =×8=4(cm ),故答案为:4.7.(长郡)如图,已知线段AB =16cm ,M 是AB 的中点,P 是线段MB 上一点,N 为PB 的中点,NB =3cm ,则线段MP =cm .【解答】解:∵M 是AB 的中点,AB =16cm ,∴AM =BM =8cm ,∵N 为PB 的中点,NB =3cm ,∴PB =2NB =6cm ,∴MP =BM ﹣PB =8﹣6=2(cm ).故答案为:2.8.(北雅)线段AB =1,C 1是AB 的中点,C 2是C 1B 的中点,C 3是C 2B 的中点,C 4是C 3B 的中点,依此类推……,线段AC 2022的长为.【解答】解:因为线段AB =1,C 1是AB 的中点,所以C 1B =AB =×1=;因为C 2是C 1B 的中点,所以C 2B =C 1B =×=;因为C 3是C 2B 的中点,所以C 3B =C 2B =×=;...,所以C 2022B =,所以AC 2022=AB ﹣C 2022B =1﹣,故答案为:1﹣.9.(一中双语)如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.【解答】解:∵C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,∴AC =CB =AB =5cm ,CD =BC =2.5cm ,∴AD =AC +CD =5+2.5=7.5cm .10.(青竹湖)如图,已知点C 为AB 上一点,18AC =cm ,23CB AC =,D 、E 分别是AC 、AB 的中点,求DE 的长.【解答】解:∵AC =18cm ,CB =AC ,∴BC =×18=12cm ,则AB =AC +BC =30cm ,∵D 、E 分别为AC 、AB 的中点,∴=AC =9cm ,AE =AB =15cm ,∴DE =AE ﹣AD =15﹣9=6cm ,答:DE 的长是6cm .11.(明德)如图,点C 为线段AB 的中点,点E 为线段AB 上的一点,点D 为线段AE 的中点.(1)若线段AB =m ,CE =n ,|m ﹣10|+|n ﹣3|=0,求m ,n 的值;(2)在(1)的条件下,求线段DC 的长.【解答】解:(1)|m ﹣10|+(n ﹣3)2=0,∴m ﹣10=0,n ﹣3=0,∴m =10,n =3;(2)∵点C 为线段AB 的中点,AB =10,∴AC =BC =AB =5,∵CE =3,∴AE =AC +CE =5+3=8,∵点D 为线段AE 的中点,∴AD =AE =4,∴CD =AC ﹣AD =5﹣4=1.12.(广益)如图,C 是线段AB 上一点,线段AB =25cm ,,D 是AC 的中点,E 是AB 的中点.(1)求线段CE 的长;(2)求线段DE的长.【解答】解:(1)∵AB=25cm,BC=AC,∴BC=AB=×25=10(cm),∵E是AB的中点,∴BE=AB=12.5cm,∴EC=12.5﹣10=2.5(cm);(2)由(1)得,AC=AB﹣CB=25﹣10=15(cm),∵点D、E分别是AC、AB的中点,∴AE=AB==12.5(cm),AD=AC==7.5(cm),∴DE=AE﹣AD=12.5﹣7.5=5(cm).13.(雅礼)如图,已知线段AC=12cm,点B在线段AC上,满足BC=AB.(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.【解答】解:(1)∵BC=AB,AC=12cm,∴BC=AC=4cm,∴AB=AC﹣CB=12﹣4=8(cm);(2)∵D是AB的中点,AB=8cm,∴AD=AB=4cm,∵E是AC的中点,AC=12cm,∴AE=AC=6cm,∴DE=AE﹣AD=6﹣4=2(cm).14.(青竹湖)如图,已知线段AB C、D,且AC BD=,M、N分别是线段AC、AD的中点,若cmAB a=,a b-+-=.==,且a、b满足()21060AC BD bcm(1)求AB,AC的长度;(2)求线段MN的长度.【解答】解:(1)由题意可知:(a﹣10)2+|b﹣6|=0,∴a=10,b=6,∴AB=10cm,AC=6cm;(2)∵BD=AC=6cm,∴AD=AB﹣BD=4cm,又∵M、N是AC、AD的中点,∴AM=3cm,AN=2cm.∴MN=AM﹣AN=1cm.AB=,点C是线段AB的中点,点D为线段CB上的一点,点E为线段DB的15.(青竹湖)如图,已知40EB=。

北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

 北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

北师大版七年级数学上第4章基本平面图形 -- 线段计算题(含答案)AB=6C AB D AC BD1. 已知:线段厘米,点是的中点,点在的中点,求线段的长.AB=6AB C BC=2AB D AC2. 如图,已知线段,延长线段到,使,点是的中点.求:AC(1)的长;BD(2)的长.B C AD2:3:4M AD CD=8MC3. 如图、两点把线段分成三部分,是的中点,,求的长.C ABD BC AD=7BD=5CD4. 已知:为线段的中点,在线段上,且,,求:线段的长度.AB=20cm C AB D AC E BC DE 5. 如图,,是上任意一点,是的中点,是的中点,求线段的长.AC=6cm BC=15cm M AC CB N6. 如图,线段,线段,点是的中点,在上取一点,使得CN:NB=1:2MN,求的长.7. 如图,,两点把线段分成三部分,其比为,是的中点,B C MN MB:BC:CN =2:3:4P MN ,求的长.PC =2cm MN8. 已知,如图,点在线段上,且,,点、分别是、的中C AB AC =6cm BC =14cm M N AC BC 点.(1)求线段的长度;MN(2)在(1)中,如果,,其它条件不变,你能猜测出的长度吗?AC =acm BC =bcm MN 请说出你发现的结论,并说明理由.9. 已知、两点在数轴上表示的数为和,、均为数轴上的点,且. A B a b M N OA <OB (1)若、的位置如图所示,试化简:.A B |a|−|b|+|a +b|+|a−b|(2)如图,若,,求图中以、、、、这个点为端点的所|a|+|b|=8.9MN =3A N O M B 5有线段长度的和;(3)如图,为中点,为中点,且,,若点为数轴上一点,M AB N OA MN =2AB−15a =−3P 且,试求点所对应的数为多少?PA =23ABP10. 阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距A B a b A B 离表示为,在数轴上、两点之间的距离.所以式子的几何意义是AB A B AB =|a−b||x−3|数轴上表示有理数的点与表示有理数的点之间的距离.3x 根据上述材料,解答下列问题:(1)若,则________;|x−3|=|x +1|x =(2)式子的最小值为________;|x−3|+|x +1|(3)若,求的值.|x−3|+|x +1|=7x11. 如图,是定长线段上一点,、两点分别从、出发以、的速度沿P AB C D P B 1cm/s 2cm/s 直线向左运动(在线段上,在线段上)AB C AP D BP (1)若、运动到任一时刻时,总有,请说明点在线段上的位置:C D PD =2AC P AB(2)在(1)的条件下,是直线上一点,且,求的值.Q AB AQ−BQ =PQ PQAB(3)在(1)的条件下,若、运动秒后,恰好有,此时点停止运动,点C D 5CD =12ABC D 继续运动(点在线段上),、分别是、的中点,下列结论:①的值D PB M N CD PD PM−PN 不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求MNAB 值.12. 如图,、是线段上两点,已知,、分别为、的中点,C D AB AC:CD:DB =1:2:3M N AC DB且,求线段的长.AB =18cm MN13. (应用题)如图所示,,,是一条公路上的三个村庄,,间路程为,A B C A B 100km ,间路程为,现在,之间建一个车站,设,之间的路程为. A C 40km A B P P C xkm (1)用含的代数式表示车站到三个村庄的路程之和;x(2)若路程之和为,则车站应设在何处?102km(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?14. 已知线段,,线段在直线上运动(在左侧,在左侧). AB =12CD =6CD AB A B C D (1)、分别是线段、的中点,若,求;M N AC BD BC =4MN(2)当运动到点与点重合时,是线段延长线上一点,下列两个结论:①CD D B P AB 是定值;②是定值,请作出正确的选择,并求出其定值.PA +PB PCPA−PBPC15. 如图甲,点是线段上一点,、两点分别从、同时出发,以、的O AB C D O B 2cm/s 4cm/s 速度在直线上运动,点在线段之间,点在线段之间.AB C OA D OB(1)设、两点同时沿直线向左运动秒时,,求的值;C D AB t AC:OD =1:2OAOB(2)在(1)的条件下,若、运动秒后都停止运动,此时恰有,求C D 52OD−AC =12BD的长;CD (3)在(2)的条件下,将线段在线段上左右滑动如图乙(点在之间,点在CD AB C OA D 之间),若、分别为、的中点,试说明线段的长度总不发生变化.OB M N AC BD MN16. 线段,点是线段中点,点是线段上一点,且,是线段AB =12cm O AB C AB AC =12BCP 的中点.AC(1)求线段的长.(如图所示)OP(2)若将题目中:点是线段上一点,改为点是直线上一点,线段还可以是C AB C AB OP 多长?(画出示意图)17. 已知:如图,是定长线段上一定点,、两点分别从、出发以、1M AB C D M B 1cm/s 的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)3cm/s BA C AM D BM(1)若,当点、运动了,求的值.AB =10cm C D 2s AC +MD(2)若点、运动时,总有,直接填空:________.C D MD =3AC AM =AB(3)在(2)的条件下,是直线上一点,且,求的值.N AB AN−BN =MN MNAB参考答案与试题解析北师大版七上线段计算题一、 解答题 (本题共计 17 小题 ,每题 10 分 ,共计170分 ) 1.【答案】解:∵ 厘米,是的中点,AB =6C AB ∴ 厘米,AC =3∵ 点在的中点,D AC ∴ 厘米,DC =1.5∴ 厘米.BD =BC +CD =4.52.【答案】、.1833.【答案】解:设,,,AB =2x BC =3x CD =4x ∴ ,,AD =9x MD =92x则,,CD =4x =8x =2.MC =MD−CD =92x−4x =12x =12×2=14.【答案】解:∵ ,AD =7BD =5∴ AB =AD +BD =12∵ 是的中点C AB ∴AC =12AB =6∴ .CD =AD−AC =7−6=15.【答案】.10cm6.【答案】解:∵ 是的中点,M AC ∴,MC =AM =12AC =12×6=3cm又∵ CN:NB =1:2∴,CN =13BC =13×15=5cm∴ .MN =MC +NC =3cm +5cm =8cm 7.【答案】.MN =36cm 8.【答案】解:(1)∵ ,,AC =6cm BC =14cm 点、分别是、的中点,M N AC BC ∴ ,,MC =3cm NC =7cm ∴ ;MN =MC +NC =10cm(2).理由是:MN =12(a +b)cm∵ ,,AC =acm BC =bcm 点、分别是、的中点,M N AC BC ∴ ,,MC =12acmNC =12bcm ∴ .MN =MC +NC =12(a +b)cm9.【答案】所有线段长度的和为41.6(3)∵ a =−3∴ OA =3∵ 为的中点,为的中点M AB N OA ∴ ,AM =12ABAN =12OA∴ MN =AM−AN =12AB−12OA =12AB−32又MN =2AB−15∴2AB−15=12AB−32解得:AB =9∴PA =23AB =6若点在点的左边时,点在原点的左边(图略)P A P OP =9故点所对应的数为P −9若点在点的右边时,点在原点的右边(图略)P A P OP =3故点所对应的数为P 3答:所对应的数为或.P −9310.【答案】,,或.14x =92x =−5211.【答案】解:(1)根据、的运动速度知:C D BD =2PC ∵ ,PD =2AC ∴ ,即,BD +PD =2(PC +AC)PB =2AP ∴ 点在线段上的处;P AB 13(2)如图:∵ ,AQ−BQ =PQ ∴ ;AQ =PQ +BQ 又,AQ =AP +PQ ∴ ,AP =BQ ∴ ,PQ =13AB∴ .PQAB =13当点在的延长线上时Q ′AB AQ ′−AP =PQ′所以AQ ′−B Q ′=PQ =AB所以;PQAB=1(3)②.MNAB 的值不变理由:当时,点停止运动,此时,CD =12ABC CP =5AB =30①如图,当,在点的同侧时M N PMN =PN−PM =12PD−(PD−MD)=MD−12PD =12CD−12PD =12(CD−PD)=12CP =52②如图,当,在点的异侧时M N PMN =PM +PN =MD−PD +12PD =MD−12PD =12CD−12PD =12(CD−PD)=12CP =52∴ MNAB=5230=112当点停止运动,点继续运动时,的值不变,所以,.C D MN MNAB =11212.【答案】的长为.MN 12cm13.【答案】解:(1)路程之和为;PA +PC +PB =40+x +100−(40+x)+x =(100+x)km (2),,车站在两侧处;100+x =102x =2C 2km (3)当时,,车站建在处路程和最小,路程和为.x =0x +100=100C 100km 14.【答案】解:(1)如图,∵ 、分别为线段、的中点,1M N AC BD ∴,AM =12AC =12(AB +BC)=8,DN =12BD =12(CD +BC)=5∴ ;MN =AD−AM−DN =9如图,∵ 、分别为线段、的中点,2M N AC BD ∴,AM =12AC =12(AB−BC)=4,DN =12BD =12(CD−BC)=1∴ ;MN =AD−AM−DN =12+6−4−4−1=9(2)①正确.证明:.PA +PBPC=2∵,PA +PBPC=(PC +AC)+(PC−CB)PC=2PC PC=2∴ ①是定值.PA +PBPC215.【答案】解:(1)设,则,AC =x OD =2x 又∵ ,OC =2t DB =4t ∴ ,,OA =x +2t OB =2x +4t∴ ;OA OB =12(2)设,,又,,由,得AC =x OD =2x OC =52×2=5(cm)BD =52×4=10(cm)OD−AC =12BD ,,2x−x =12×10x =5,OD =2x =2×5=10(cm);CD =OD +OC =10+5=15(cm)(3)在(2)中有,,,,AC =5(cm)BD =10(cm)CD =15AB =AC +BD +CD =30(cm)设,,AM =CM =x BN =DN =y ∵ ,,2x +15+2y =30x +y =7.5∴ .MN =CM +CD +DN =x +15+y =22.516.【答案】解:(1)OP =AO−AP =12AB−AP=12AB−12AC =12AB−12×13AB.=13AB =4(2)如下图所示:此时,.OP =AO +AP =12AB +AP =12AB +12AC =12AB +12AB =AB =1217.【答案】解:(1)当点、运动了时,,C D 2s CM =2cm BD =6cm∵ ,,AB =10cm CM =2cm BD =6cm∴ AC +MD =AB−CM−BD =10−2−6=2cm(2)14(3)当点在线段上时,如图N AB∵ ,又∵ AN−BN =MN AN−AM =MN ∴ ,∴ ,即.BN =AM =14AB MN =12AB MN AB =12当点在线段的延长线上时,如图N AB∵ ,又∵ AN−BN =MN AN−BN =AB ∴ ,即.综上所述MN =AB MN AB =1MN AB =12或1。

初一难点突破“线段的计算”50道(含详细解析)

初一难点突破“线段的计算”50道(含详细解析)

试卷第1页,总10页初一难点突破“线段的计算”50道(含详细解析)一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM . (1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点.4.已知:点C 在直线AB 上.(1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs .(1)AC= cm ;(2)当x= s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.7.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.8.已知m,n满足算式(m﹣6)2+|n﹣2|=0.(1)求m,n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB 的中点,求线段AQ的长.9.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N 分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.试卷第3页,总10页11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?并说明理由;12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点 这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm ,点C 是线段AB 的巧点,则AC= cm ;【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD的中点,BM=9cm ,求CM 和AD 的长15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长.16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 条;(2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来.18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB . (1)用含x 的代数式表示线段BC 的长和AC 的长;(2)取线段AC 的中点D ,若DB=3,求x 的值.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值.(2)在(1)的条件下,求线段CD 的长.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB的试卷第5页,总10页中点.(1)若AB=12cm ,则MN 的长度是 ;(2)若AC=3cm ,CP=1cm ,求线段PN 的长度.23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒.(1)当t=2时,①AB= cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.30.如图,已知点C 为AB 上一点,AC=15cm ,CB=35AC ,D ,E 分别为AC ,AB 的中点,求DE 的长.31.已知如图:线段AB=16cm ,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.32.已知C 为线段AB 的中点,E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长;(3)如图2,若AB=15,AD=2BE ,求线段CE 的长.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8.(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.试卷第7页,总10页34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ,点B 表示的数为(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.37.如图,C 是线段AB 的中点.(1)若点D 在CB 上,且DB=2cm ,AD=8cm ,求线段CD 的长度;(2)若将(1)中的“点D 在CB 上”改为“点D 在CB 的延长线上”,其它条件不变,请画出相应的示意图,并求出此时线段CD 的长度.38.如图,已知AB=24cm ,CD=10cm ,E ,F 分别为AC ,BD 的中点,求EF的长.39.如图,已知线段AB 上有两点C 、D ,且AC=BD ,M ,N 分别是线段AC ,AD 的中点,若AB=acm ,AC=BD=bcm ,且a 、b满足(a ﹣10)2+|b 2﹣4|=0.(1)求a 、b 的值;(2)求线段MN 的长度.40.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度).慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b ,若快车AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以4个单位长度/秒的速度向左匀速继续行驶,且|a +6|与(b ﹣18)2互为相反数. (1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒两列火车行驶到车头A 、C 相距8个单位长度?(3)此时在快车AB 上有一位爱到脑筋的七年级学生乘客P ,他发现行驶中有一段时间,他的位置P 到两列火车头A 、C 的距离和加上到两列火车尾B 、D 的距离和是一个不变的值(即PA +PC +PB +PD 为定值),你认为学生P 发现的这一结论是否正确?若正确,求出定值及所持续的时间;若不正确,请说明理由.41.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变,选择一个正确的结论,并求出其值.42.如图,已知直线l 有两条可以左右移动的线段:AB=m ,CD=n ,且m ,n满足|m ﹣4|+(n ﹣8)2=0.(1)求线段AB ,CD 的长;(2)线段AB 的中点为M ,线段CD 中点为N ,线段AB 以每秒4个单位长度试卷第9页,总10页向右运动,线段CD 以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC 的长;(3)将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,M 、N分别为AB 、CD 中点,BC=24,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在那一个时间段内.43.如图,点C 在线段AB 上,线段AC=8,BC=6,点M 、N 分别是AC 、BC的中点,求MN 的长度.(2)根据(1)的计算过程与结果,设AC +BC=a ,其它条件不变,你能猜想出MN 的长度吗?(3)若把(1)中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上,且满足AC ﹣BC=b ,你能猜想出MN 的长度吗?写出你的结论,并说明理由.44.如图,已知线段AB=6cm ,延长线段AB 到C ,使BC=2AB ,若点D 是AC上一点,且AD 比DC 短4cm ,点E 是BC 的中点,求线段DE 的长.45.如图,M 是线段AB 的中点,点C 在线段AB 上,且AC=8cm ,N 是AC的中点,MN=6cm ,求线段AB 的长. 46.已知B 是线段AC 上不同于A 或C 的任意一点,M 、N 、P 分别是AB 、BC 、AC 的中点,问:(1)MP=12BC 是否成立?为什么? (2)是否还有与(1)类似的结论?47.如图,已知线段AB 的长为12,点C 在线段AB 上,AC=12BC ,D 是AC 的中点,求线段BD 的长.48.如图,C 是AB 中点,D 是BC 上一点,E 是BD 的中点,AB=20,CD=2,求EB ,CE 的长.49.已知A 、B 两点在数轴上表示的数为a 和b ,M 、N均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a |﹣|b |+|a +b |+|a ﹣b |.(2)如图,若|a |+|b |=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB ﹣15,a=﹣3,若点P为数轴上一点,且PA=23AB ,试求点P 所对应的数为多少?50.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件: ①关于m 、n 的单项式2m 2n a 与﹣3m b n 的和仍为单项式.②当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD=2AC .(1)直接写出:a= ,b= .(2)判断ABAP = ,并说明理由.(3)在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC=2MN ,求此时AB CD的值.1初一难点突破“线段的计算”50道(含详细解析)答案一.解答题(共50小题)1.如图所示,点A 在线段CB 上,AC=12AB ,点D 是线段BC 的中点.若CD=3,求线段AD 的长.【解答】解:∵点D 是线段BC 的中点,CD=3, ∴BC=2CD=6,∵AC=12AB ,AC +AB=CB ,∴AC=2,AB=4, ∴AD=CD ﹣AC=3﹣2=1, 即线段AD 的长是1.2.已知线段AB=6,在直线AB 上取一点P ,恰好使AP=2PB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:如图1所示,∵AP=2PB ,AB=6,∴PB=13AB=13×6=2,AP=23AB=23×6=4;∵点Q 为PB 的中点,∴PQ=QB=12PB=12×2=1;∴AQ=AP +PQ=4+1=5.如图2所示,∵AP=2PB ,AB=6, ∴AB=BP=6,∵点Q 为PB 的中点, ∴BQ=3,∴AQ=AB +BQ=6+3=9. 故AQ 的长度为5或9.3.已知线段MN=3cm ,在线段MN 上取一点P ,使PM=PN ;延长线段MN到点A ,使AN=12MN ;延长线段NM 到点B ,使BN=3BM .(1)根据题意,画出图形;(2)求线段AB 的长;(3)试说明点P 是哪些线段的中点. 【解答】解:(1)如图所示:(2)∵MN=3cm ,AN=12MN ,∴AN=1.5cm , ∵BN=3BM ,∴BM=12MN=1.5cm ,∴AB=BM +MN +AN=6cm ;(3)∵点P 在线段MN 上,PM=PN , ∴点P 是线段MN 的中点, ∵BM=AN=1.5cm ,PM=PN=1.5cm , ∴BP=AP=3cm ,∴点P 是线段AB 的中点. 4.已知:点C 在直线AB 上. (1)若AB=2,AC=3,求BC 的长;(2)若点C 在射线AB 上,且BC=2AB ,取AC 的中点D ,已知线段BD 的长为1.5,求线段AB 的长.(要求:在备用图上补全图形)【解答】解:(1)若C 在A 的左边,则 BC=AB +AC=5; 若C 在A 的右边,则 BC=AC ﹣AB=1. 故BC 的长为5或1; (2)如图所示:∵点C 在射线AB 上,且BC=2AB ,D 是AC 的中点,∴AD=32AB ,∴BD=12AB ,3∵线段BD 的长为1.5, ∴线段AB 的长为3.5.如图,已知AC=16cm ,AB=13BC ,点C 是BD 的中点,求AD 的长.【解答】解:∵AC=16cm ,AB=13BC ,∴AB=14AC=4cm ,BC=16cm ﹣4cm=12cm ,∵点C 是BD 的中点, ∴CD=BC=12cm ,∴AD=AB +BC +CD=4cm +12cm +12cm=28cm .6.如图,C 是线段AB 上一点,AB=20cm ,BC=8cm ,点P 从A 出发,以2cm/s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1cm/s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P 运动时间为xs . (1)AC= 12 cm ;(2)当x= 203s 时,P 、Q 重合;(3)是否存在某一时刻,使得C 、P 、Q 这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x 的值;若不存在,请说明理由.【解答】解:(1)AC=AB ﹣BC=20﹣8=12(cm ),(2)20÷(2+1)=203(s ).故当x=203s 时,P 、Q 重合;(3)存在,①C 是线段PQ 的中点,得 2x +20﹣x=2×12,解得x=4; ②P 为线段CQ 的中点,得12+20﹣x=2×2x ,解得x=325;③Q 为线段PC 的中点,得 2x +10=2×(20﹣x ),解得x=7;综上所述:x=4或x=325或x=7. 故答案为:12;203.7.如图,线段AC=20cm ,BC=3AB ,N 线段BC 的中点,M 是线段BN 上的一点,且BM :MN=2:3.求线段MN 的长度.【解答】解:∵AC=20cm ,BC=3AB ,∴BC=34×20=15cm ,∴AB=5cm , ∵N 为BC 的中点, ∴BN=CN=7.5cm , ∵BM :MN=2:3,∴MN=35×7.5=4.5cm .8.已知m ,n 满足算式(m ﹣6)2+|n ﹣2|=0. (1)求m ,n 的值;(2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.【解答】解:(1)由条件可得(m ﹣6)2=0,|n ﹣2|=0, 所以m=6,n=2.(2)当点P 在线段AB 之间时,AP=2PB , 所以AP=4,PB=2,而Q 为PB 的中点, 所以PQ=1,故AQ=AP +PQ=5. 当点P 在线段AB 的延长线上时, AP ﹣PB=AB , 即2PB ﹣PB=6, 所以PB=6, 而Q 为PB 的中点,所以BQ=3,AQ=AB +BQ=6+3=9. 故线段AQ 的长为5或9.9.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.5(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC +BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点,∴CM=12AC=5厘米,CN=12BC=3厘米,∴MN=CM +CN=8厘米;(2)∵点M ,N 分别是AC ,BC 的中点,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12a ;(3)①当0<t ≤5时,C 是线段PQ 的中点,得 10﹣2t=6﹣t ,解得t=4;②当5<t ≤163时,P 为线段CQ 的中点,2t ﹣10=16﹣3t ,解得t=265;③当163<t ≤6时,Q 为线段PC 的中点,6﹣t=3t ﹣16,解得t=112;④当6<t ≤8时,C 为线段PQ 的中点,2t ﹣10=t ﹣6,解得t=4(舍),综上所述:t=4或265或112.10.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C 在线段AB 上,且AC :CB=2:1,则点C 是线段AB 的一个三等分点,显然,一条线段的三等分点有两个. (1)已知:如图2,DE=15cm ,点P 是DE 的三等分点,求DP 的长. (2)已知,线段AB=15cm ,如图3,点P 从点A 出发以每秒1cm 的速度在射线AB 上向点B 方向运动;点Q 从点B 出发,先向点A 方向运动,当与点P 重合后立马改变方向与点P 同向而行且速度始终为每秒2cm ,设运动时间为t 秒.①若点P 点Q 同时出发,且当点P 与点Q 重合时,求t 的值.②若点P 点Q 同时出发,且当点P 是线段AQ 的三等分点时,求t 的值.【解答】解:(1)当DP=2PE 时,DP=23DE=10cm ;当2DP=PE 时,DP=13DE=5cm .综上所述:DP 的长为5cm 或10cm . (2)①根据题意得:(1+2)t=15, 解得:t=5.答:当t=5秒时,点P 与点Q 重合. ②(I )点P 、Q 重合前: 当2AP=PQ 时,有t +2t +2t=15, 解得:t=3;当AP=2PQ 时,有t +12t +2t=15,解得:t=307;(II )点P 、Q 重合后,当AP=2PQ 时,有t=2(t ﹣5), 解得:t=10;当2AP=PQ 时,有2t=(t ﹣5), 解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、307秒或10秒时,点P 是线段AQ 的三等分点.11.如图,点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=b cm ,M 、N 分别为AC 、7BC 的中点,你能猜想MN 的长度吗?并说明理由;【解答】解:(1)∵点M 、N 分别是AC 、BC 的中点,AC=8cm ,CB=6cm ,∴CM=12AC=4cm ,CN=12BC=3cm ,∴MN=CM +CN=4+3=7cm , 即线段MN 的长是7cm ;(2)∵点M 、N 分别是AC 、BC 的中点,AC +CB=acm ,∴CM=12AC ,CN=12BC ,∴MN=CM +CN=12AC +12BC=12(AC +BC )=12acm ,即线段MN 的长是12acm ;(3)如图:MN=12b ,理由是:∵点M 、N 分别是AC 、BC 的中点,AC ﹣CB=bcm ,∴CM=12AC ,CN=12BC ,∴MN=CM ﹣CN=12AC ﹣12BC=12(AC ﹣BC )=12bcm ,即线段MN 的长是12bcm .12.【新知理解】如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”. (1)线段的中点 是 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm ,点C 是线段AB 的巧点,则AC= 4或6或8 cm ; 【解决问题】(3)如图②,已知AB=12cm .动点P 从点A 出发,以2cm/s 的速度沿AB 向点B 匀速移动:点Q 从点B 出发,以1cm/s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ).当t 为何值时,A 、P 、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解答】解:(1)∵线段的长是线段中线长度的2倍, ∴线段的中点是这条线段的“巧点”. 故答案为:是;(2)∵AB=12cm ,点C 是线段AB 的巧点,∴AC=12×13=4cm 或AC=12×12=6cm 或AC=12×23=8cm ;故答案为:4或6或8;(3)t 秒后,AP=2t ,AQ=12﹣t (0≤t ≤6)①由题意可知A 不可能为P 、Q 两点的巧点,此情况排除. ②当P 为A 、Q 的巧点时,Ⅰ.AP=13AQ ,即2t =13(12−t),解得t =127s ;Ⅱ.AP=12AQ ,即2t =12(12−t),解得t =125s ;Ⅲ.AP=23AQ ,即2t =23(12−t),解得t=3s ;③当Q 为A 、P 的巧点时,Ⅰ.AQ=13AP ,即(12−t)=2t ×13,解得t =365s (舍去);Ⅱ.AQ=12AP ,即(12−t)=2t ×12,解得t=6s ;Ⅲ.AQ=23AP ,即(12−t)=2t ×23,解得t =367s .13.已知,点C 是线段AB 的中点,AC=6.点D 在直线AB 上,且AD=12BD .请画出相应的示意图,并求线段CD 的长.【解答】解:∵点C 是线段AB 的中点,AC=6, ∴AB=2AC=12,①如图,若点D 在线段AC 上,∵AD=12BD ,∴AD=13AB=4,9∴CD=AC ﹣AD=6﹣4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD=12BD ,∴AD=AB=12,∴CD=AC +AD=6+12=18.综上所述,CD 的长为2或18.14.已知,如图B ,C 两点把线段AD 分成3:5:4三部分,M 为AD 的中点,BM=9cm ,求CM 和AD 的长【解答】解:设AB=3xcm ,BC=5xcm ,CD=4xcm , ∴AD=AB +BC +CD=12xcm , ∵M 是AD 的中点,∴AM=MD=12AD=6xcm ,∴BM=AM ﹣AB=6x ﹣3x=3xcm , ∵BM=9 cm , ∴3x=9, 解得,x=3,∴CM=MD ﹣CD=6x ﹣4x=2x=2×3=6(cm ), AD=12x=12×3=36(cm ).15.已知线段AB=10cm ,在直线AB 上有一点C ,且BC=4cm ,点D 是线段AC 的中点,试求线段AD 的长. 【解答】解:分两种情况:①如图1,当点C 在线段 AB 上时,AC=AB ﹣BC=10﹣4=6cm . ∵点D 是AC 的中点,∴AD=12AC=3cm .②如图2,当点C 在线段 AB 的延长线上时,AC=AB +BC=10+4=14cm . ∵点D 是AC 的中点,∴AD=12AC=7cm .16.已知线段AB ,延长AB 到C ,使BC=14AB ,D 为AC 的中点,若BD=6cm ,求AB 的长.【解答】解:设BC=x ,则AB=4x , ∵D 为AC 中点, ∴AD=CD=2.5x , ∵BD=CD ﹣BC=6cm , ∴2.5x ﹣x=6, 解得x=4, ∴AB=16cm .17.如图,点A 、M 、B 、N 、C 在同一直线上顺次排列,点M 是线段AB 的中点,点N 是线段MC 的中点,点N 在点B 的右边.(1)填空:图中共有线段 10 条; (2)若AB=6,MC=7,求线段BN 的长;(3)若AB=a ,MC=7,将线段BN 的长用含a 的代数式表示出来. 【解答】解:(1)图中共有线段1+2+3+4=10条; 故答案为:10;(2)∵AB=6,点M 是线段AB 的中点,∴BM=12AB=3,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣3=4,∴BN=BC ﹣NC=4﹣3.5=0.5;(3)∵AB=a ,点M 是线段AB 的中点,11∴BM=12AB=12a ,∵MC=7,点N 是线段MC 的中点,∴NC=12MC=3.5,BC=MC ﹣BM=7﹣12a ,∴BN=BC ﹣NC=7﹣12a ﹣3.5=3.5﹣12a .18.如图,已知线段AB 的长为x ,延长线段AB 至点C ,使BC=12AB .(1)用含x 的代数式表示线段BC 的长和AC 的长; (2)取线段AC 的中点D ,若DB=3,求x 的值.【解答】解:(1)∵AB=x ,BC=12AB ,∴BC=12x ,∵AC=AB +BC ,∴AC=x +12x=32x .(2)∵AD=DC=12AC ,AC=32x ,∴DC=34x ,∵DB=3,BC=12x ,∵DB=DC ﹣BC ,∴3=34x ﹣12x ,∴x=12.19.如图,延长线段AB 到点F ,延长线BA 到点E ,点M 、N 分别是线段AE 、BF 的中点,若AE :AB :BF=1:2:3,且EF=18cm ,求线段MN 的长.【解答】解:设EA=xcm ,则AB=2xcm ,BF=3xcm ,EF=6xcm . ∵点M ,N 分别是线段EA ,BF 的中点,∴EM=MA=12xcm ,BN=NF=32xcm .∵AB=2xcm ,∴MN=MA +AB +BN=4xcm . ∵EF=18cm ,∴6x=18, 解得:x=3, ∴MN=4x=12cm .20.如图,已知线段AB 和CD 的公共部分为BD ,且BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是20,求AB 、CD 的长.【解答】解:设BD=x ,则AB=3x ,CD=4x . ∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5x ,CF=12CD=2x ,AC=AB +CD ﹣BD=3x +4x ﹣x=6x .∴EF=AC ﹣AE ﹣CF=6x ﹣1.5x ﹣2x=2.5x . ∵EF=20, ∴2.5x=20, 解得:x=8.∴AB=3x=24,CD=4x=32.21.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值. (2)在(1)的条件下,求线段CD 的长.【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,13∴CD=DE ﹣CE=6﹣4.5=1.5.22.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.(1)若AB=12cm ,则MN 的长度是 6cm ; (2)若AC=3cm ,CP=1cm ,求线段PN 的长度.【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∴MN=MC +CN=12AC +12BC=12(AC +BC )=12AB=6cm .故答案为6cm ;(2)∵AC=3cm ,CP=1cm , ∴AP=AC +CP=4cm , ∵P 是线段AB 的中点, ∴AB=2AP=8cm . ∴CB=AB ﹣AC=5cm ,∵N 是线段CB 的中点,CN=12CB=2.5cm ,∴PN=CN ﹣CP=1.5cm .23.如图,B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动,C 是线段BD 的中点,AD=10cm ,设点B 运动时间为t 秒. (1)当t=2时,①AB= 4 cm .②求线段CD 的长度.(2)在运动过程中,若AB 的中点为E ,则EC 的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B 是线段AD 上一动点,沿A→D 以2cm/s 的速度运动, ∴当t=2时,AB=2×2=4cm . 故答案为:4;②∵AD=10cm ,AB=4cm , ∴BD=10﹣4=6cm , ∵C 是线段BD 的中点,∴CD=12BD=12×6=3cm ;(2)不变;∵AB 中点为E ,C 是线段BD 的中点,∴EB=12AB ,BC=12BD ,∴EC=EB +BC=12(AB +BD )=12AD=12×10=5cm . 24.如图,点C 在线段AB 上,AC=8 cm ,CB=6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB=a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,∵MN=MC +CN ,AB=AC +BC ,∴MN=12AB=7cm ;(2)MN=a2,∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,CN=12BC ,又∵MN=MC +CN ,AB=AC +BC ,∴MN=12(AC +BC )=a2;15(3)∵M 、N 分别是AC 、BC 的中点,∴MC=12AC ,NC=12BC ,又∵AB=AC ﹣BC ,NM=MC ﹣NC ,∴MN=12(AC ﹣BC )=b2;(4)如图,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 、MN 的长;(2)若C 在线段AB 的延长线上,且满足AC ﹣BC=6cm ,M 、N 分别是线段AC 、BC 的中点,求MN 的长度.【解答】解:(1)∵AC=6cm ,M 是AC 的中点,∴AM=MC=12AC=3cm ,∵MB=10cm , ∴BC=MB ﹣MC=7cm , ∵N 为BC 的中点,∴CN=12BC=3.5cm ,∴MN=MC +CN=6.5cm ;(2)如图,∵M 是AC 中点,N 是BC 中点,∴MC=12AC ,NC=12BC ,∵AC ﹣BC=bcm , ∴MN=MC ﹣NC=12AC ﹣12BC =12(AC ﹣BC )=12×6 =3(cm ).26.(1)已知线段AB=8cm ,在线段AB 上有一点C ,且BC=4cm ,M 为线段AC 的中点,求线段AM 的长?若点C 在线段AB 的延长线上,AM 的长度又是多少呢?(2)如图,AD=12DB ,E 是BC 的中点,BE=15AC=2cm ,求DE 的长.【解答】解:(1)①当点C 在线段AB 上时,∵AB=8cm ,BC=4cm , ∴AC=AB ﹣BC=8﹣4=4cm , ∵M 是AC 中点,∴AM=12AC=2cm .②当点C 在线段AB 的延长线上时,∵AB=8cm ,BC=4cm , ∴AC=AB +BC=8+4=12cm , ∵M 是AC 中点,∴AM=12AC=6cm .(2)∵BE=15AC=2cm ,∴AC=10cm , ∵E 是BC 中点, ∴BC=2BE=4cm ,∴AB=AC ﹣BC=10﹣4=6cm ,∵AD=12BD ,AD +BD=AB ,∴12BD +BD=AB=6cm ,17∴BD=4cm ,∴DE=BD +BE=4+2=6cm .27.如图,已知线段AB ,延长AB 到C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求BD 的长.【解答】解:∵D 为AC 的中点,DC=3cm , ∴AC=2DC=6cm ,∵BC=12AB ,∴BC=13AC=2cm ,∴BD=CD ﹣BC=1cm .28.(1)如图,AB=5cm ,BC=3cm ,点M 是线段AC 的中点,点N 是线段BC 的中点,求线段MN 的长.(2)如图(1)中,AB=a ,BC=b ,其他条件不变,求MN 的长,你发现了什么规律?请把它写出来.【解答】解:(1)∵AB=5cm ,BC=3cm , ∴AC=AB +BC=8cm ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=4cm ,NC=12BC=1.5cm ,∴MN=MC ﹣NC=4cm ﹣1.5cm=2.5cm ;(2)∵AB=a ,BC=b , ∴AC=AB +BC=a +b ,∵点M 是线段AC 的中点,点N 是线段BC 的中点,∴MC=12AC=12(a +b ),NC=12BC=12b ,∴MN=MC ﹣NC=12(a +b )﹣12b=12a ;规律是:MN=12AB .29.已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,在BA 的延长线上取一点D ,使DA=AB ,取AB 中点E ,若DE=7.5cm ,求DC 的长.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).30.如图,已知点C为AB上一点,AC=15cm,CB=35AC,D,E分别为AC,AB的中点,求DE的长.【解答】解:∵AC=15cm,CB=35 AC,∴CB=35×15=9cm,∴AB=15+9=24cm.∵D,E分别为AC,AB的中点,∴AE=BE=12AB=12cm,DC=AD=12AC=7.5cm,∴DE=AE﹣AD=12﹣7.5=4.5cm.31.已知如图:线段AB=16cm,点C是AB的中点,点D在AC的中点,求线段BD的长.【解答】解:∵AB=16cm,点C是AB的中点,∴AC=BC=16÷2=8(cm);∵点D在AC的中点,∴CD=8÷2=4(cm),∴BD=BC+CD=8+4=12(cm).32.已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.19(1)若线段AB=a ,CE=b ,|a ﹣15|+(b ﹣4.5)2=0,求a ,b 的值;(2)如图1,在(1)的条件下,求线段DE 的长; (3)如图2,若AB=15,AD=2BE ,求线段CE 的长. 【解答】解:(1)∵|a ﹣15|+(b ﹣4.5)2=0, ∴|a ﹣15|=0,(b ﹣4.5)2=0, ∵a 、b 均为非负数, ∴a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15,CE=4.5,∴AC=12AB=7.5,∴AE=AC +CE=12,∵点D 为线段AE 的中点,∴DE=12AE=6,(3)设EB=x ,则AD=2BE=2x , ∵点D 为线段AE 的中点, ∴AD=DE=2x , ∵AB=15, ∴AD +DE +BE=15, ∴x +2x +2x=15,解方程得:x=3,即BE=3, ∵AB=15,C 为AB 中点,∴BC=12AB=7.5,∴CE=BC ﹣BE=7.5﹣3=4.5.33.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和8. (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,观察MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【解答】解:(1)∵A ,B 两点所表示的数分别为﹣2和8, ∴OA=2,OB=8, ∴AB=OA +OB=10.(2)如图,线段MN 的长度不发生变化,其值为5.理由如下: ∵M 为PA 的中点,N 为PB 的中点,∴NP=12BP ,MP=12AP ,∴MN =NP −MP =12BP −12AP =12AB=5.34.如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且a 、b 满足|a +8|+|b ﹣4|=0(1)点A 表示的数为 ﹣8 ,点B 表示的数为 4(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度;点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度.P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数.(3)在P 、Q 运动的过程中,当P 、Q 两点的距离为2个单位长度时,求点Q 表示的数.【解答】解:(1)∵在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,a 、b 满足|a +8|+|b ﹣4|=0, ∴a +8=0,b ﹣4=0, 解得:a=﹣8,b=4,则点A 表示的数为:﹣8,点B 表示的数为:4;(2)设x 秒时两点相遇, 则3x +x=4﹣(﹣8),21解得:x=3,即3秒时,两点相遇,此时点C 所表示的数为:﹣8+3×3=1;(3)当两点相遇前的距离为2个单位长度时,3x +x=10,解得:x=52, 此时此时点Q 所表示的数为:4﹣1×52=1.5; 当两点相遇后的距离为2个单位长度时,3x +x=14,解得:x=72, 此时此时点Q 所表示的数为:4﹣1×72=0.5; 综上所述:点Q 表示的数为:1.5或0.5.35.如图,已知线段AB=16 cm ,点M 在AB 上,AM :BM=1:3,P 、Q 分别以AM ,AB 的中点,求PQ 的值.【解答】解:∵AB=16cm ,AM :BM=1:3,∴AM=4cm .BM=12cm ,∵P ,Q 分别为AM ,AB 的中点,∴AP=12AM=2cm ,AQ=12AB=8cm , ∴PQ=AQ ﹣AP=6cm .36.如图,线段AB ,在AB 的延长线上取点C ,使BC=2AB ,D 是AC 的中点,若AB=60cm ,求BD 的长.【解答】解:因为BC=2AB ,且AB=60cm ,所以BC=120cm .所以AC=AB +BC=120+60=180cm .因为D 为AC 中点,所以 AD=12AC=90cm .。

(完整word版)七年级线段运算专题答案汇总

(完整word版)七年级线段运算专题答案汇总

2013-2014年七年级数学上册压轴题1. (10分)如图, C为线段AB延长线上一点, D为线段BC上一点, CD=2BD, E为线段AC 上一点, CE=2AE(1)若AB=18, BC=21, 求DE的长;(2)若AB=a, 求DE的长;(用含a的代数式表示)(3)若图中所有线段的长度之和是线段AD长度的7倍, 则的值为.考点:两点间的距离. 菁优网版权所有分析:(1)利用CD=2BD, CE=2AE, 得出AE= AC= (AB+BC), 进一步利用BE=AB﹣AE, DE=BE+BD得出结论即可;(2)利用(1)的计算过程即可推出;(3)图中所有线段有AE、AB、AD、AC、EB、ED、EC、BD、BC、DC共10条, 求出所有线段的和用AC表示即可.(3)图中所有线段有AE、AB、AD、AC、EB、ED、EC、BD、BC、DC共10条,求出所有线段的和用AC表示即可.(3)图中所有线段有AE、AB.AD、AC、EB.ED、EC、BD、BC、DC共10条,求出所有线段的和用AC表示即可.(3)图中所有线段有AE、AB、AD、AC.EB、ED、EC.BD、BC.DC共10条,求出所有线段的和用AC表示即可.(3)图中所有线段有AE、AB、AD.AC、EB、ED.EC、BD.BC、DC共10条,求出所有线段的和用AC表示即可.(3)图中所有线段有AE、AB、AD、AC、EB、ED、EC、BD、BC、DC共10条,求出所有线段的和用AC表示即可.解答:解: (1)∵CD=2BD, BC=21,∴BD= BC=7,∵CE=2AE, AB=18,∴AE= AC= (AB+BC)= ×(18+21)=13,∴BE=AB﹣AE=18﹣13,∴DE=BE+BD=5+7=12;(2)∵CD=2BD,∴BD= BC,∵CE=2AE, AB=a,∴AE= AC,∴BE=AB﹣AE=AB﹣AC,∴DE=BE+BD=AB﹣AC+ BC=AB﹣(AC﹣BC)=AB﹣AB= AB,∵AB=a,∴DE=a;(3)设CD=2BD=2x, CE=2AE=2y,则BD=x, AE=y,所有线段和AE+AB+AD+AC+EB+ED+EC+BD+BC+DC=4y+3(2y﹣3x)+2x+2x+3(2y ﹣3x)+2x+2x+2x+2x+2x=7(y+2y﹣3x+x),y=2x,则AD=y+2y﹣3x+x=3y﹣2x=4x, AC=3y=6x,∴= ,故答案为:.故答案为: .故答案为:.点评:此题主要考查学生对两点间距离的理解和掌握, 此题是一道比较好的题目, 但是有一定的难度, 主要考查学生的计算能力.2. (10分)如果两个角的差的绝对值等于90°, 就称这两个角互为垂角, 例如: ∠1=120°, ∠2=30°, |∠1﹣∠2|=90°, 则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角)(1)如图1, O为直线AB上一点, OC⊥AB于点O, OE⊥OD于点O, 直接指出图中所有互为垂角的角;(2)如果一个角的垂角等于这个角的补角的, 求这个角的度数;(3)如图2, O为直线AB上一点, ∠AOC=75°, 将整个图形绕点O逆时针旋转n(0<n<90°), 直线AB旋转到A′B′, OC旋转到OC′, 作射线OP, 使∠BOP=∠BOB′, 求:当n为何值时, ∠POA′与∠AOC′互为垂角.考点:余角和补角;角的计算. 菁优网版权所有专题:新定义.分析:(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解;(3)分0<n<75, 75<n<90两种情况讨论可得n的值.(3)分0<n<75,75<n<90两种情况讨论可得n的值.(3)分0<n<75,75<n<90两种情况讨论可得n的值.解答:解: (1)互为垂角的角有4对: ∠EOB与∠DOB, ∠EOB与∠EOC, ∠AOD与∠COD, ∠AOD与∠AOE;(2)设这个角的度数为x度, 则①当0<x<90时, 它的垂角是90+x度, 依题意有90+x= (180﹣x),解得x=18;②当90<x<180时, 它的垂角是x﹣90度, 依题意有x﹣90= (180﹣x),解得x=126;故这个角的度数为18或126度;(3)当n=75时OC′和OA重合, 分两种情况:①当0<n<75时, ∠COC′=n°, ∠AOC′=75°﹣n°,∠POB=∠BOB′=n°,∠A′OP=180°﹣(∠POB+∠BOB′)=180°﹣2n°,∵∠A′OP﹣∠AOC′=90°,∴|(180﹣2n)﹣(75﹣n)|=90,∵0<n<75,∴n=15;②当75<n<90时, ∠AOC′=n°﹣75°,∠POB=∠BOB′=n°,∠A′OP=180°﹣(∠POB+∠BOB′)=180°﹣2n°,∵∠A′OP﹣∠AOC′=90°,∴|(180﹣2n)﹣(n﹣75)|=90,解得n=55或115,∵75<n<90,∴n=55或115舍去.综上所述;n=15时, ∠POA′与∠AOC′互为垂角.点评:主要考查了互为垂角和补角的概念以及运用.互为垂角的两个角的差的绝对值等于90°, 互为补角的两角之和为180°.解此题的关键是能准确的从图中找出角之间的数量关系, 从而计算出结果.3. (8分)如图(1), 长方形纸片ABCD, 点E、F分别在边AB.CD上, 连接EF, 将∠BEF 对折, 点B落在直线EF上的点B′处, 得折痕EM;将AEF对折, 点A落在直线EF上的A′处, 得折痕EN(1)若A′F: FB′: B′E=2: 3: 1且FB′=6, 求线段EB的长度;(2)如图(2), 若F为边DC的一点, BE= AB, 长方形ABCD的面积为48, 求三角形FEB 的面积.考点:翻折变换(折叠问题);两点间的距离;三角形的面积. 菁优网版权所有分析:(1)利用翻折变换的性质得出BE=B′E, 进而利用A′F: FB′: B′E=2: 3: 1求出B′E的长即可;(2)利用三角形面积与矩形面积关系以及同高不等底三角形面积关系得出即可.(2)利用三角形面积与矩形面积关系以及同高不等底三角形面积关系得出即可.解答:解: (1)∵将∠BEF对折, 点B落在直线EF上的点B′处, 得折痕EM, ∴BE=B′E,∵A′F: FB′: B′E=2: 3: 1且FB′=6,∴BE=B′E=6×=2,∴线段EB的长度为: 2;(2)由题意可得出: S△AFB= S矩形ABCD=24,∵F为边DC的一点, BE= AB,∴S△FEB= S△AFB= ×24=9.∴S△FEB=S△AFB=×24=9.点评:此题主要考查了翻折变换的性质以及同高不等底三角形面积关系, 正确根据图形关系得出三角形面积是解题关键.4. (8分)已知D为直线AB上的一点, ∠COE是直角, OF平分∠AOE(1)如图1, 若∠COF=34°, 则∠BOE=68°;若∠COF=m°, 则∠BOE=2m°;∠BOE与∠COF的数量关系为BOE=2∠COF.(2)在图2中, 若∠COF=75, 在∠BOE的内部是否存在一条射线OD, 使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的三分之一?若存在, 请求出∠BOD的度数;若不存在, 请说明理由.(3)当射线OE绕点O顺时针旋转到如图3的位置时, (1)中∠BOE和∠COF的数量关系是否仍然成立?请说明理由, 若不成立, 求出∠BOE与∠COF的数量关系.考点:角的计算;角平分线的定义. 菁优网版权所有分析:(1)由∠COF=34°, ∠COE是直角, 易求∠EOF, 而OF平分∠AOE, 可求∠AOE, 进而可求∠BOE, 若∠COF=m°, 则∠BOE=2m°;进而可知∠BOE=2∠COF;(3)由前面的结论, 当∠COF=75°, 得到∠BOE=2×75°=150°, 并且∠EOF=∠AOF=90°﹣75°=15°, 再根据2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的三分之一, 可得到关于∠BOE的方程, 解方程得到∠BOD=15°, 因此在∠BOE的内部存在一条射线OD, 满足条件;(2)由于∠COE是直角, 于是∠EOF=90°﹣∠COF, 而OF平分∠AOE, 得出∠EOF=(180°﹣x)÷2, ∠FOC=(180°﹣x)÷2+90°=(360°﹣x)÷2, 由此可得出结论.(2)由于∠COE是直角,于是∠EOF=90°﹣∠COF,而OF平分∠AOE,得出∠EOF=(180°﹣x)÷2,∠FOC=(180°﹣x)÷2+90°=(360°﹣x)÷2,由此可得出结论.(2)由于∠COE是直角,于是∠EOF=90°﹣∠COF,而OF平分∠AOE,得出∠EOF=(180°﹣x)÷2,∠FOC=(180°﹣x)÷2+90°=(360°﹣x)÷2,由此可得出结论.解答:解: (1)∵∠COF=34°, ∠COE是直角,∴∠EOF=90°﹣34°=56°,又∵OF平分∠AOE,∴∠AOE=2∠EOF=112°,∴∠BOE=180°﹣112°=68°,若∠COF=m°, 则∠BOE=2m°;故∠BOE=2∠COF;故答案是68°;2m°;∠BOE=2∠COF;(2)存在. 理由如下:如图2, ∵∠COF=75°,∴∠BOE=2×75°=150°,∠EOF=∠AOF=90°﹣75°=15°,而2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半,∴2∠BOD+15°= (150°﹣∠BOD),∴∠BOD=15°.(3)∠BOE和∠COF的关系不成立.设∠BOE=x, 则∠EOF=(180°﹣x)÷2, ∠FOC=(180°﹣x)÷2+90°=(360°﹣x)÷2,∴∠BOE+2∠FOC=360°点评:本题考查了旋转的性质:旋转前后的两个图形全等, 对应点与旋转中心的连线段的夹角等于旋转角, 对应点到旋转中心的距离相等;也考查了角平分线的定义以及互余互补的含义.5. (8分)点A在数轴上对应的数为a, 点B对应的数为b, 且a、b满足|a+3|+(b﹣2)2=0 (1)求线段AB的长;(2)如图1 点C在数轴上对应的数为x, 且x是方程2x+1= x﹣5的根, 在数轴上是否存在点P使PA+PB= BC+AB?若存在, 求出点P对应的数;若不存在, 说明理由;(3)如图2, 若P点是B点右侧一点, PA的中点为M, N为PB的三等分点且靠近于P点, 当P在B的右侧运动时, 有两个结论:①PM﹣BN的值不变;②PM+ BN的值不变, 其中只有一个结论正确, 请判断正确的结论, 并求出其值考点:一元一次方程的应用;数轴;两点间的距离. 菁优网版权所有专题:应用题.分析:(1)利用非负数的性质求出a与b的值, 即可确定出AB的长;(2)求出已知方程的解确定出x, 得到C表示的点, 设点P在数轴上对应的数是m, 由PA+PB= BC+AB确定出P位置, 即可做出判断;(3)设P点所表示的数为n, 就有PN=n+3, PB=n﹣2, 根据条件就可以表示出PM= , BN= ×(n﹣2), 再分别代入①PM﹣BN和②PM+ BN求出其值即可.(3)设P点所表示的数为n,就有PN=n+3,PB=n﹣2,根据条件就可以表示出PM= ,BN= ×(n﹣2),再分别代入①PM﹣BN和②PM+ BN求出其值即可.(3)设P点所表示的数为n,就有PN=n+3,PB=n﹣2,根据条件就可以表示出PM=,BN=×(n﹣2),再分别代入①PM﹣BN和②PM+BN求出其值即可.解答:解: (1)∵|a+3|+(b﹣2)2=0,∴a+3=0, b﹣2=0,∴a=﹣3, b=2,∴AB=|﹣3﹣2|=5.答: AB的长为5;(2)∵2x+1= x﹣5,∴x=﹣4,∴BC=6.设点P在数轴上对应的数是m,∵PA+PB= BC+AB,∴|m+3|+|m﹣2|= ×6+5,令m+3=0, m﹣2=0,∴m=﹣3或m=2.当m≤﹣3时,﹣m﹣3+2﹣m=8,m=﹣4.5;当﹣3<m≤2时,m+3+2﹣m=8, (舍去);当m>2时,m+3+m﹣2=8,m=3.5.∴点P对应的数是﹣4.5或3.5;(3)设P点所表示的数为n,∴PN=n+3, PB=n﹣2.∵PA的中点为M,∴PM= PN= , .N为PB的三等分点且靠近于P点,∴BN= PB= ×(n﹣2).∴PM﹣BN= ﹣××(n﹣2),= (不变).②PM+ BN= + ××(n﹣2)= n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变, 且值为2.5.∴正确的结论是:PM﹣BN的值不变,且值为2.5.∴正确的结论是: PM﹣BN的值不变,且值为2.5.∴正确的结论是:PM﹣BN的值不变,且值为2.5.点评:本题考查了一元一次方程的运用, 分段函数的运用, 数轴的运用, 数轴上任意两点间的距离公式的运用, 去绝对值的运用, 解答时了灵活运用两点间的距离公式求解是关键.6. (12分)(1)已知数轴上A.B两点分别表示﹣3.5, 则AB=8, 数轴上M、N两点分别表示数m、n, 则MN=n﹣m(2)如图1, E、F为线段AB的三等分点, P为直线AB上一动点(P不与E、F、A重合), 在点P运动过程中, PE、PF、PA有何数量关系?请写出结论并说明理由考点:两点间的距离;数轴. 菁优网版权所有分析:(1)根据两点间的距离公式即可得到AB和MN的长;(2)分P在A左边, P在AE上, P在EF上, P在FB上, P在B右边, 五种情况讨论即可求解.(2)分P在A左边,P在AE上,P在EF上,P在FB上,P在B右边,五种情况讨论即可求解.(2)分P在A左边,P在AE上,P在EF上,P在FB上,P在B右边,五种情况讨论即可求解.解答:解: (1)由图形可知, AB=5﹣(﹣3)=8, MN=n﹣m;(2)P在A左边, PE﹣PA=PF﹣PE, 即2PE﹣PF=PA;P在AE上, PE+PA=PF﹣PE, 即PF﹣2PE=PA;P在EF上, PE+PF=AP﹣PE, 即2PE+PF=PA;P在FB上, PE﹣PF=AP﹣PE, 即2PE﹣PF=PA;P在B右边, PE﹣PF=PA﹣PE, 即2PE﹣PF=PA.故答案为:8, n﹣m.故答案为:8,n﹣m.故答案为: 8,n﹣m.故答案为:8,n﹣m.点评:考查了数轴、两点间的距离, 关键是熟练掌握两点间的距离公式, 以及分类思想的运用.7. (4分)A.2011 B.2012 C.2013 D.2014把一张纸剪成5块,从所得纸片中取出若干块各剪成5块,再从以上所得纸片中取出若干块, 每块又剪成5块, …,如此进行下去, 到剪完某一次后停止时, 所得纸片总数可能是()考点:规律型:数字的变化类. 菁优网版权所有分析:根据剪纸的规律, 每一次都是在5的基础上多了4张, 则剪了n次时, 每次取出的纸片数分别为x1, x2, x3, …, xn块, 最后共得纸片总数N, 根据数的整除性这一规律可得出答案.解答:解: 设把一张纸剪成5块后, 剪纸还进行了n次, 每次取出的纸片数分别为x1, x2, x3, …, xn块, 最后共得纸片总数N, 则N=5﹣x1+5x1﹣x2+5x2﹣…﹣xn+5xn=1+4(1+x1+x2+…+xn),又∵N被4除时余1, N必为奇数,而2011=502×4+3, 2013=503×4+1,∴N只可能是2013.故选:C.故选: C.故选:C.点评:本题考查了图形的变化类, 必须探索出剪n次有的纸片数, 然后根据数的整除性规律求得进行判断.8. (10分)如图, 已知数轴上点A表示的数为8, B是数轴上一点, 且AB=14. 动点P从点A出发, 以每秒5个单位长度的速度沿数轴向左匀速运动, 设运动时间为t(t>0)秒. (1)写出数轴上点B表示的数﹣6, 点P表示的数8﹣5t(用含t的代数式表示);(2)动点Q从点B出发, 以每秒3个单位长度的速度沿数轴向左匀速运动, 若点P、Q同时出发, 问点P运动多少秒时追上点Q?(3)若M为AP的中点, N为PB的中点.点P在运动的过程中, 线段MN的长度是否发生变化?若变化, 请说明理由;若不变, 请你画出图形, 并求出线段MN的长.考点:一元一次方程的应用;数轴;两点间的距离. 菁优网版权所有分析:(1)根据已知可得B点表示的数为8﹣14;点P表示的数为8﹣5t;(2)点P运动x秒时, 在点C处追上点Q, 则AC=5x, BC=3x, 根据AC﹣BC=AB, 列出方程求解即可;(3)分①当点P在点A、B两点之间运动时, ②当点P运动到点B的左侧时, 利用中点的定义和线段的和差求出MN的长即可.(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.(3)分①当点P在点A.B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.解答:解: (1)∵点A表示的数为8, B在A点左边, AB=14,∴点B表示的数是8﹣14=﹣6,∵动点P从点A出发, 以每秒5个单位长度的速度沿数轴向左匀速运动, 设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t.故答案为: ﹣6, 8﹣5t;(2)设点P运动x秒时, 在点C处追上点Q,则AC=5x, BC=3x,∵AC﹣BC=AB,∴5x﹣3x=14,解得: x=7,∴点P运动7秒时追上点Q.(3)线段MN的长度不发生变化, 都等于7;理由如下:∵①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×14=7,②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣BP= (AP﹣BP)= AB=7,∴线段MN的长度不发生变化, 其值为7.∴线段MN的长度不发生变化,其值为7.∴线段MN的长度不发生变化,其值为7.点评:本题考查了数轴一元一次方程的应用, 用到的知识点是数轴上两点之间的距离, 关键是根据题意画出图形, 注意分两种情况进行讨论.9. (12分)如图1, 已知∠AOC=m°, ∠BOC=n°且m、n满足等式|3m﹣420|+(2n﹣40)=0, 射线OP从OB处绕点0以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;(2)如图l, 当射线OP从OB处绕点O开始逆时针旋转, 同时射线OQ从OA处以l度/秒的速度绕点0顺时针旋转, 当他们旋转多少秒时, 使得∠POQ=10°?(3)如图2, 若射线OD为∠AOC的平分线, 当射线OP从OB处绕点O开始逆时针旋转, 同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转, 使得这两条射线重合于射线OE处(OE在∠DOC的内部)时, 且= , 试求x.考点:几何变换综合题;角的计算. 菁优网版权所有分析:(1)先根据非负数的性质求得m=140, n=20, 即得∠AOC=140°, ∠BOC=20°, 从而得到结果;(2)设他们旋转x秒时, 使得∠POQ=10°, 则∠AOQ=x°, ∠BOP=4x°.分①当射线OP与射线OQ相遇前, ②当射线OP与射线OQ相遇后, 两种情况, 结合旋转的性质分析即可;(3)设t秒后这两条射线重合于射线OE处, 则∠BOE=4t°, 先根据角平分线的性质可得∠COD的度数, 即可求得∠BOD的度数, 再根据= 即可求得∠COE的度数, 从而得到∠DOE、∠BOE的度数, 即可求得结果.(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°,先根据角平分线的性质可得∠COD的度数,即可求得∠BOD的度数,再根据= 即可求得∠COE的度数,从而得到∠DOE、∠BOE的度数,即可求得结果.(3)设t秒后这两条射线重合于射线OE处,则∠BOE=4t°,先根据角平分线的性质可得∠COD的度数,即可求得∠BOD的度数,再根据=即可求得∠COE的度数,从而得到∠DOE、∠BOE的度数,即可求得结果.解答:解: (1)∵|3m﹣420|+(2n﹣40)2=0,∴3m﹣420=0且2n﹣40=0,∴m=140, n=20,∴∠AOC=140°, ∠BOC=20°,∴∠AOB=∠AOC﹣∠BOC=160°;(2)设他们旋转x秒时, 使得∠POQ=10°. 则∠AOQ=x°, ∠BOP=4x°.①当射线OP与射线OQ相遇前有: ∠AOQ+∠BOP+∠POQ=∠AOB=160°,即:x+4x+10=160,解得: x=30;②当射线OP与射线OQ相遇后有: ∠AOQ+∠BOP﹣∠POQ=∠AOB=160°,即: x+4x﹣10=160,解得: x=34.答:当他们旋转30秒或34秒时, 使得∠POQ=10°;(3)设t秒后这两条射线重合于射线OE处, 则∠BOE=4t°.∵OD为∠AOC的平分线,∴∠COD= ∠AOC=70°,∴∠BOD=∠COD+∠BOC=70°+20°=90°.∵,∴∠COE= ×90°=40°, ∠DOE=30°, ∠BOE=20°+40°=60°即: 4t=60,∴t=15,∴∠DOE=15x°, 即: 15x=30解得x=2.点评:本题考查了旋转的性质, 角的计算.应该认真审题并仔细观察图形, 找到各个量之间的关系, 是解题的关键.10.(10分)如图1, 已知∠AOC=2∠BOC, ∠AOC的余角比∠BOC小30°,(1)求∠COB的度数;(2)经过点O作射线OD, 使得∠AOC=4∠AOD, 求∠BOD的度数;(3)如图2, 在∠AOB的内部作∠EOF, OM、ON分别为∠AOE和∠BOF的平分线, 当∠EOF绕点O在∠AOB的内部转动时, 请说明∠AOB+∠EOF=2∠MON.考点:角的计算;角平分线的定义. 菁优网版权所有分析:(1)设∠BOC=x, 则∠AOC=2x, 根据, ∠AOC的余角比∠BOC小30゜列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部②当射线OD在∠AOC外部, 分别求出∠BOD的度数即可;(3)OM、ON分别为∠AOE和∠BOF的平分线, 可得∠MOE= ∠AOE, ∠FON= ∠BOF, 所以∠MON=∠EOF+ (∠AOE+∠BOF), 即可得2∠MON=2∠EOF+∠AOE+∠BOF=∠AOB+∠EOF.(3)OM、ON分别为∠AOE和∠BOF的平分线,可得∠MOE= ∠AOE,∠FON= ∠BOF,所以∠MON=∠EOF+ (∠AOE+∠BOF),即可得2∠MON=2∠EOF+∠AOE+∠BOF=∠AOB+∠EOF.(3)OM、ON分别为∠AOE和∠BOF的平分线,可得∠MOE=∠AOE,∠FON=∠BOF,所以∠MON=∠EOF+(∠AOE+∠BOF),即可得2∠MON=2∠EOF+∠AOE+∠BOF=∠AOB+∠EOF.解答:解: (1)设∠BOC=x, 则∠AOC=2x,依题意列方程90°﹣2x=x﹣30°,解得: x=40°,即∠COB=40゜.(2)由(1)得, ∠AOC=80°, ∠AOB=∠AOC+∠BOC=120°,①当射线OD在∠AOC内部时, ∠AOD=20゜,则∠BOD=∠AOB﹣∠AOD=120°﹣20°=100°;②当射线OD在∠AOC外部时, ∠AOD=20゜则∠BOD=∠AOB+∠AOD=120゜+20°=140°;(3)∵OM、ON分别为∠AOE和∠BOF的平分线,∴∠MOE= ∠AOE, ∠FON= ∠BOF,∴∠MON=∠EOF+ (∠AOE+∠BOF),∴2∠MON=2∠EOF+∠AOE+∠BOF=∠AOB+∠EOF.即∠AOB+∠EOF=2∠MON.即∠AOB+∠EOF=2∠MON.点评:本题考查了角平分线的定义以及角的计算, 还用到了方程的思想.注意(2)要根据射线OD的位置不同, 分类讨论, 分别求出∠BOD的度数.11. (12分)如图1, 点A.B分别在数轴原点O的左右两侧, 且OA+50=OB, 点B对应数是90.(1)求A点对应的数;(2)如图2, 动点M、N、P分别从原点O、A.B同时出发, 其中M、N均向右运动, 速度分别为2个单位长度/秒, 7个单位长度/秒, 点P向左运动, 速度为8个单位长度/秒, 设它们运动时间为t秒, 问当t为何值时, 点M、N之间的距离等于P、M之间的距离;(3)如图3, 将(2)中的三动点M、N、P的运动方向改为与原来相反的方向, 其余条件不变, 设Q为线段MN的中点, R为线段OP的中点, 求22RQ﹣28RO﹣5PN的值.考点:数轴;两点间的距离. 菁优网版权所有分析:(1)根据点B对应的数求得OB的长度, 结合已知条件和图形来求点A所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为, 列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为, 列方程求出t, 并求出RQ, RO 及PN, 再求出22RQ﹣28RO﹣5PN的值.(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO及PN,再求出22RQ﹣28RO﹣5PN的值.(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO及PN,再求出22RQ﹣28RO﹣5PN的值.解答:解: (1)如图1, ∵点B对应数是90,∴OB=90.又∵OA+50=OB, 即OA+50=90,∴OA=120.∴点A所对应的数是﹣120;(2)依题意得, MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14, 点M、N之间的距离等于点P、M之间的距离.(3)依题意得RQ=(45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0.点评:本题主要考查了数轴及两点间的距离, 解题的关键是根据M、N之间的距离等于P、M之间的距离列出方程求出t.12. (12分)已知: A.B.C为数轴上三个运动的点, 速度分别为a个单位/秒、b个单位/秒和c 个单位/秒(a、b、c为正整数), 且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A.B.C三点运动的速度;(2)若A、B两点分别从原点出发, 向数轴正方向运动, C从表示+20的点出发同时向数轴的负方向运动, 几秒后, C点恰好为AB的中点?(3)如图, 若一把长16cm的直尺一端始终与C重合(另一端D在C的右边), 且M、N 分别为OD、OC的中点, 在C点运动过程中, 试问:MN的值是否变化?若变化, 求出其取值范围;若不变, 请求出其值.考点:一元一次方程的应用;数轴;两点间的距离. 菁优网版权所有分析:(1)根据条件可以得出c≥1的整数, 就可以得出1﹣c≤0, 在根据|5﹣a|+(b﹣3)2≥0就可以求出c的值, 再由非负数的性质就可以求出结论;(2)设x秒后, C点恰好为AB的中点, 就有方程3x+ (5x﹣3x)=20﹣x, 求出其解即可.(3)设OC=a, 则OD=16+a, 根据中点的定义就有ON、OM的值, 就可以求出MN 的值而得出结论.(3)设OC=a,则OD=16+a,根据中点的定义就有ON、OM的值,就可以求出MN 的值而得出结论.(3)设OC=a,则OD=16+a,根据中点的定义就有ON、OM的值,就可以求出MN 的值而得出结论.解答:解: (1)∵|5﹣a|+(b﹣3)2是非负数,∴1﹣c≥0.∵c为正整数, 所以1﹣c≤0,∴1﹣c=0,∴c=1;∴|5﹣a|+(b﹣3)2=0,∴5﹣a=0, b﹣3=0,∴a=5;b=3;答: A点的运动速度为5个单位长度/秒;B点的运动速度为3个单位长度/秒;C点的运动速度为1个单位长度/秒;(2)设设x秒后, C点恰好为AB的中点, 由题意, 得3x+ (5x﹣3x)=20﹣x,解得: x=4.答: 4秒后, C点恰好为AB的中点;(3)不变, MN=8.理由:设OC=a, 则OD=16+a.∵M、N分别为OD.OC的中点,∴ON= OC= a, OM= OD= (16+a)=8+ a.∵MN=OM﹣ON,∴MN=8+ a﹣a=8.∴MN=8+a﹣a=8.点评:本题考查了列一元一次方程解实际问题的运用, 一元一次方程的解法的运用, 行程问题的数量关系的运用, 数轴的运用, 线段中点的运用, 非负数的性质的运用, 解答时求A、B、C三点运动的速度是解答本题的关键.运用中点的性质求MN的值是难点.。

部编数学七年级上册专题08线段上册动点问题的三种考法(解析版)(人教版)含答案

部编数学七年级上册专题08线段上册动点问题的三种考法(解析版)(人教版)含答案

专题08 线段上动点问题的三种考法类型一、求值问题例.数轴上有A ,B ,C 三点,A ,B 表示的数分别为m ,n ()m n <,点C 在B 的右侧,2AC AB -=.(1)如图1,若多项式()371231m n x x x +--+-是关于x 的二次三项式,请直接写出m ,n 的值:(2)如图2,在(1)的条件下,长度为1的线段EF (E 在F 的左侧)在A ,B 之间沿数轴水平滑动(不与A ,B 重合),点M 是EC 的中点,N 是BF 的中点,在EF 滑动过程中,线段MN 的长度是否发生变化,请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m ,n 的式子表示);②若24AD BD +=,试求线段AB 的长.【答案】(1)5m =-,1n =;(2)不变化,理由见解析;(3)①12m n ++;②103【解析】(1)解:由题可知,n -1=0,7+m =2,∴1n =,5m =-故答案为:5m =-,1n =(2)解:MN 的长不发生变化,理由如下:由题意,得点C 表示的数为3,设点E 表示的数为x ,则点F 表示的数为1x +∴6AB = ,2BC = ,5AE x =+ ,6AF x =+ ,3EC x =- ,BF x =-,∵点M 是EC 的中点,N 是BF 的中点∴32x MC ME -==,2x NF -=,即311222x x MN ME EF FN --=--=--=(3)解:①∵A ,B 表示的数分别为m ,n ()m n <又点C 在B 的右侧,∴AB =n -m∵2AC AB -=,∴AC = n -m +2∵点D 是AC 的中点,∴AD =12AC = 12(n -m +2)∴D 表示的数为:m + 12(n -m +2)=12m n ++②依题意,点C 表示的数分别为2n +∴AB n m =-,1122m n n m AD m +-=+-=+∴1122m n m n BD n +-=+-=+,22122m n BD m n -=+=-+∵24AD BD +=,即1242n m m n -++-+=当20m n -+>时.()1242n m m n -++-+=,2m n -=∵m n <,∴2m n -=不符合题意,舍去当20m n -+<时.()1242n m m n -+--+=,103n m -=综上所述,线段AB 的长为103.【变式训练1】如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB =15cm .动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设移动的时间为t (s ),当t =__s 时,Q 为A ,P 的“巧点”.【答案】是 7.5或457【解析】(1)若线段中点为C点,AB=2AC,所以中点是这条线段“巧点”(2)设A点为数轴原点,作数轴,设运动时间为t秒;t最大=7.5,A:0,P:0+2t=2t,Q:15﹣t,①Q为AP中点,20152tt+-=,∴t=7.5;②AQ=2PQ,AQ=15﹣t﹣0=15﹣t,PQ=2t﹣(15﹣t)=3t﹣15,∵AQ=2PQ,∴15﹣t=2(3t﹣15),∴457t=;③PQ=2AQ,得3t﹣15=2(15﹣t),∴t=9>7.5(舍去).综上所述:t=7.5或45 7.故答案为:(1)是;(2)7.5或45 7.【变式训练2】已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm ∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13 BM故答案为:13.(3)解:由(2)可得:∵BM =AB ﹣AM ∴AB ﹣AM =3AM ,∴AM =14AB ,①当点N 在线段AB 上时,如图∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =14AB ,∴MN =12AB ,即2MN 3AB =13.②当点N 在线段AB 的延长线上时,如图∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB ,∴MN AB=1,即2MN 3AB =23.综上所述2MN 3AB =13或23【变式训练3】如图,数轴上有两点,A B ,点C 从原点O 出发,以每秒1cm 的速度在线段OA 上运动,点D 从点B 出发,以每秒4cm 的速度在线段OB 上运动.在运动过程中满足4OD AC =,若点M 为直线OA 上一点,且AM BM OM -=,则AB OM的值为_______.【答案】1或53【解析】设运动的时间为t 秒,点M 表示的数为m则OC=t ,BD=4t ,即点C 在数轴上表示的数为-t ,点D 在数轴上表示的数为b-4t ,∴AC=-t-a ,OD=b-4t ,由OD=4AC 得,b-4t=4(-t-a ),即:b=-4a ,①若点M 在点B 的右侧时,如图1所示:由AM-BM=OM 得,m-a-(m-b )=m ,即:m=b-a ;∴=1b a B O mA m M m -==②若点M 在线段BO 上时,如图2所示:由AM-BM=OM 得,m-a-(b-m )=m ,即:m=a+b ;∴=4543b a b a a a m a AB b a a OM ----===+-③若点M 在线段OA 上时,如图3所示:由AM-BM=OM 得,m-a-(b-m )=-m ,即:433a b a a m a +-===-∵此时m <0,a <0,∴此种情况不符合题意舍去;④若点M 在点A 的左侧时,如图4所示:由AM-BM=OM 得,a-m-(b-m )=-m ,即:m=b-a=-5a ;而m <0,b-a >0,因此,不符合题意舍去,综上所述,AB OM 的值为1或53.类型二、证明定值问题例.如图,已知线段AB m =,CD n =,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若()21260m n -+-=.(1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,4BC =,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA PB PC -是定值,②PA PB PC+是定值,请选择你认为正确的一个并加以说明.【答案】(1)12AB =,6CD =;(2)9;(3)②正确,2PA PB PC+=,见解析【解析】(1)由()21260m n -+-=,()212600m n ³--³,,12=06=0m n --,,得12m =,6n =,所以12AB =,6CD =;(2)当点C 在点B 的右侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,4BC =,所以()()1124118222AM AC AB BC ==+´+==,()()111645222DN BD CD BC ===++=,又因为124622AD AB BC CD =++=++=,所以22859MN AD AM DN =--=--=,当点C 在点B 的左侧时,如图,因为点M ,N 分别为线段AC ,BD 的中点,所以()()1111244222AM MC AC AB BC ===--==,()()111641222BN ND BD CD BC ===--==,所以126414AD AB CD BC =+-=+-=所以14419MN AD AM DN =--=--=.综上,线段MN 的长为9;(3)②正确,且2PA PB PC+=.理由如下:因为点D 与点B 重合,所以BC DC =,所以6AC AB BC AB DC =-=-=,所以AC BC =,所以()()222PC AC PC BC PA PB PC AC BC PC PC PC PC PC++-++-====.【变式训练1】已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 的左侧,C 在D 的左侧),且m ,n 满足|m -12|+(n -4)2=0.(1)m= ,n= ;(2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.【解析】(1)∵|m-12|+(n-4)2=0,∴m-12=0,n-4=0,∴m=12,n=4;故答案为:12;4.(2)由题意,①∵AB=12,CD=4,∵M是线段AC的中点,N是线段BD的中点,∴AM=CM=12AC ,DN=BN=12BD∴MN=CM+CD+DN=12AC +CD+12BD=12AC +12CD+12BD+12CD=12(AC +CD+BD)+12CD=12(AB +CD)=8;②如图,设PA=a,则PC=8+a,PE=10+a,依题意有:81013231a a+++=++,解得:a=2,在整个运动的过程中:BD=2t,BC=4+2t,∵E是线段BC的中点,∴CE= BE=12BC=2+t;Ⅰ.如图1,F,C相遇,即t=2时F,C重合,D,E重合,则FC=0,DE=0,∴FC-5 DE =0;Ⅱ.如图2,F,C相遇前,即t<2时FC =10-5t,DE =BE-BD=2+t-2t=2-t,∴FC-5 DE =10-5t -5(2-t)=0;Ⅲ.如图3,F,C相遇后,即t>2时FC =5t-10,DE = BD - BE=2t –(2+t)= t-2,∴FC-5 DE =5t-10 -5(t-2)=0;综合上述:在整个运动的过程中,FC-5 DE的值为定值,且定值为0.【变式训练2】如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.【答案】(1)6;6;(2)不发生改变,MN为定值6,过程见解析【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【变式训练3】(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.【答案】(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析;(2)见解析.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM=12PB .同理:PN= 12AP ..∴MN=PN+PM= 12(PB+AP )= 12AB= 12×4=2.∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a \==12PC PB BC a b \=+=+,2212PA PB a b PC a b ++\==+,所以PA PB PC+的值不变.类型三、数量关系例.数轴上A B 、两点对应的数分别是4,12-,线段CE 在数轴上运动,点C 在点E 的左边,且8,CE =点F是AE 的中点.(1)如图1,当线段CE 运动到点,C E 均在,A B 之间时,若1CF =,则AB =_________,点C 对应的数为________,BE =________;(2)如图2,当线段CE 运动到点A 在C E 、之间时,画出草图并求BE 与CF 的数量关系.【答案】(1)16;2;2;(2)2BE CF =,画图见解析.【解析】(1)Q 数轴上A B 、两点对应的数分别是4,12-,12(4)16AB \=--=8,1CE CF ==Q 7EF CE CF \=-=Q 点F 是AE 的中点,7AF EF \==,6AC AF CF \=-=6AC AO CO =+=Q ,2CO \=,C \对应的数是2,2BE AB AF EF \=--=故答案为:16;2;2;(2),BE AB AE CF CE EF =-=-Q ,Q 点F 是AE 的中点,2AE EF\=162,8BE AB AE EF CF CE EF EF \=-=-=-=-,2BE CF\=故答案为:(1)16;2;2;(2)2BE CF =,画图见解析.【变式训练1】如图,已知线段AB ,延长线段BA 至C ,使CB =43AB .(1)请根据题意将图形补充完整.直接写出AC AB= _______;(2)设AB = 9cm ,点D 从点B 出发,点E 从点A 出发,分别以3cm/s ,1cm/s 的速度沿直线AB 向左运动.①当点D 在线段AB 上运动,求AD CE 的值;②在点D ,E 沿直线AB 向左运动的过程中,M ,N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD 的三等分点时,求MN 的长.【答案】(1)13,(2)3,(3)12cm 或24cm .【详解】解:(1)图形补充完整如图,∵CB =43AB ,∴CA =13BC AB AB -=,13AC AB =,故答案为:13;(2)①AB = 9cm ,由(1)得,133CA AB ==(cm ),设运动的时间为t 秒,(93)DA t =-cm ,(3)CE t =-cm ,93=33AD t CE t-=-,②当3BD CD =时,∵AB = 9cm , 3CA =cm ,∴212CB CD ==cm ,∴6CD =cm ,318BD CD ==cm ,运动时间为:18÷3=6(秒),则6AE =cm ,15BE BA AE =+=cm ,3ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴ 1.5DM =cm , 4.5BN =cm ,12MN BD DM BN =--=cm ,当3BD CB =时,∵AB = 9cm , 3CA =cm ,∴12CB =cm ,∴336BD CB ==cm ,运动时间为:36÷3=12(秒),则12AE =cm ,21BE BA AE =+=cm ,15ED BD BE =-=cm ,∵M ,N 分别是线段DE 、AB 的中点.∴7.5DM =cm , 4.5BN =cm ,24MN BD DM BN =--=cm ,综上,MN 的长是12cm 或24cm .【变式训练2】已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB= .【答案】(1)①AD=7;②AD=203或283;(2)1742或116【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴CE=13DE=83或CE=23DE=163,∴CD=163或CD=83,∴AD=AC﹣CD=12﹣163=203或12-83=283;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵32AD ECBE+=,∴0.532x y yx y++=-,∴y=27x,∴CD=1.5x﹣27x=1714x,∴171714342==xCDAB x;当点E在点A的左侧,如图,设BC =x ,则DE =1.5x ,设CE =y ,∴DC =EC +DE =y +1.5x ,∴AD =DC ﹣AC =y +1.5x ﹣2x =y ﹣0.5x ,∵32AD EC BE +=,BE =EC +BC =x +y ,∴0.532y x y x y -+=+,∴y =4x ,∴CD =y +1.5x =4x +1.5x =5.5x ,BD =DC +BC =y +1.5x +x =6.5x ,∴AB =BD ﹣AD =6.5x ﹣y +0.5x =6.5x ﹣4x +0.5x =3x ,∴ 5.51136==CD x AB x ,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.故答案为:1742或116.课后作业1.已知有理数a ,b ,c 在数轴上对应的点从左到右顺次为A ,B ,C ,其中b 是最小的正整数,a 在最大的负整数左侧1个单位长度,BC=2AB .(1)填空:a= ,b= ,c= (2)点D 从点A 开始,点E 从点B 开始, 点F 从点C 开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F 追上点D 时停止动,设运动时间为t 秒.试问:①当三点开始运动以后,t 为何值时,这三个点中恰好有一点为另外两点的中点?②F 在追上E 点前,是否存在常数k ,使得DF k EF +×的值与它们的运动时间无关,为定值.若存在,请求出k 和这个定值;若不存在,请说明理由.【答案】(1)-2,1,7;(2)①t=1或t=52;②k=-1【解析】(1)∵最小正数为1.最大的负整数为小-1,a 在最大的负整数左侧1个单位长度∴点A 表示的数a 为-1-1=-2,点B 表示的数b 为1,∴AB=1-(-2)=3∵223=6BC AB ==´,∴点C 表示的数为c=1+6=7,故答案为:-2,1,7;(2)①依题意,点F 的运动距离为4t ,点D 、E 运动的距离为t,∴点D 、E 、F 分别表示的数为-2-t ,1-t , 7-4t,当点F 追上点D 时,必将超过点B ,∴存在两种情况,即DE=EF 和DF=EF ,如图,当DE=EF ,即E 为DF 的中点时,()21=274t t t ----+,解得,t=1,如图,当EF=DF ,即F 为DE 中点时,()74=21t t t ---+-2,解得t=52,综上所述,当t=1秒和t=52时,满足题意.②存在,理由:点D 、E 、F 分别表示的数为-2-t ,1-t ,7-4t,如图,F 在追上E 点前, ()74-2=93DF t t t =----,()74-1=63EF t t t =---,()()93639633DF k EF t k t k k t +×=-+-=+-+,当DF k EF +×与t 无关时,需满足3+3k=0,即k=-1时,满足条件.故答案为:(1)-2,1,7;(2)①t=1或t=52;②k=-12.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.【答案】(1)7;(2)3或5【解析】(1)2AC BC =,18AB =,6BC \=,12AC =,如图1,E Q 为BC 中点,3CE BE \==,8DE =Q ,∴8311BD DE BE =+=+=,∴18117AD AB DB =-=-=,(2)Ⅰ、当点E 在点F 的左侧,如图2,或∵3CE EF +=,6BC =,\点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==,∵3CE EF +=,故图2(b )这种情况求不出;Ⅱ、如图3,当点E 在点F 的右侧,或12AC =Q ,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,3AD \=.∵3CE EF +=,故图3(b )这种情况求不出;综上所述:AD 的长为3或5.3.已知线段AB ,点C 在直线AB 上,D 为线段BC 的中点.(1)若8AB =,2AC =,求线段CD 的长.(2)若点E 是线段AC 的中点,请写出线段DE 和AB 的数量关系并说明理由.【答案】(1)3或5(2)2AB DE =,理由见解析【解析】(1)解:如图1,当C 在点A 右侧时,∵8AB =,2AC =,∴6C AB C B A =-=,∵D 是线段BC 的中点,:∴132CD BC ==;如图2,当C 在点A 左侧时,∵8AB =,2AC =,∴10BC AB AC =+=,∵D 是线段BC 的中点,∴152CD BC ==;综上所述,3CD =或5;(2)解:2AB DE =.理由是:如图3,当C 在点A 和点B 之间时,∵E 是AC 的中点,D 是BC 的中点,∴2AC EC =,2BC CD =,∴222AB AC BC EC CD DE =+=+=;如图4,当C 在点A 左侧时,同理可得:()2222AB BC AC CD CE CD CE DE =-=-=-=;如图5,当C 在点B 右侧时,同理可得:()2222AB AC BC EC CD EC CD DE =-=-=-=.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.【答案】(1)7cm;(2)13;(3)13或23【解析】(1)解:当点C、D运动了1s时,CM=1cm,BD=3cm∵AB=11cm,CM=1cm,BD=3cm∴AC+MD=AB﹣CM﹣BD=11﹣1﹣3=7cm.(2)解:设运动时间为t,则CM=t,BD=3t,∵AC=AM﹣t,MD=BM﹣3t,又MD=3AC,∴BM﹣3t=3AM﹣3t,即BM=3AM,∴AM=13BM,故答案为:13.(3)解:由(2)可得:∵BM=AB﹣AM,∴AB﹣AM=3AM,∴AM=14 AB,①当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=14AB,∴MN=12AB,即2MN3AB=13.②当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,,∴MNAB=1,即2MN3AB=23.综上所述2MN3AB=13或235.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)=a ________,b =________,c =________.(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,13PA PB PC ++=,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t 的值.【答案】(1)3-,1-,9;(2)13x =或1x =或53x =或233x =;(3)167t =,1,2617,8,12【详解】解:(1)∵b 是最大的负整数,且a ,c 满足()2390a c ++-=,∴b=-1,a+3=0,c-9=0,∴a=-3,c=9.故答案为:-3;-1;9.(2)由题意知,此过程中,当点P 在AB 上时.∴PA+PB=AB=b-a=-1-(-3)=2.∴()13-=13-2=11PC PA PB =+.又∵BC=c-b=9-(-1)=10.∴PB=PC-BC=11-10=1.当P 从B 到A 时,如图所示:∵PB=1,可以列方程为:3x=1,解得:x=1;当P 从A 到C 时,分两种情况讨论:①当P 在线段AB 之间时,如图所示:可以列方程为:3x=3,解得:x=1,②当P 在线段BC 之间时,如图所示:∵PA+PB+PC=13,AB=2,BC=10,∵PB+PC=10∴PA=13-10=3,∴PB=PA-AB=3-2=1,可列方程为:3x=5,解得:53x =.当P 从C 到B 时,如图所示:可列方程为:3x=23,解得:233x =.综上所述,13x =或1x =或53x =或233x =.(3)当点从为PN 中点时,当0<t<23时,点P 向A 运动,.此时,P=-1-3t ,M=-3+4t ,N=9-5t .(-1-3t )+(9-5t )=2(-3+4t ),解得t=78(舍去).当23≤t≤43时,点P 从A 返回向B 运动.此时,P=-3+3(t-23)=3t-5.3t-5+9-5t=2(-3+4t ),解得t=1.当P 为MN 中点时,t>43.(9-5t )+(-3+4t )=2(3t-5),解得t=167 .当点N 为PM 中点时,t>43.(-3+4t )+(3t-5)=2(9-5t ),解得t=2617.综上所述,t 的值为1, 167或2617.6.七(1)班的学习小组学习“线段中点”内容时,得到一个很有意思的结论,请跟随他们一起思考. (1)发现:如图1,线段12AB =,点,,C E F 在线段AB 上,当点,E F 是线段AC 和线段BC 的中点时,线段EF 的长为_________;若点C 在线段AB 的延长线上,其他条件不变(请在图2中按题目要求将图补充完整),得到的线段EF 与线段AB 之间的数量关系为_________.(2)应用:如图3,现有长为40米的拔河比赛专用绳AB ,其左右两端各有一段(AC 和BD )磨损了,磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF . 小明所在学习小组认为此法可行,于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF ,请你尝试着“复原”他们的做法:①在图中标出点E 、点F 的位置,并简述画图方法;②请说明①题中所标示,E F 点的理由.【答案】(1)6;补图见解析,12EF AB (2)①见解析(答案不唯一)②见解析.【详解】解:(1)点,,C E F 在线段AB 上时,因为点E 是线段AC 的中点,所以CE=12AC ,因为点F 是线段BC 的中点,所以CF=12BC ,所以EF=CE+CF=12AC+12BC=12AB ,又AB=12,所以EF=6.当点C 在线段AB 的延长线上时,如图2,此时,EF=EC-FC ═12AC-12BC=12AB.答案为:6;EF=12AB.(2)①图3如图,在CD 上取一点M ,使CM CA =,F 为BM 的中点,点E 与点C 重合. (答案不唯一)②因为F 为BM 的中点,所以MF BF =.因为,AB AC CM MF BF CM CA =+++=,所以222()2AB CM MF CM MF EF =+=+=.因为40AB =米,所以20EF =米.因为20AC BD +<米,40AB AC BD CD =++=米,所以20CD >米.因为点E 与点C 重合,20EF =米,所以20CF =米,所以点F 落在线段CD 上.所以EF 满足条件.7.问题背景整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析,把握它们之间的关联,进行有目的、有意识的整体处理,整体思想在代数和几何中都有很广泛的应用.(1)如图1,A 、B 、O 三点在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,则∠DOE 的度数为 (直接写出答案).(2)当x =1时,代数式a 3x +bx +2021的值为2020,当x =﹣1时,求代数式a 3x +bx +2021的值.(3)①如图2,点C 是线段AB 上一定点,点D 从点A 、点E 从点B 同时出发分别沿直线AB 向左、向右匀速运动,若点E 的运动速度是点D 运动速度的3倍,且整个运动过程中始终满足CE =3CD ,求AC AB 的值;②如图3,在①的条件下,若点E 沿直线AB 向左运动,其它条件均不变.在点D 、E 运动过程中,点P 、Q 分别是AE 、CE 的中点,若运动到某一时刻,恰好CE =4PQ ,求此时AD AB的值.【答案】(1)90°;(2)2022;(3)①14;②112或512【解析】(1)解:如图1,∵射线OD 和射线OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠COE =12∠BOC ,∵∠DOE =∠DOC +∠COE ,∴∠DOE =12∠AOC +12∠BOC =12(∠AOC +∠BOC ),∵∠AOC +∠BOC =180°,∴∠DOE =12×180°=90°,故答案为:90°.(2)∵当x =1时,代数式a 3x +bx +2021的值为2020,∴a +b +2021=2020,∴a +b =-1,∴-a -b =1,当x =﹣1时,a 3x +bx +2021= -a -b +2021=1+2021=2022.(3)①如图2,设点D 运动的路程为x ,则点E 运动的路程为3x ,∴CE =BC +BE =BC +3x ,CD =CA +AD =CA +x ,∵CE =3CD ,∴BC +3x = 3CA +3x ,∴CB =3AC ,∴AB =CB +AC =4AC ,∴AC AB =14.②根据①,设AC =m ,则CB =3m ,AB =4m ,设点D 运动的路程为AD =x ,则点E 运动的路程为EB =3x ,当点E 在C 点的右侧时,如图3,∴CE =BC -BE =3m -3x ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE -QE =12AE -12CE =11()222m AE CE AC -==,∵CE =4PQ ,∴3m -3x =4×2m ,解得x =3m ,故AD =3m ,∴AD AB =13412m m =.当点E 在C 点的左侧,且在点A 的右侧时,如图4,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =53412m m =.当点E 在A 点的左侧时,如图5,∴CE =BE -BC =3x -3m ,CD =CA +AD =m +x ,∵点P 、Q 分别是AE 、CE 的中点,∴PE =12AE ,QE =12CE ,∴PQ =PE +QE =12AE +12CE =11()222m AE CE AC +==,∵CE =4PQ ,∴3x -3m =4×2m ,解得x =53m ,故AD =53m ,∴AD AB =553412m m =.综上所述,AD AB 的值为112或512.8.已知:如图1,点M 是线段AB 上一定点,AB =12cm ,C 、D 两点分别从M 、B 出发以1cm /s 、2cm /s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AM =4cm ,当点C 、D 运动了2s ,此时AC = ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC +MD 的值.(3)若点C 、D 运动时,总有MD =2AC ,则AM = (填空)(4)在(3)的条件下,N 是直线AB 上一点,且AN ﹣BN =MN ,求MN AB的值.【答案】(1)2,4;(2)6 cm ;(3)4;(4)13MN AB =或1.【详解】(1)根据题意知,CM =2cm ,BD =4cm ,∵AB =12cm ,AM =4cm ,∴BM =8cm ,∴AC =AM ﹣CM =2cm ,DM =BM ﹣BD =4cm ,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2 s 时,CM =2 cm ,BD =4 cm∵AB =12 cm ,CM =2 cm ,BD =4 cm∴AC +MD =AM ﹣CM +BM ﹣BD =AB ﹣CM ﹣BD =12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD =2MC ,∵MD =2AC ,∴BD +MD =2(MC +AC ),即MB =2AM ,∵AM +BM =AB ,∴AM +2AM =AB ,∴AM =13AB =4,故答案为:4;(4)①当点N 在线段AB 上时,如图1,∵AN ﹣BN =MN ,又∵AN ﹣AM =MN ,∴BN =AM =4∴MN =AB ﹣AM ﹣BN =12﹣4﹣4=4,∴13MN AB =;②当点N 在线段AB 的延长线上时,如图2,∵AN ﹣BN =MN ,又∵AN ﹣BN =AB ,∴MN =AB =12,∴1MN AB=;综上所述13MN AB =或1故答案为13MN AB =或1.9.如图,数轴正半轴上的A ,B 两点分别表示有理数a ,b ,O 为原点,若3a =,线段5OB OA =.(1)=a ______,b =______;(2)若点P 从点A 出发,以每秒2个单位长度向x 轴正半轴运动,求运动时间为多少时;点P 到点A 的距离是点P 到点B 距离的3倍;(3)数轴上还有一点C 表示的数为32,若点P 和点Q 同时从点A 和点B 出发,分别以每秒2个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4.【答案】(1)3a =,15b =;(2)9或92;(3)8或503【详解】解:(1)∵数轴正半轴上的A ,B 两点分别表示有理数a ,b ,|a|=3,线段OB=5OA ,∴a=3,b=15,故答案为:3,15;(2)设运动时间为t 秒时,点P 到点A 的距离是点P 到点B 距离的3倍.由题意得:AB=15-3=12,当点P 在A 、B 之间时,有2t=3(12-2t ),解得:t=92;当点P 在B 的右边时,有2t=3(2t-12),解得t=9;即运动时间为92或9秒时,点P 到点A 的距离是点P 到点B 的距离的3倍;(3)根据题意,由点C 为32,则AC=32-3=29,BC=32-15=17,∴点P 运动到点C 所需要的时间为:2914.52t ==秒,点Q 运动到点C 所需要的时间为:17171t ==秒,则可分为两种情况进行分析:①当点P 还没有追上点Q 时,有:1224t t +-=,解得:8t =;②当点P 运动到点C 返回时,与点Q 相遇后,与点Q 相距4,则有:2124292t t ++-=´,解得:503t =.10.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______;(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等.(直接写出答案)【答案】(1)1-;(2)x= 3.5-或1.5;(3)4t 3=分钟或t=2分钟时点P 到点M ,点N 的距离相等.【详解】解:(1)∵M ,O ,N 对应的数分别为-3,0,1,点P 到点M ,点N 的距离相等,∴x 的值是1-.故答案为1-;(2)存在符合题意的点P ;∵点M为-3,点N为1,则点P分为两种情况,①点P在N点右侧,则(1)(3)5x x-++=,解得: 1.5x=;②点P在M点左侧,则(3)(1)5x x--+-=,解得: 3.5x=-;∴ 3.5 1.5x=-或=.(3)设运动t分钟时,点P对应的数是-3t,点M对应的数是-3-t,点N对应的数是1-4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以:-3-t=1-4t,解得t=43,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=-3t-(-3-t)=3-2t.PN=(1-4t)-(-3t)=1-t.因为PM=PN,所以3-2t=1-t,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=3t-t-3=2t-3.PN=-3t-(1-4t)=t-1.因为PM=PN,所以2t-3=t-1,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,符合题意.综上所述,三点同时出发,43分钟或2分钟时点P到点M,点N的距离相等.11.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13AB,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112 AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.。

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

部编数学七年级上册专题28和线段有关的计算(解析版)含答案

专题28 和线段有关的计算1.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若11AB cm =,当点C 、D 运动了1s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =.(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求23MN AB的值.【解答】解:(1)当点C 、D 运动了1s 时,1CM cm =,3BD cm=11AB cm =Q ,1CM cm =,3BD cm=11137AC MD AB CM BD cm \+=--=--=;(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,13AM BM \=,故答案为:13;(3)当点N 在线段AB 上时,如图14BN AM AB \==,12MN AB \=,即2133MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,AN BN AB-=MN AB \=,\1MN AB=,即2233MN AB =.综上所述2133MN AB =或23.2.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧,(1)若18AB =,8DE =,线段DE 在线段AB 上移动,①如图1,当E 为BC 中点时,求AD 的长;②当点C 是线段DE 的三等分点时,求AD 的长;(2)若2AB DE =,线段DE 在直线上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =Q ,18AB =,6BC \=,12AC =,①E Q 为BC 中点,3CE \=,8DE =Q ,5CD \=,1257AD AC CD \=-=-=;②Q 点C 是线段DE 的三等分点,8DE =,18163CD \=,16201233AD AC CD \=-=-=;当点C 靠近点D 时,1833DC DE ==,8281233AD AC CD \=-=-=;(2)当点E 在线段BC 之间时,如图,设BC x =,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,\171714342x CD AB x ==;当点E 在点A 的左侧,如图,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,6.50.5 6.540.53AB BD AD x y x x x x x \=-=-+=-+=,\ 5.51136CD x AB x ==,当点E 在线段AC 上及点E 在点B 右侧时,无解,综上所述CD AB 的值为1742或116.另一解法:可设6AB =,则4AC =,2CB =,3DE =,以A 为原点,以AB 的方向为正方向建立数轴,则A 表示0,C 表示4,B 表示6,如图,设D 表示的数为x ,则E 表示3x +,可得||AD x =,|34||1|EC x x =+-=-,|36||3|BE x x =+-=-,|4|CD x =-,|||1|3|3|2AD EC x x BE x ++-==-,①当0x <或3x …时,上式可化为:1332x x x +-=-,解得7x =-,则|74|1166CD AB --==;②13x <…时,上式化为:1332x x x +-=-,解得:117x =,则11|4|177642CD AB -==;③01x <…时,上式化为:1332x x x +-=-,解得:73x =(舍去).综上所述CD AB 的值为1742或116.故答案为:1742或116.3.已知点C 在线段AB 上,2AC BC =,点D ,E 在直线AB 上,点D 在点E 的左侧.(1)若15AB =,6DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CF =,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,求CD BD的值.【解答】解:(1)2AC BC =Q ,15AB =,5BC \=,10AC =,①E Q 为BC 中点,2.5CE \=,6DE =Q ,3.5CD \=,10 3.5 6.5AD AC CD \=-=-=;②如图1,当点F 在点C 的右侧时,3CF =Q ,5BC =,13AF AC CF \=+=,11333AD AF \==;当点F 在点C 的左侧时,10AC =Q ,3CF =,7AF AC CF \=-=,37AF AD \==,73AD \=;综上所述,AD 的长为133或73;(2)当点E 在线段BC 之间时,如图3,设BC x =,则22AC BC x ==,2AB DE =Q ,1.5DE x \=,设CE y =,2AE x y \=+,BE x y =-,2 1.50.5AD AE DE x y x x y \=-=+-=+,Q32AD EC BE +=,\0.532x y y x y ++=-,27y x \=,2171.5714CD x x x \=-=,313(0.5)14BD x x y x =-+=,\171714313114x CD BD x ==;当点E 在点A 的左侧,如图4,设BC x =,则 1.5DE x =,设CE y =,1.5DC EC DE y x \=+=+,1.520.5AD DC AC y x x y x \=-=+-=-,Q32AD EC BE +=,BE EC BC x y =+=+,\0.532y x y x y -+=+,4y x \=,1.54 1.5 5.5CD y x x x x \=+=+=, 1.5 6.5BD DC BC y x x x =+=++=,\ 5.5116.513CD x BD x ==,点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当是D 在A 右侧,E 在C 左侧时,如图5,则22AC BC x ==,3AB x \=,2AB DE =Q ,1.5DE x \=,设CE y =,12AD x y \=-,Q 32AD EC BE +=,\1322x y y x y -+=+,33x x y \=+(不合题意),当点E 在线段AC 上及点E 在点B 右侧时,无解,当D 在B 的右侧,其他情况不存在,舍去.综上所述CD BD 的值为1731或1113.4.已知:如图1,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 同时出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若4AM cm =,当点C 、D 运动了2s ,此时AC = 2cm ,DM = ;(直接填空)(2)当点C 、D 运动了2s ,求AC MD +的值;(3)若点C 、D 运动时,总有2MD AC =,则AM = (填空);(4)在(3)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【解答】解:(1)根据题意知,2CM cm =,4BD cm =,12AB cm =Q ,4AM cm =,8BM cm \=,2AC AM CM cm \=-=,4DM BM BD cm =-=,故答案为:2cm ,4cm ;(2)当点C 、D 运动了2s 时,2CM cm =,4BD cm =,12246()AC MD AM CM BM BD AB CM BD cm \+=-+-=--=--=;(3)根据C 、D 的运动速度知:2BD MC =,2MD AC =Q ,2()BD MD MC AC \+=+,即2MB AM =,AM BM AB +=Q ,2AM AM AB \+=,143AM AB cm \==,故答案为:4cm ;(4)①当点N 在线段AB 上时,如图1,AN BN MN -=Q ,又AN AM MN -=Q ,4BN AM \==,12444MN AB AM BN \=--=--=,\41123MN AB ==;②当点N 在线段AB 的延长线上时,如图2,AN BN MN -=Q ,又AN BN AB -=Q ,12MN AB \==,\12112MN AB ==;综上所述13MN AB =或1.5.如图,已知P 是线段AB 上一点,23AP AB =,C ,D 两点从A ,P 同时出发,分别以每秒2厘米,每秒1厘米的速度沿AB 方向运动,当点D 到达终点B 时,点C 也停止运动,设AB a =(厘(1)用含a 和t 的代数式表示线段CP 的长度;(2)当5t =时,12CD AB =,求线段AB 的长;(3)当CB AC PC -=时,求PD AB 的值.【解答】解:(1)AB a =Q ,23AP AB =,23AP a \=,2AC t =Q ,223CP AP AC a t \=-=-;(2)12CD AB =Q ,1()2PC PD AP PB \+=+,223AP PC AB \==,\222(2)33a a t =-,当5t =时,解得30a =,30AB cm \=;(3)CB AC PC -=Q ,AC PB \=,23AP AB =Q ,13PB AB \=,2AC PC PB t \===,6AB t \=,PD t =Q ,\16PD AB =.6.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1/cm s 、3/cm s(1)若10AB cm =,当点C 、D 运动了2s ,求AC MD +的值.(2)若点C 、D 运动时,总有3MD AC =,直接填空:AM =AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB 的值.【解答】解:(1)当点C 、D 运动了2s 时,2CM cm =,6BD cm =10AB cm =Q ,2CM cm =,6BD cm=10262AC MD AB CM BD cm \+=--=--=.(2)设运动时间为t ,则CM t =,3BD t =,AC AM t =-Q ,3MD BM t =-,又3MD AC =,333BM t AM t \-=-,即3BM AM =,BM AB AM=-Q 3AB AM AM \-=,14AM AB \=,故答案为:14.(3)当点N 在线段AB 上时,如图AN BN MN -=Q ,又AN AM MN -=Q 14BN AM AB \==,12MN AB \=,即12MN AB =.当点N 在线段AB 的延长线上时,如图AN BN MN -=Q ,又AN BN AB -=QMN AB \=,即1MN AB =.综上所述112MN AB =或7.如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点D 是折线A C B --的“折中点”,请解答以下问题:(1)已知AC m =,BC n =.当m n >时,点D 在线段 AC 上;当m n =时,点D 与 重合;当m n <时,点D 在线段 上;(2)若E 为线段AC 中点,4EC =,3CD =,求CB 的长度.【解答】解:(1)已知AC m =,BC n =.当m n >时,点D 在线段AC 上;当m n =时,点D 与C 重合;当m n <时,点D 在线段BC 上.故答案为:AC ,C ,BC ;(2)点D 在线段AC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,5AD AC CD \=-=,5BD AD ==Q ,532BC \=-=;点D 在线段BC 上,E Q 为线段AC 中点,4EC =,28AC CE \==,3CD =Q ,11AD AC CD \=+=,11BD AD ==Q ,11314BC \=+=.8.如图,B 是线段AD 上一动点,沿A D A ®®以2/cm s 的速度往返运动1次,C 是线段BD 的中点,10AD cm =,设点B 运动时间为t 秒(010)t …….(1)当2t =时,①AB = 4 cm .②求线段CD 的长度.(2)①点B 沿点A D ®运动时,AB = cm ;②点B 沿点D A ®运动时,AB = cm .(用含t 的代数式表示AB 的长)(3)在运动过程中,若AB 中点为E ,则EC 的长是否变化,若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)当2t =时,①224AB cm =´=;②1046BD AD AB cm =-=-=,由C 是线段BD 的中点,得116322CD BD cm ==´=;(2))①点B 沿点A D ®运动时,2AB tcm =;②点B 沿点D A ®运动时,202AB tcm =-;(3)在运动过程中,若AB 中点为E ,则EC 的长不变,由AB 中点为E ,C 是线段BD 的中点,得12BE AB =,12BC BD =.11()10522EC BE BC AB BD cm =+=+=´=.9.如图,点B 、C 在线段AD 上,23CD AB =+.(1)若点C 是线段AD 的中点,求BC AB -的值;(2)若14BC AD =,求BC AB -的值;(3)若线段AC 上有一点P (不与点B 重合),AP AC DP +=,求BP 的长.【解答】解:设AB x =,BC y =,则23CD x =+.(1)C Q 是AD 中点,AC CD \=,23x y x \+=+3y x \-=,即3BC AB -=.(2)14BC AD =Q ,即3AB CD BC +=,233x x y \++=,1y x \-=,即1BC AB -=.(3)设AP m =,AP AC DP +=Q ,23m x y x x y m \++=+++-,32m x \-=,即32BP m x =-=.10.如图,点B 、C 是线段AD 上的两点,点M 和点N 分别在线段AB 和线段CD 上.(1)当8AD =,6MN =,AM BM =,CN DN =时,BC = 4 ;(2)若AD a =,MN b=①当2AM BM =,2DN CN =时,求BC 的长度(用含a 和b 的代数式表示)②当AM nBM =,(DN nCN n =是正整数)时,直接写出BC = .(用含a 、b 、n 的代数式表示)【解答】解:(1)8AD =Q ,6MN =,862AM DN AD MN \+=-=-=,AM BM =Q ,CN DN =,224AB CD AM DN \+=+=,()844BC AD AB CD \=-+=-=,故答案为4.(2)①AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,2AM BM =Q ,2DN CN =,33()()22AB CD AM DN a b \+=+=-,331()()222BC AD AB CD a a b b a \=-+=--=-.②AD a =Q ,MN b =,AM DN AD MN a b \+=-=-,AM nBM =Q ,DN nCN =,11()()n n AB CD AM DN a b n n++\+=+=-,111()()n n BC AD AB CD a a b b a n n n ++\=-+=--=-.故答案为11n b a n n+-.11.如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,2CD BD =,E 为线段AC 上一点,2CE AE=(1)若18AB =,21BC =,求DE 的长;(2)若AB a =,求DE 的长;(用含a 的代数式表示)(3)若图中所有线段的长度之和是线段AD 长度的7倍,则AD AC 【解答】解:(1)2CD BD =Q ,21BC =,173BD BC \==,2CE AE =Q ,18AB =,111()(1821)13333AE AC AB BC \==+=´+=,18135BE AB AE \=-=-=,5712DE BE BD \=+=+=;(2)2CD BD =Q ,13BD BC \=,2CE AE =Q ,AB a =,13AE AC \=,13BE AB AE AB AC \=-=-,11112()33333DE BE BD AB AC BC AB AC BC AB AB AB \=+=-+=--=-=,AB a =Q ,23DE a \=;(3)设22CD BD x ==,22CE AE y ==,则BD x =,AE y =,所有线段和43(23)223(23)222227(23)AE AB AD AC EB ED EC BD BC DC y y x x x y x x x x x x y y x x +++++++++=+-+++-+++++=+-+,2y x =,则23324AD y y x x y x x =+-+=-=,36AC y x ==,\23AD AC =,故答案为:23.12.如图,C 是线段AB 上一点,16AB cm =,6BC cm =.(1)AC = 10 cm ;(2)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 以1/cm s 的速度沿BA 向左运动,终点为A .当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C 、P 、Q 三点,有一点恰好是以另两点为端点的线段的中点?【解答】解:(1)16610AC AB BC cm =-=-=,故答案为:10;(2)①当05t <…时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <…时,P 为线段CQ 的中点,210163t t -=-,解得265t =;③当1663t <…时,Q 为线段PC 的中点,6316t t -=-,解得112t =;④当68t <…时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.13.如图1,点A ,B 都在线段EF 上(点A 在点E 和点B 之间),点M ,N 分别是线段EA ,BF 的中点.(1)若::1:2:3EA AB BF =,且12EF cm =,求线段MN 的长;(2)若MN a =,AB b =,求线段EF 的长(用含a ,b 的代数式表示);(3)如图2,延长线段EF 至点1A ,使1FA EA =,请探究线段1BA 与EM NF +应满足的数量关系(直接写出结论)【解答】解:(1)设EA xcm =,则2AB xcm =,3BF cm =,6EF xcm =.Q 点M ,N 分别是线段EA ,BF 的中点,12EM MA xcm \==,32BN NF xcm ==.2AB xcm =Q ,4MN MA AB BN xcm \=++=.12EF cm =Q ,612x \=,解得:2x =,48MN x cm \==.(2)Q 点M ,N 分别是线段EA ,BF 的中点,EM MA \=,BN NF =.MN a =Q ,AB b =,MA BN MN AB a b \+=-=-,EM NF a b \+=-,2EF EM MN NF a b a a b \=++=-+=-.(3)Q 点M ,N 分别是线段EA ,BF 的中点,2EA EM \=,2BF NF =.1FA EA =Q ,112()BA BF FA BF EA EM NF \=+=+=+.14.在射线OM 上有三点A ,B ,C ,满足15OA cm =,30AB cm =,10BC cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动;点Q 从点C 出发,沿线段CO 匀速向点O 运动(点Q 运动到点O 时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P 和点Q 重合时23PA AB =,求OP 的长度;(2)在(1)题的条件下,求点Q 的运动速度.【解答】解:(1)23PA AB =Q ,30AB cm =,230203PA cm \=´=,15OA cm =Q ,35OP OA AP cm \=+=,(2)OC OA AB BC =++Q ,15OA cm =,30AB cm =,10BC cm =,15301055OC cm \=++=,553520CP OC OP cm =-=-=Q ,P Q 以1/cm s 的速度匀速运动,\点P 运动的时间为35s ,点Q 运动的时间为35s ,\点Q 的速度204/357cm s ==.15.如图,有两段线段2AB =(单位长度),1CD =(单位长度)在数轴上运动.点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是 10- ,点C 在数轴上表示的数是 ,线段BC = (2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.设运动时间为t 秒,若6BC =(单位长度),求t 的值(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左运动.设运动时间为t 秒,当024t <<时,设M 为AC 中点,N 为BD 中点,则线段MN 的长为 .【解答】解:(1)2AB =Q ,点A 在数轴上表示的数是12-,\点B 在数轴上表示的数是10-;1CD =Q ,点D 在数轴上表示的数是15,\点C 在数轴上表示的数是14.14(10)24BC \=--=.故答案为:10-;14;24.(2)当运动时间为t 秒时,点B 在数轴上表示的数为10t -,点C 在数轴上表示的数为142t -,|10(142)||324|BC t t t \=---=-.6BC =Q ,|324|6t \-=,解得:16t =,210t =.答:当6BC =(单位长度)时,t 的值为6或10.(3)当运动时间为t 秒时,点A 在数轴上表示的数为12t --,点B 在数轴上表示的数为10t --,点C 在数轴上表示的数为142t -,点D 在数轴上表示的数为152t -,024t <<Q ,\点C 一直在点B 的右侧.M Q 为AC 中点,N 为BD 中点,\点M 在数轴上表示的数为232t -,点N 在数轴上表示的数为532t -,53233222t t MN --\=-=.故答案为:32.16.(1)如图,点C 在线段AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点.求线段DE 的长;(2)若线段AB acm =,其他条件不变,则线段DE (直接写出答案).(3)对于(1),如果叙述为:“点C 在直线AB 上,线段6AC cm =,10BC cm =,点D 、E 分别是AC 和BC 的中点,求线段DE 的长?”结果会有变化吗?如果有,直接写出结果.【解答】解:(1)6AC cm =Q ,10BC cm =,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,8DE DC EC cm \=+=;(2)Q 点D 、E 分别是AC 和BC 的中点,12DC AC \=,12CE CB =,11()22DE DC EC AC CB acm \=+=+=;故答案为:12acm ;(3)结果会有变化,如图,点D 、E 分别是AC 和BC 的中点,132DC AC cm \==,152CE CB cm ==,2DE EC CD cm \=-=,\线段DE 的长为8cm 或2cm .17.(1)如图,点C 在线段AB 上,线段6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?(2)根据(1)的计算过程和结果,设AC BC a +=,其他条件不变,你能猜出MN 的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段6AC cm =,4BC cm =,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?”结果会有变化吗?如果有,求出结果.【解答】解:(1)点M 、N 分别是AC 、BC 的中点,6AC cm =,4BC cm =,2623MC AC cm =¸=¸=,2422NC CB cm =¸=¸=,由线段的和差,得325()MN MC NC cm =+=+=.答:线段MN 的长是5cm .(2)12MN a =,MN 的长度等于1()2AC BC +;(3)会有变化.当C 点在线段AB 上时,5MN cm =;当C 点在线段AB 的延长线上时,1MN cm =.18.如图,点B 在线段AC 上,点M 、N 分别是AC 、BC 的中点.(1)若线段15AC =,25BC AC =,则线段MN (2)若B 为线段AC 上任一点,满足AC BC m -=,其它条件不变,求MN 的长;(3)若原题中改为点B 在直线AC 上,满足AC a =,BC b =,()a b ¹,其它条件不变,求MN 的长.【解答】解:(1)15AC =Q ,25BC AC =,6BC \=,又Q 点M 、N 分别是AC 、BC 的中点,11522CM AC \==,132CN BC ==,159322MN CM CN \=-=-=;故答案为:92;(2)Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()2222MN CM CN AC BC AC BC m \=-=-=-=;(3)当点B 在线段AC 上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=-=-=-=-;当点B 在AC 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CM CN AC BC AC BC a b \=+=+=+=+;当点B 在CA 的延长线上时,Q 点M 、N 分别是AC 、BC 的中点,12CM AC \=,12CN BC =,1111()()2222MN CN CM BC AC BC AC b a \=-=-=-=-.19.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,8DE =,线段DE 在线段AB 上移动.①如图1,当E 为BC 中点时,求AD 的长;②点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB【解答】解:(1)2AC BC =,18AB =,8DE =,6BC \=,12AC =,①如图,E Q 为BC 中点,3CE \=,5CD \=,18117AD AB DB \=-=-=;②如图,Ⅰ、当点E 在点F 的左侧,3CE EF +=Q ,6BC =,\点F 是BC 的中点,3CF BF \==,18315AF AB BF \=-=-=,153AD AF \==;Ⅱ、当点E 在点F 的右侧,12AC =Q ,3CE EF CF +==,9AF AC CF \=-=,39AF AD \==,3AD \=.其他情况不存在,舍去.综上所述:AD 的长为3或5;(2)2AC BC =Q ,2AB DE =,满足关系式32AD EC BE +=,Ⅰ、当点E 在点C 右侧时,如图,设CE x =,DC y =,则DE x y =+,2()AB x y \=+24()33AC AB x y ==+4133AD AC DC x y \=-=+12()33BC AB x y ==+2133BE BC CE y x \=-=-7133AD EC x y \+=+2()3AD EC BE+=Q 71212()3()3333x y y x \+=-解得,174x y =,\1742()422()17CD y y AB x y y y ===++.Ⅱ、当点E 在点A 左侧时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-24()33AC AB y x ==-4133AD DC AC x y \=-=-12()33BC AB y x ==-2133BE BC CE y x \=+=+7133AD EC x y \+=-2()3AD EC BE+=Q 71212()3()3333x y y x \-=+解得,118x y =,\112()6CD y AB y x ==-.点D 在C 点右侧,及点D 在B 点右侧,无解,不符合题意;当DE 在线段AC 内部时,如图,设CE x =,DC y =,则DE y x =-,2()AB y x \=-,24()33AC AB y x ==-,1433AD AC DC y x \=-=-,12()33BC AB y x ==-,2133BE BC CE y x \=+=+,1133AD EC x y \+=-+,2()3AD EC BE+=Q 11212()3()3333x y y x \-+=+,解得,54x y -=(不符合题意,舍去),\512()182CD y AB y x ==<-,不符合题意,舍去.其他情况不存在,舍去.故答案为1742或116.20.如图,C 是线段AB 上一点,20AB cm =,8BC cm =,点P 从A 出发,以2/cm s 的速度沿AB 向右运动,终点为B ;点Q 从点B 出发,以1/cm s 的速度沿BA 向左运动,终点为A .已知P 、Q 同时出发,当其中一点到达终点时,另一点也随之停止运动.设点P 运动时间为xs .(1)AC= 12 cm;(2)当x= s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.【解答】解:(1)20812()AC AB BC cm=-=-=.故答案为:12;(2)2020(21)()3s¸+=.故当203x s=时,P、Q重合.故答案为:203;(3)存在,①C是线段PQ的中点,得220212x x+-=´,解得4x=;②P为线段CQ的中点,得122022x x+-=´,解得325x=;③Q为线段PC的中点,得2122(20)x x+=´-,解得7x=;综上所述:4x=或325x=或7x=.。

人教版七年级上册数学《线段的计算》专题训练

人教版七年级上册数学《线段的计算》专题训练

类型二:方程思想 4.如图,点 D,点 E 在线段 AB 上,且都在 AB 中点的同侧,点 D 分 AB 为 1∶3 两部分,点 E 分 AB 为 3∶4 两部分,若 DE=5 cm, 求 AB 的长.
解:由题意,设 AB=x cm,则 AD=14x cm,AE=37x cm,由 AE -AD=DE,得37x-14x=5,解得 x=28,即 AB=28 cm
解:(1)CD=21AC=3 cm,CE=21BC=2 cm,所以 DE=CD+CE= 5 cm (2)因为 CD=21AC,CE=21BC,所以 DE=CD+CE=12AC+12BC =12(AC+BC)=12BC=21a (3)DE=21b cm
7.如图,已知 C,D 是线段 AB 上的两个点,点 M,N 分别为 AC, BD 的中点.
解:(1)当点 C,D 运动了 2 s 时,CM=2 cm,BD=6 cm,∵AB =10 cm,CM=2 cm,BD=6 cm,∴AC+MD=AB-CM-BD=10- 2-6=2 cm
(2)∵C,D 两点的速度分别为 1 cm/s,3 cm/s,∴BD=3CM.又∵MD =3AC,∴BD+MD=3CM+3AC,即 BM=3AM,∴AM=14AB=2.5 cm
类型五:动态问题 10.如图,数轴上 A,B 两点对应的有理数分别为 10 和 15,点 P 从点 A 出发,以每秒 1 个单位长度的速度沿数轴正方向运动,点 Q 同 时从原点 O 出发,以每秒 2 个单位长度的速度沿数轴正方向运动,设 运动时间为 t 秒.
(1)当 0<t<5 时,用含 t 的式子填空:BP=____5_-__t___,AQ= ___1_0__-__2_t __;
2.如图已知点 C 为 AB 上一点,AC=12 cm,CB=23AC,D,E 分别 为 AC,AB 的中点,求 DE 的长

北师大版七年级上册数学[线段、射线、直线(提高版)知识点整理及重点题型梳理]

北师大版七年级上册数学[线段、射线、直线(提高版)知识点整理及重点题型梳理]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习线段、射线、直线(提高)知识讲解【学习目标】1.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示;2. 通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验;3. 能够运用几何事实解释和解决具体情境中的实际问题;4. 通过从事观察、比较、概括等活动,发展抽象思维能力和有条理的数学表达能力.【要点梳理】要点一、线段、射线、直线的概念及表示方法1.概念:绷紧的琴弦、黑板的边沿都可以近似地看作线段,如果把“线段”作为最简单、最基本原始概念,则用“线段”定义射线和直线如下:(1)将线段向一个方向无限延长就形成了射线.(2)将线段向两个方向无限延长就形成了直线.要点诠释:(1)线段有两个端点,可以度量,可以比较长短.(2)射线只向一方无限延伸,有一个端点,不能度量,不能比较大小.(3)直线是向两方无限延伸的,无端点,不可度量,不能比较大小.(4)线段、射线、直线都没有粗细.2.表示方法:如图1、图2、图3,线段、射线、直线的表示方法都有两种:它们都可以用两个大写字母表示,也可以一个小写字母表示.要点诠释:(1)从表示方法上看,虽然它们都可以用一个小写字母表示,也可以用两个大写字母表示,但直线取得是直线上任意两点的字母,线段用的是两个端点的字母,射线用的是一个端点和任意一点的字母,而直线和线段的两个大写字母没有顺序之分,但射线的两个大写字母有顺序之分,第一个大写字母必须是表示端点.即端点相同,而延伸方向不同,表示不同的射线.如下图4中射线OA,射线OB是不同的射线;图4端点相同且延伸方向也相同的射线,表示同一条射线.如下图5中射线OA、射线OB、射线OC都表示同一条射线.图5(2)表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.3.线段、射线、直线的区别与联系线段射线直线图示表示方法线段AB或线段a 射线OA或射线a 直线AB或直线a端点两个一个无长度可度量不可度量不可度量延伸性不向两方延伸向一方无限延伸向两方无限延伸要点二、基本性质1. 直线的性质:经过两点有且只有一条直线.简单说成:两点确定一条直线.要点诠释:(1)点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点.如图6中,点O在直线l上,也可以说成是直线l经过点O;②点在直线外,或者说直线不经过这个点.如图6中,点P在直线l外,也可以说直线l 不经过点P.(2)两条不同的直线相交只有一个交点.2.线段的基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图7所示,在A,B两点所连的线中,线段AB的长度是最短的.图7要点诠释:(1)连接两点间的线段的长度,叫做这两点的距离.(2)两条线段可能无公共点,可能有一个公共点,也可能有无穷多个公共点.要点三、比较线段的长短1.“作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.要点诠释:几何中连结两点,即画出以这两点为端点的线段.2.线段的比较:(1)度量法:用刻度尺量出两条线段的长度,再比较长短.(2)叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:3.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,点C是线段AB的中点,则12AC CB AB==,或AB=2AC=2BC.要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.【典型例题】类型一、有关概念1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.【答案与解析】解:直线有一条:直线AD;射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;线段有三条:线段BC、线段BE、线段CE.【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点. 这是为什么?画图说明.【答案】解:∵过两点有且只有一条直线.(或两点确定一条直线.)∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.类型二、有关作图2.(2016春•高青县期中)已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.【思路点拨】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC方向延长交AD于点O;(3)连接各点,其交点即为点F.【答案与解析】解:如图所示:【总结升华】本题主要考查直线、射线、线段的认识,掌握直线、射线、线段的特点是解题的关键.举一反三:【变式1】下列说法正确的有 ( )①射线与其反向延长线成一条直线;②直线a、b相交于点m;③两直线相交于两个交点;④直线A与直线B相交于点MA .3个B .2个C .1个D .4个 【答案】C【变式2】下列说法中,正确的个数有( )①已知线段a ,b 且a-b =c ,则c 的值不是正的就是负的; ②已知平面内的任意三点A ,B ,C 则AB+BC ≥AC ; ③延长AB 到C ,使BC =AB ,则AC =2AB ;④直线上的顺次三点D 、E 、F ,则DE+EF =DF . A .1个 B .2个 C .3个 D .4个 【答案】C类型三、个(条)数或长度的计算3. 根据题意,完成下列填空.如图所示,1l 与2l 是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线3l ,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线4l ,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n 为大于1的整数)条直线最多可有________个交点(用含有n 的代数式表示).【答案】3, 6, 15,(1)2n n -. 【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.【总结升华】n(n 为大于1的整数)条直线的交点最多可有:(1)123...(1)2n n n -++++-=个. 举一反三:【变式1】平面上有n 个点,最多可以确定 条直线. 【答案】(1)2n n - 【变式2】一条直线有n 个点,最多可以确定 条线段, 条射线. 【答案】(1)2n n -,2n【变式3】一个平面内有三条直线,会出现几个交点? 【答案】0个,1个,2个,或3个.4. 已知线段AB =14cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM的长.【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM的长.【答案与解析】解:①当点C在线段AB上时,如图所示.因为M是线段AC的中点,所以12AM AC=.又因为AC=AB-BC,AB=14cm,BC=4cm,所以1()2AM AB BC=-1(144)5(cm)2=-=.②当点C在线段AB的延长线上时,如图所示.因为M是线段AC的中点,所以12AM AC=.又因为AC=AB+BC,AB=14cm,BC=4cm,所以1()2AM AB BC=+=9(cm).所以线段AM的长为5cm或9cm.【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.举一反三:【变式】(2014秋•温州期末)已知点B在直线AC上,线段AB=8cm,AC=18cm,P、Q分别是线段AB、AC的中点,则线段PQ= .【答案】13cm或5cm.解:当点C在点A左侧时,AP=AC=9,AQ=AB=4,∴PQ=AQ+AP=9+4=13cm.当点C在点B右侧时,AP=AB=4cm,BC=AC﹣AB=10cm,AQ=,AC=9,PQ=AQ﹣AP=9﹣4=5cm.故答案为:13cm或5cm..类型四、路程最短问题5.(2015春•嵊州市期末)某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间【答案】B.【解析】解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10(200﹣x),=3000+30x+30x+2000﹣10x,=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.【总结升华】本题是线段的概念在现实中的应用,根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可得解.举一反三:【变式】如图,从A到B最短的路线是().A.A-G-E-B B.A-C-E-BC.A-D-G-E-B D.A-F-E-B【答案】D。

七年级上册数学求线段的方法

七年级上册数学求线段的方法

七年级上册数学求线段的方法
在七年级数学上册,学生通常会学习如何求解线段的长度。

求解线段长度的方法有几种,其中包括使用勾股定理、坐标系中的距离公式以及利用相似三角形等方法。

首先,让我们来看看如何使用勾股定理来求解线段的长度。

勾股定理指出,直角三角形的斜边的平方等于两条直角边的平方和。

因此,如果我们知道了直角三角形的两条直角边的长度,就可以利用勾股定理来求解斜边的长度,也就是线段的长度。

其次,我们可以在坐标系中使用距离公式来求解线段的长度。

如果我们知道了线段的两个端点的坐标,就可以利用距离公式来计算线段的长度。

距离公式是根据两点间的距离公式推导而来的,它可以帮助我们计算出线段的长度。

另外,当我们遇到相似三角形时,也可以利用相似三角形的性质来求解线段的长度。

如果我们能够确定两个相似三角形的对应边的比例关系,就可以利用这个比例关系来求解线段的长度。

总的来说,七年级上册数学中,求解线段长度的方法主要包括
利用勾股定理、坐标系中的距离公式以及相似三角形的性质。

在实际问题中,学生需要根据具体情况选择合适的方法来求解线段的长度,这也有助于他们培养解决实际问题的能力。

希望这些信息能帮助你更好地理解七年级上册数学中求解线段长度的方法。

七年级线段计算知识点

七年级线段计算知识点

七年级线段计算知识点线段是数学中的一个重要概念,作为初中数学的基础知识之一,其在七年级数学课程中必不可少。

线段及其计算方法可以运用到许多有实际意义的问题中,具有十分重要的实用价值和意义。

本文将介绍七年级线段计算的知识点,帮助大家全面掌握线段相关的重要概念和计算方法。

线段的概念线段是指在平面内两个确定点之间的有限线段,包括起点和终点。

例如,在平面内AB两点之间所形成的线段AB,可以用“AB”来表示。

线段还可以用长度来表示,长度用记号“|AB|”表示。

线段的长度线段的长度是线段计算中的一个基础概念,是指线段的所占位置的长短程度,也就是两个端点之间的距离。

线段的长度可以使用两种方式进行计算。

第一种方式是通过坐标点来计算线段的长度。

记线段的两个端点为A(x1,y1)和B(x2,y2),则线段的长度可以用下面的公式计算:AB = √[(x2 - x1)² + (y2 - y1)²]第二种方式是通过使用代数方法来计算线段的长度。

对于坐标轴上的线段,可以使用数轴上两点的坐标之差来计算线段的长度。

对于非坐标轴上的线段,可以将其转化为坐标轴上的线段,再使用坐标法求出其长度。

线段的平分线平分线是指在一个线段上找到一条使得该线段被等分成两段的线段,这条线段被称为线段的平分线,它将线段分为两个长度相等的线段。

对于线段AB,它的平分线可以用CD来表示,也就是AC=CB=BD=DA。

寻找线段的平分线需要使用线段的中点。

对于线段AB,它的中点可以用公式M(x,y)= [(x1 + x2) / 2,(y1 + y2) / 2]来计算。

线段AB的平分线CD可以通过连接点M与线段AB上的任一点E 来得到。

线段的延长线和缩短线线段的延长线和缩短线是两个常用的概念,在线段计算中也经常会遇到。

对于线段AB,如果在其两端点之外再延长一定长度所得到的线段,就称为线段AB的延长线;如果在线段AB的某个点处将其折叠所得到的线段,就称为线段AB的缩短线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F E B C A
1.如图所示,P 是线段AB 上一点,M ,N 分别是线段AB ,AP•的中点,若AB=16,BP=6,求线段MN 的长.
举一反三:
1.如图,AB=24cm ,C 、D 点在线段AB 上,且CD=10cm ,M 、N 分别是AC 、BD 的中点,求线段MN 的长。

2.如图,E 、F 分别是线段AC 、AB 的中点,若EF=20cm ,求BC 的长。

3.如图,已知AB=20,C 为AB 的中点,D 为CB 上一点,E 为BD 的中点,且EB=3,求CD 的长。

4.如图,C 、D 、E 将线段分成2:3:4:5四部分,M 、P 、Q 、N 分别是线段AC 、CD 、DE 、EB 的中点,且MN=21,
求PQ 的长。

5.如图,延长线段AB 到C ,使BC=2AB ,若AC=6cm ,且AD=DB , BE :EF :FC=1:1:3,求DE 、DF 的长。

6、如图,同一直线上有A 、B 、C 、D 四点,已知,2
5,32CB AC AD DB ==CD=4cm ,求AB 的长。

. . . . A B C D
B
E D C A 第3题 Q P N C A D 第4题 第5题
2.线段AB、BC均在直线l上,若AB=12cm,AC==4cm,M、N分别是AB、AC的中点,则MN的长为_______.
举一反三:
1、已知线段AB=8,在直线AB上画线段BC,使它等于3,求线段AC的长
2、已知,点A在数轴上的点为-10,点B在数轴上的点为14,点C在数轴上,且AC:BC=1:5,求点C对应的数
3、P是定长线段AB的三等分点,Q是直线AB上一点,且AQ-BQ=PQ,求PQ:AB的值
4、已知,线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长
3.如图,直线AB 上有一点P ,点M 、N 分别为线段PA 、PB 的中点,AB=14.
(1) 若点P 在线段AB 上,且AP=8,求线段MN 的长度。

(2) 若点P 在直线AB 上,使说明线段MN 的长度与点P 在AB 上的位置无关
(3) 如图,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论: ①PA PB PC -的值不变;②PA PB PC
+的值不变。

请选择一个正确的结论并其值。

C B A
P
4.如图,线段AB=24,动点P 从A 出发,以2个单位/秒的速度沿射线AB 运动,M 为AP 的中点。

M P A
B
(1) 出发多少秒后,PB=2AM
(2) 当P 在线段AB 上运动时,试说明2BM-BP 为定植
(3) 当P 在AB 延长线上运动,N 为BP 的中点,下列两个结论:
①MN 长度不变;②MN+PN 的值不变。

选择一个正确的结论,并求出其值。

N M B
A P
5.如图6,B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD=8,
求MC 的长.
6.如图,已知A 、B 分别为数轴上两点,A 点对应的数为—20,B 点对应的数为100。

⑴现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数;
⑵若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数。

7.已知数轴上两点A 、B 对应的数分别为—1,3,点P 为数轴上一动点,其对应的数为x 。

⑴若点P 到点A 、点B 的距离相等,求点P 对应的数;
⑵数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值。

若不存在,请说明理由?
⑶当点P 以每分钟一个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?
图6 B C D
8.数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1
个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;
A B
-5
(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数;
A B
-5
(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由。

A B
9.已知数轴上有顺次三点A, B, C。

其中A的坐标为-20.C点坐标为40,一电子蚂蚁甲从C点出发,以每秒2个单位的速度向左移动。

(1)当电子蚂蚁走到BC的中点D处时,它离A,B两处的距离之和是多少?
(2)这只电子蚂蚁甲由D点走到BA的中点E 处时,需要几秒钟?
(3)当电子蚂蚁甲从E点返回时,另一只电子蚂蚁乙同时从点C出发,向左移动,速度为秒3个单位长度,如果两只电子蚂蚁相遇时离B点5个单位长度,求B点的坐标。

相关文档
最新文档