异种金属激光焊接关键问题研究

合集下载

关于异种金属焊接问题分析及焊接工艺探讨

关于异种金属焊接问题分析及焊接工艺探讨

216管理及其他M anagement and other关于异种金属焊接问题分析及焊接工艺探讨邵 慧(锦西工业学校,辽宁 葫芦岛 125000)摘 要:异种金属焊接的主要目的是在单位金属中能够挖掘出更大的效能,转变金属原本的内部结构,将金属二次加工,适当取代一些贵重金属材料的使用,能够有效降低工程原材料的成本消耗。

当下市场中常见的异种金属加工有铝以及铝合金金属焊接加工工艺,在加工工作中能够获得二者相结合的最大化经济效益。

异种金属焊接是生产制造业中常见的环节之一,但是,我国零部件生产市场中的产品数量较多,产品种类丰富,加工范畴十分广泛,针对这一市场环境,需要企业和相关技术人员全方位了解焊接工艺在零部件加工工作中的实施效果,选择最佳性价比的生产加工方式。

在本文的论述中简明、生动的探究异种金属焊接的特点、生产加工中常见的问题、具有代表性的加工工艺等等,力求能够为相关企业提供可行性工作方案。

关键词:异种;金属;焊接;问题;工艺中图分类号:U466 文献标识码:A 文章编号:11-5004(2021)14-0216-2收稿日期:2021-07作者简介:邵慧,女,生于1982年,辽宁朝阳人,汉族,本科,中级讲师,研究方向:焊接。

目前,我国金属焊接、加工工作并不是一帆风顺的,其中蕴含着大量的问题需要解决,一部分焊接事故甚至造成了工作人员的生命、财产损失,需要工程师、技术人员、科学家对金属焊接工作进行全方位研究,得出更加安全、高效的焊接方式,保证产品既能够满足工程建设的需求,还能够确保生产加工工作中的安全性和稳定性,给予企业丰厚的经济效益。

因此,在开展金属焊接工作中,技术人员需要不断提升自身的工作能力、设备操作技术、安全意识等,力求能够提升异种金属的焊接质量。

1 异种金属焊接的基本特征异种金属焊接在我国已经具备相当长的发展历史,且焊接之后的金属已经广泛应用于各个领域,其中最为常见的一种便是钢与铝合金,钢是当下工程建设、加制造行业中广泛使用的金属材料之一,而铝合金的单位重量较低,具有极强的可塑性,耐腐蚀效果理想。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施随着科技的发展,激光焊接技术在各个领域得到了广泛的应用,尤其是在金属材料的加工过程中。

激光焊接铝合金这一领域却面临着诸多挑战。

本文将从铝合金的特点、激光焊接的难点以及采取的工艺措施等方面进行详细的探讨。

一、铝合金的特点铝合金是一种具有优良性能的金属材料,它具有轻质、高强度、耐腐蚀等特点。

这些特点使得铝合金在航空、航天、汽车等领域具有广泛的应用前景。

铝合金的这些优点也给激光焊接带来了一定的难度。

铝合金的熔点较低,容易产生氧化膜,影响焊接质量。

铝合金的热导率较高,导致热量容易散失,需要采用较高的功率进行焊接。

铝合金的成分复杂,不同种类的铝合金之间存在化学成分差异,这也给激光焊接带来了一定的挑战。

二、激光焊接铝合金的难点1. 氧化膜的影响铝合金在加热过程中容易产生氧化膜,这层氧化膜不仅会影响焊缝的质量,还会导致气孔的产生。

因此,在激光焊接铝合金时,需要采取一定的措施去除氧化膜。

常用的方法有机械磨削、化学清洗和电化学清理等。

2. 热量散失问题铝合金的高热导率导致热量容易散失,这就需要在激光焊接过程中采用较高的功率进行加热。

过高的功率会导致焊缝过深,产生裂纹。

因此,在激光焊接铝合金时,需要寻找合适的功率平衡点。

3. 成分差异问题铝合金的成分复杂,不同种类的铝合金之间存在化学成分差异。

这就要求在激光焊接过程中,需要根据不同的铝合金种类选择合适的焊接参数和工艺措施。

还需要对铝合金的微观结构进行分析,以便更好地控制焊缝的形成和性能。

三、采取的工艺措施针对上述难点,本文提出以下几点工艺措施:1. 采用预处理方法去除氧化膜在激光焊接前,可以采用机械磨削、化学清洗和电化学清理等方法去除铝合金表面的氧化膜。

这样可以有效地减少氧化膜对焊缝质量的影响。

2. 调整激光功率平衡热量散失问题在激光焊接过程中,可以通过调整激光功率来平衡热量散失问题。

一般来说,随着激光功率的增加,焊缝深度也会增加。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施一、1.1 铝合金材料的特性铝合金是一种非常优良的金属材料,具有轻质、高强度、耐腐蚀等特点。

铝合金的这些优点也给激光焊接带来了一定的难度。

铝合金的高反射率使得激光束在焊接过程中容易产生散射,影响焊接质量。

铝合金的热导率相对较低,导致焊接过程中热量难以迅速传递到熔池,容易产生气孔等缺陷。

铝合金中含有较多的杂质元素,如铜、镁等,这些杂质会与激光发生反应,形成有害物质,影响焊接质量和稳定性。

二、2.1 激光焊接技术的发展为了克服铝合金激光焊接的难点,研究人员不断尝试改进激光焊接技术。

目前,主要采用的激光焊接方法有脉冲激光焊接、连续波激光焊接、调制激光焊接等。

其中,脉冲激光焊接是一种非常有效的方法,它可以实现高功率密度、短脉冲时间的焊接,有效提高焊缝质量。

研究人员还通过改进激光器结构、优化焊接参数等手段,进一步提高了激光焊接的效果。

三、3.1 工艺措施的选择针对铝合金激光焊接的难点,我们可以从以下几个方面采取相应的工艺措施:1. 提高激光功率:增加激光束的能量,有助于提高焊缝的形成速度和深度,从而减少气孔等缺陷的产生。

但是,过高的功率会导致焊缝过热,降低焊缝质量。

因此,需要在保证焊缝质量的前提下,合理选择激光功率。

2. 减小光斑直径:通过调整激光束的聚焦方式,减小光斑直径,有助于提高焊缝的精度和平滑度。

减小光斑直径还可以降低热量输入,减少气孔等缺陷的产生。

3. 优化焊接参数:根据铝合金的特性和具体焊接条件,合理选择焊接速度、焦距、电流等参数,有助于提高焊缝的质量和稳定性。

例如,适当降低焊接速度可以减少气孔的产生;增大电流可以提高焊缝的形成速度和深度。

4. 采用辅助气体保护:在激光焊接过程中,引入适当的辅助气体(如氩气、氮气等),可以有效地防止铝合金表面氧化和污染,提高焊缝的质量。

辅助气体还可以调节焊缝的形成过程,有助于改善焊缝的成形性能。

四、4.1 实际应用案例近年来,随着激光焊接技术的不断发展和成熟,铝合金激光焊接已经在航空、航天、汽车等领域得到了广泛应用。

异种金属板材的焊接工艺研究分析

异种金属板材的焊接工艺研究分析
焊、 缝焊 、 凸焊 的完成 是通过 电极 夹持两 焊件 来实 现的 。
用 于工程 机械 、 石 油化工 、 交 通运输 、 航 空航 天、 电站锅炉 等行 业的机 械设备 和
构件 中。
= 浅析 异种 金属 焊接工 艺 的发展 ( 1 ) 随着科 技的发展 , 几 十年 以来 , 在碳钢 的焊接性 和不锈钢 方面 国内外很
在低 合金钢 和不锈 钢异 种钢焊 接性 方面 , 人们 也做 了大量 的研究 。 研 究发现焊
接接 头采用激光 焊接方法 的组织 性能更好 , 缩小焊 接接头 的脆硬 区可 以采用镍
基填 充材料 。 当进行 特殊 的生 产作业 时 , 普遍 应用低合 金钢和 特殊用途钢 焊接 ,
如低 合金 钢与 耐蚀 钢在在 酸碱 环境 中 的焊 接 。
配在 电导率 高和 热导率 的金属 件 , 如钨 、 银基 、 钼、 铜基 , 使 用改 型 电极 端头 , 从 而使 焊接压 接处 的 电阻发热温 度得 以提高 , 使0 . 5 ~0 . 9 A 为 热 电流 。 焊接 工艺
Байду номын сангаас
参数 的确 定是 根据 直流焊 或交 流焊 分别 进行 的 , 在0 . 1 ~0 . 9 S内焊 接 电源 连 续控 制 , 实现 焊接接 触界 面的 电阻热量 均衡 和发 热温度 被均 匀提高 , 对 焊、 点
多学者都 在做大 量的研 究 。 如: 通 过对锅 炉压力容 器钢Q 2 4 5 R的研 究 , 在不 同的 耐腐 、 温度 、 用途 中选用不 同的容 器板材质 , 可以添加 钛、 钒、 铌元 素在Q 2 4 5 R  ̄ 中, 这个三种 元素含 量分别 不大于0 . 0 5 0 %, 可以大量 使用Q 2 4 5 R 钢板在 反应器 、 甲烷化 炉 、 脱硫 槽 、 焦炭 塔 、 水洗 塔等 设备 及构件 建设 制造 项 目中 。 ( 2 ) 材料 加 工技术在 不断 发展 , 人们 逐步大 量使 用一 些具 有特殊 性能 的合 金钢 , 如具有 无磁性 、 高强 度 、 耐 高温 、 高韧性 、 耐腐 蚀 、 耐磨 、 耐低温 。 与此 同时 ,

异种金属焊接问题及焊接工艺分析

异种金属焊接问题及焊接工艺分析

异种金属焊接问题及焊接工艺分析摘要:近年来,我国的科学技术水平不断提高,各种新设备、新技术、新工艺应运而生,随之对我国的工程构件的质量提出了更高的要求。

但是在进行工程施工时,不论是哪一种材料,都不可能全面满足施工的需求。

为了能够满足施工的需求,人们开始将不同的材料进行有效融合,让这些材料的性能得到了充分的发挥。

同时还能够有效替代贵重金属,减少不必要的经济投入,提升企业的经济效益。

所以在社会的各个行业之中,经常可以看到异种金属焊接的广泛应用。

但是,近几年我国经常发生异种金属焊接失效的情况,造成了一定的财产损失和人员伤亡。

关键词:异种金属;焊接;焊接工艺;特点一、异种金属焊接的特点在各种加工制造行业中,采用铝合金与钢为基本材料的金属构件已经成为了一种主流,铝合金具有质量轻、耐腐蚀性强、塑性好等特点,钢则是目前机械加工行业最常见的金属材料之一。

常见的二者连接方式一般分为两种,第一种是采用粘结的方式,这种方式接头的机械强度非常有限,无法满足高强度的焊接要求,因此使用的情况比较少。

另外一种就是机械连接,机械连接虽然能够实现高强度的连接,但是无法保证连接的气密性,而且进行机械连接会留下连接痕迹,影响美观。

因此焊接成为了异种金属的连接中最常用的连接手段,由于铝与钢的物理性能存在较大的差异,所以给焊接过程带来了一定的难度,具体包括以下几点:①熔点不同。

众所周知,不同金属的熔点不同,铝材料的金属熔点低于钢。

这就导致在两者进行焊接时,铝材料已经完全融化,整体呈现液态,而钢仍处于固态。

②密度不同。

二者之间的密度也不同,由于液态的铝水比钢水的密度小,所以尽管二者同时融化,那么也会出现铝水浮在钢水上的现象,这样就会导致在进行冷却、定型时,容易出现金属之间融合不均匀的现象,导致整个金属接头性能不理想。

③热导率不同。

由于二者之间的密度和热导率都不相同,加上线膨胀系数存在很大差别,因此在进行焊接的时候,就会造成焊接接头的变形,如果变形十分严重的话,还会产生焊接金属裂纹。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施随着科技的发展,激光焊接技术在各个领域得到了广泛的应用,尤其是在金属材料的加工过程中。

激光焊接铝合金这一领域仍然存在许多技术难题。

本文将从以下几个方面探讨激光焊接铝合金的难点及采取的工艺措施。

一、铝合金材料的特性铝合金具有轻质、高强度、耐腐蚀等优良性能,因此在航空、航天、汽车等领域得到了广泛应用。

铝合金的热导率较低,热量传导速度较慢,这给激光焊接带来了一定的困难。

铝合金中含有大量的铝和硅元素,这些元素容易与氧原子发生化学反应,形成氧化膜,影响焊缝的质量。

二、激光焊接工艺参数的选择1. 功率密度功率密度是激光焊接过程中最重要的参数之一。

过高的功率密度会导致焊缝过深,产生裂纹;而过低的功率密度则会导致焊缝熔合不完全,产生气孔。

因此,选择合适的功率密度对于保证焊缝质量至关重要。

一般来说,铝合金的激光焊接功率密度应控制在3-5kW/cm2之间。

2. 频率和波长激光器的频率和波长对激光焊接的效果也有重要影响。

一般来说,波长越短,能量越高,焊缝熔合效果越好。

不同的铝合金材料对波长的适应性不同,需要根据实际情况进行选择。

频率的选择也会影响到焊缝的形成过程,一般建议控制在10-20kHz之间。

3. 焊接速度焊接速度是指激光束在单位时间内通过的距离,它直接影响到焊缝的形成过程。

过快的焊接速度会导致焊缝过深,产生裂纹;而过慢的焊接速度则会导致焊缝熔合不完全,产生气孔。

因此,选择合适的焊接速度对于保证焊缝质量至关重要。

一般来说,铝合金的激光焊接速度应控制在1-3m/s之间。

三、工艺措施针对上述难点,我们可以采取以下几种工艺措施:1. 预处理为了去除铝合金表面的氧化膜,可以在焊接前进行酸洗或碱洗等预处理方法。

这样可以有效地提高焊缝的质量,减少气孔等缺陷的产生。

2. 优化激光参数根据铝合金的特性和实际需求,合理调整激光功率密度、频率和波长等参数,以获得最佳的焊接效果。

还可以采用多波长焊接、双光束焊接等方法,进一步提高焊缝的质量。

异种钛合金TA15与Ti2AlNb激光焊接显微组织及力学性能研究

异种钛合金TA15与Ti2AlNb激光焊接显微组织及力学性能研究

相 组 成 。
表 1 试 验 母 材 化 学 成 分 (质 量 分 数 ) (%
母 材 l n
Nb
A1

Zr
Ti2AINb I 余 量 42.2 11.1
TA15 I 余量
6.56 2-29 2.2O
Mo 1.74
激 光 器 为 JKH5106型 Nd:YAG激 光 器 。 焊 前
1 试 验 材料 和方 法 试 验 采用 的 TA15和 Ti2A1Nb钛合 金 板材 规 格 一
致 ,尺寸 均 为 200 mmxlO0 mmx2 mm.各 白化 学 成
收 稿 Et期 :2015—06—01
分见 表 1。Ti2A1Nb为热 轧板 ,其显 微 组织 由 B2相 、
O相 和 Or.:相 组成 ;TA15母 材 的显微 组 织 由 OL相 和 B
(北京 航 星 机 器 制 造 有 限公 司 ,北 京 100013)
摘 要 :介 绍 了异 种 钛 合 金 (TA15与 Ti2A1Nb) 激 光 焊 接 工 艺 , 分析 了 焊 接 接 头 的 显 微 组 织 、 显微 硬 度 分 布 及 室 温 、550℃ 高 温 时 的拉
伸 性 能 。研 究结 果 表 明 :焊 缝 区 获得 B2相 、O 相 和 o【2相 组 成 的 混 合 组 织 ,TA15侧 热 影 响 区主 要 为 针状 马 氏体 ,Ti2A1Nb侧 热 影 响 区组
速度 1 200 mm/min.保护气 为纯度99.99%的氩气 .正
1000A型数ቤተ መጻሕፍቲ ባይዱ 显微 硬度计 测量 显微 维 氏硬 度 .压力 为
4.9 N,保 压 时 间 为 10 S,沿 焊 缝 厚 度 中 心 线 测 试 拉 伸断 口形 貌 在 SU1510型场 发射 扫描 电子显微 镜 上

Ti6Al4VCu异种金属激光焊接头组织及性能研究

Ti6Al4VCu异种金属激光焊接头组织及性能研究

Ti6Al4VCu摘要本文以Ti6Al4VCu 为基础材料,采用激光焊接的方法,研究了Ti6Al4VCu 异种金属激光焊接头的组织及性能,并通过分析实验结果,探讨了激光焊接过程中的物理化学现象以及焊接头成形的原理。

实验结果表明,Ti6Al4VCu 异种金属激光焊接头的组织结构均匀且致密,焊缝处没有明显的裂纹或夹杂物。

焊接头的强度和延展性能都非常优秀,并且耐腐蚀性能良好。

因此,Ti6Al4VCu 异种金属激光焊接头可以在航空航天、汽车制造、工程机械等领域中得到广泛的应用。

关键词:Ti6Al4VCu;异种金属;激光焊接头;组织;性能AbstractIn this paper, Ti6Al4VCu was used as the base material, and the laser welding method was adopted to study the microstructure and properties of the Ti6Al4VCu dissimilar metal laser welding joint. By analyzing the experimental results, the physical and chemical phenomena during the laser welding process and the principle of joint formation were discussed. The experimental results show that the microstructure of dissimilar metal laser welding joints is uniform and dense, and there are no obvious cracks or inclusions at the weld. The strength and ductility of the welded joints are excellent, and the corrosion resistance is also good. Therefore, the Ti6Al4VCu dissimilar metal laser welding joint can be widely used in aerospace, automobile manufacturing, engineering machinery and other fields.Keywords: Ti6Al4VCu; Dissimilar metal; Laser welding joint; Microstructure; properties1.引言激光焊接作为现代焊接技术中的一种重要方法,已经在航空、航天、汽车制造、机械制造等领域得到广泛的应用。

核电异种金属焊接材料及方法研究现状

核电异种金属焊接材料及方法研究现状

核电异种金属焊接材料及方法研究现状摘要:核电是重要的清洁能源发电方式,对于提高我国能源结构、保护环境具有重要意义。

异种金属焊接是核电设备制造和维护中的关键技术之一。

由于不同金属的化学成分和物理性质差异,异种金属焊接所面临的挑战也相当巨大。

积极开展异种金属焊接材料及方法的研究工作,旨在提高核电设备的可靠性和安全性。

关键词:核电异种金属;焊接材料方法;现状引言随着核电行业的快速发展,对异种金属焊接材料与方法的研究需求日益增加。

相关企业在进行广泛的研究,试图找到更有效、可靠的异种金属焊接材料和方法,以满足核电设备的高要求。

这些研究涉及材料工程、焊接工艺、界面反应等方面,为核电异种金属焊接技术的发展提供了重要支撑。

1异种金属焊接的意义异种金属焊接是指在焊接过程中将不同种类的金属材料连接在一起,在核电中具有重要的意义。

(1)在核电行业的发展中,对于异种金属焊接材料的需求日益增加。

核电站是清洁能源的重要组成部分。

在核电站的建设和运营过程中,许多部件需要使用不同种类的金属材料进行焊接,如不锈钢、铜合金等。

这些部件承受着巨大的压力和温度变化,要求焊接材料具有良好的强度、耐腐蚀性和抗氧化性。

(2)异种金属焊接的意义在于能够实现不同金属之间的可靠连接,确保核电站内部各种设备和管道的正常运行。

比如,在核反应堆的压力容器中,需要将不锈钢和铜合金焊接在一起,以确保容器的密封性和安全性。

异种金属焊接还可以实现不同材料之间的传热和传质,提高核电站的效率和运行稳定性。

异种金属焊接在核电行业,能够满足不同金属材料之间的连接需求,保证设备和结构的完整性。

2异种金属焊接材料的类型异种金属焊接材料是指在焊接过程中将不同种类的金属材料连接在一起。

这种焊接过程常用于工业制造和建筑领域,可以实现不同金属材料之间的连接和组装。

主要类型:(1)纯金属焊接材料:这些材料通常是由纯金属制成的焊条或焊丝,适用于焊接相似金属材料之间的连接。

常见的纯金属焊接材料包括铜、铝、钢等。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施大家好,今天我们来聊聊激光焊接铝合金的这个话题。

咱们得明白,激光焊接可不是一件简单的事情,它可是高科技的产物哦!那么,激光焊接铝合金到底有哪些难点呢?又该如何采取相应的工艺措施呢?别着急,我们一一来分析。

1.1 铝合金的特点我们得了解一下铝合金的特点。

铝合金是由铝、铜、镁、锰等金属组成的合金,具有质轻、耐腐蚀、导热性能好等特点。

但是,铝合金的熔点较低,氧化膜容易形成,这就给激光焊接带来了一定的难度。

1.2 激光焊接的难点那么,激光焊接铝合金到底有哪些难点呢?我们可以从以下几个方面来分析:(1)铝合金的熔点低:铝合金的熔点虽然不高,但在激光焊接过程中,如果不能使金属达到熔化状态,那么就无法进行有效的焊接。

(2)氧化膜的存在:铝合金表面容易形成氧化膜,这会影响激光的传导,使得焊接效果不佳。

(3)激光束的能量密度:激光束的能量密度对焊接效果有很大影响。

如果能量密度不够,可能导致焊接不牢固;反之,如果能量密度过高,可能会导致焊缝过深或产生裂纹。

2.1 解决铝合金熔点低的难点为了解决铝合金熔点低的难点,我们可以采取以下几种工艺措施:(1)预热:在进行激光焊接之前,对铝合金进行预热处理,可以提高金属的温度,使其达到熔点状态。

(2)调节激光功率:根据铝合金的种类和厚度,合理调整激光功率,以确保焊缝的形成和焊点的牢固。

(3)选择合适的焊接参数:根据实际情况,选择合适的焊接参数,如焊接速度、焦距等,以保证焊缝的质量。

2.2 解决氧化膜存在的难点为了解决氧化膜存在的难点,我们可以采取以下几种工艺措施:(1)清理氧化膜:在进行激光焊接之前,对铝合金表面进行清理,去除氧化膜,以保证激光的传导。

(2)使用保护气体:在激光焊接过程中,使用保护气体可以有效防止氧化膜的形成和扩散。

(3)控制焊接速度:适当控制焊接速度,可以避免氧化膜在熔化过程中被烧伤。

2.3 解决激光束能量密度的难点为了解决激光束能量密度的难点,我们可以采取以下几种工艺措施:(1)调整激光功率:根据铝合金的种类和厚度,合理调整激光功率,以保证焊缝的形成和焊点的牢固。

镁铝异种材料激光焊接过程问题探讨

镁铝异种材料激光焊接过程问题探讨

镁铝异种材料激光焊接过程问题探讨摘要:在本篇文章中,主要论述了激光焊接处于镁铝异种合金焊接中存在的优势,分析了镁铝异种合金激光焊接的焊接性能,探究了存在的问题,详细探讨了激光焊接的金属间化合物焊接稳定性等方面。

关键词:镁铝异种材料;激光焊接;研究现状;发展情况通过相关探究表明,汽车方面每使用1kg的镁合金,将减少30kg尾气排放。

从中来看,未来发展潜力良好,镁合金和铝合金均属于轻质类型的金属材料,结构材料本身具备密度较低的特征,强度非常高,便于铸造以及回收利用,在航空和汽车等工业领域内应用效果良好,因为异种金属之间物理和化学方面存在着差别,因此镁铝异种金属的连接限制了异种负荷结构件的有效应用,焊接过程中存在着一系列问题,比如母材本身容易氧化、热膨胀系数增大,容易发生裂纹和气孔等缺陷。

现阶段,镁铝合金的焊接方式有以下几种,其分别是融化焊、压力焊和钎焊,激光焊接因为有着能量密度高、热度集中、便于控制热输入、焊接进度快、影响程度小、能够实现自动化目标等一系列优势而得到了良好应用,但由于镁铝两种金属自身特点的原因,导致两者无法达到满意的焊接接头,所以研究的关键在于镁铝异种合金激光焊。

1、镁铝异种金属激光焊接特征分析当焊接镁铝异种材料的过程中,虽然激光焊接技术有着明显的优势,可是从镁铝异种合金激光焊接实际开展现状来看,依旧有着诸多的难点存在。

镁铝两种金属之间的相互溶解都是非常小的,产生该种现象的具体因素是因为镁铝的晶体结构不一样,镁是密排六万晶体结构,铝是面心立方结构,两者之间相互溶解程度是非常小的,难以有效形成焊缝融合区,从而导致焊接接头的力学性能降低。

基于异种金属物理化学性能之间的差别存在,增加了异种金属焊接的难度,该项难度远远超过了同种金属焊接的难度。

镁铝两项金属的线膨胀系数非常大,包含了非常低的熔点,这就增加了镁铝焊接过程中元素蒸发烧损现象出现概率,较大的线膨胀系数使焊接过程中焊接接头位置发生变形现象。

异种金属焊接问题分析及焊接工艺探讨

异种金属焊接问题分析及焊接工艺探讨

异种金属焊接问题分析及焊接工艺探讨发布时间:2021-12-10T07:15:36.047Z 来源:《防护工程》2021年25期作者:邱志超1 孙灵飞1 李顺新1[导读] 对于制造业而言,异种金属用处很多,而且性能也很优越。

由于焊接加工采用的零件类型多,工艺种类也多,异种金属焊接常常会碰到一些直接影响质量的技术问题。

1.中核工程咨询有限公司北京丰台 100073摘要:对于制造业而言,异种金属用处很多,而且性能也很优越。

由于焊接加工采用的零件类型多,工艺种类也多,异种金属焊接常常会碰到一些直接影响质量的技术问题。

为了做好焊接,应先以异种金属焊接的基本特征为切入点,分析研究异种金属焊接常见的技术问题,并对焊接工艺进行探讨和剖析,从而找到相应的对策对工艺进行改良,确保焊接质量。

关键词:异种金属;焊接问题;焊接工艺异种金属焊接是制造业中的重要环节,常作为加工各类零件的手段。

利用异种技术的优势在于能使金属性能得到最大化的发挥,使金属本身的结构也得到了改良,从而呈现出更可观的性能。

以此为基础形成的焊接工艺,能以相对廉价的金属,替代一些类别的稀有金属,从而将成本缩减。

在实践中,相对多见的就是铝及其合金的焊接,如果采用正确的工艺,将会产生极为可观的效益。

因此,要将工艺把握好,并根据金属特征进行科学地使用。

1 异种金属焊接的基本特征1.1熔点特征异种金属所指的是在类别上有差异的金属,其熔点也必定不是相同的。

例如铝材料的熔点在众多金属中是相对较低的,所以在焊接时一般都会先熔化,并转化为液态。

如果用它与钢进行焊接,那么知道它完全熔化,钢也仍会处在固态下,二者是无法融合的。

这种熔点的差异,就造成了不同步,所以在进行焊接时,要注意这种特征。

1.2密度特征仍然将钢与铝来举例,它们的密度差异较大,如果单从液态来看,钢要大于铝。

所以在液态下,如果将钢水和铝水融合,就会出现分层的情况,铝水会浮在上面。

如果这种密度不同的现象发生,那么在金属冷却后,成品将会是不均匀的,这将会使连接部分有性质上的缺陷。

三类植入医疗器械的异种金属材料激光焊接工艺

三类植入医疗器械的异种金属材料激光焊接工艺

三类植入医疗器械的异种金属材料激光焊接工艺【摘要】三类植入医疗器械需要进入人体血管组织并长期植入在人体,其尺寸小且精度要求高,需要通过激光焊接的工艺将显影用的铂、金、钽等材料焊接到不锈钢、钴铬合金、镍钛合金等三类医疗器械上。

【关键词】金属材料激光焊接,异种材料焊接,医疗器械目前三类植入医疗器械以金属零部件为主要组成部分,主要用的金属材料有316LVM不锈钢、L605和MP35N的钴铬合金、镍钛合金、钛合金等,这些金属材料本身在X射线下的显影效果不佳,因此通常要配合铂、铂-铱合金、金、钽等X射线不能透过的金属材料作为显影标记。

例如用形状记忆镍钛合金管材经过激光切割、热处理定型、电解抛光工艺制成的下肢外周血管支架,其两端通常每端需要2-4个显影点用以在手术时显示支架两端的位置。

通常在其由于不同金属材料的物理性能有较大差异,加上三类植入医疗器械本身尺寸小且精度要求高,给医疗器械上异种金属材料焊接带来极大挑战。

1、焊接材料分类和焊接过程1.1按照激光焊接特效对材料分类材料通过吸收激光发热,从固态变为熔融的液态甚至气化为气态,在这个过程中材料对激光的吸收效率是不同的。

当材料处于固态时,不同类型材料对激光的吸收效率有较大差异;当材料从固态变为液态时,激光能量的吸收会发生巨变;当材料气化时,入射的激光几乎全部被有效吸收。

因此选择合适的激光功率密度是激光焊接工艺的一个关键点:激光功率密度不足时,激光能量不足以将固态的金属熔化,达不到激光焊接目的;激光功率密度过高时,金属材料直接气化,会造成焊接孔洞等焊接缺陷。

按照材料熔化、汽化所需的功率密度,可以将材料分为三类。

表1:材料分类所需激光功率密度的目的是确保激光能量有效的耦合到材料表面,这个过程称为表面耦合效应。

建立此新表面通常需要几皮秒(1.0E-12秒)的时间,新表面的厚度通常为0.1um。

表面耦合效应必须得到保证,否则部分激光能量会被反射从而不起作用。

1.2异种材料激光可焊性的判别步骤一:查看每种合金的组成,并将合金元素按照第一部分的三种材料类别进行归类:1)如果合金元素成分属于同一类别,则确信可以焊接。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施1. 激光焊接铝合金的难点激光焊接铝合金,这听上去是不是挺炫的?可是,这玩意儿背后的难题可一点也不轻松。

说实话,铝合金在焊接的时候,就像是那种硬要在热锅上的蚂蚁,不停地在那儿乱蹦跶,让人难以捉摸。

首先,铝合金的热导率极高,这就意味着它比其他材料更容易把热量传导开。

你想想,一团火焰猛地扑到一块冰上,冰块的融化速度可是快得让人咋舌。

铝合金也是如此,激光的高温会让它的热量迅速散开,焊接起来就难免出现问题。

而且,铝合金表面那层氧化膜,真是让人头疼。

这层氧化膜就像是铝合金的保护伞,既能防止氧化,又让焊接变得困难重重。

每次激光焊接前,得先把这层膜给去掉,不然就像是敲门不回声,根本无法成功焊接。

还有呢,铝合金在焊接的时候特别容易产生气孔,这些小气泡在焊缝里可是会让你很是抓狂,严重影响焊接质量。

再者,铝合金的熔点低于许多其他金属,但它的热膨胀系数却大,这就导致在焊接过程中容易变形。

你能想象一下,刚刚焊接好的焊缝,突然间在冷却过程中就像是疯子一样扭曲,这种效果让人真的很想把工作台上的工具都摔个稀巴烂。

2. 应对激光焊接铝合金的工艺措施既然难度这么大,那我们就得有针对性地解决这些问题了。

首先,针对铝合金热导率高的问题,我们可以调节激光的功率和焊接速度。

一般来说,功率调得过大会让焊接处变得过热,甚至烧穿;而调得过小则焊缝深度不够,强度也不够。

所以,这时候就需要精准掌控,不让它“过犹不及”。

接下来,氧化膜的问题也是个大难题。

面对这种情况,我们一般会采取化学清洗或者机械打磨的方法,确保焊接前铝合金表面干净、无膜。

为了避免氧化膜对焊接的影响,很多时候还会用氩气保护焊接区,这样能有效阻止氧化膜的形成,确保焊接的质量。

再有就是气孔问题了。

为了避免这些小气泡出现,我们可以调整焊接参数,比如降低焊接速度和激光功率,另外还可以使用保护气体,比如氩气或者氮气,防止空气中的氮氧化合物进入焊接区。

为了防止焊接时气体的滞留,我们还可以调整气体流量,确保它们能够及时排出,不给气孔留下机会。

异种金属激光焊接关键问题研究

异种金属激光焊接关键问题研究

异种金属激光焊接关键问题研究摘要:现代工程结构要求对异种金属材料进行。

焊接具有密度高、焊缝深宽比大、热影响区窄以及变形小等特点,成为异种金属材料焊接的有效方法。

异种金属过程包含多种效应,机制复杂。

比如,材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制;熔池凝固过程焊接缺陷及残余应力形成等。

围绕异种金属激光焊接过程中的关键问题,国内外开展了诸多研究工作,对此进行了全面阐述。

在此基础上,指出异种金属材料激光焊接研究中的不足及发展方向。

1 引言异种金属材料焊接是解决构件同时满足多方面性能要求的有效途径。

焊接方法有多种,比如氩弧焊(TIG)、电阻焊、摩擦焊、电子束焊以及激光焊等。

与其他焊接方法相比,激光焊具有热源密度集中、焊缝深宽比大、热影响区小、可控性好等特点,而且相对电子束焊,激光焊接气压要求低,通常不需要真空环境。

异种金属激光焊接始于20世纪70年代,目前成为航空航天、船舶制造、汽车制造诸领域重要的先进制造技术之一。

异种金属激光焊接过程包含多种物理效应。

具体表现为:金属材料对激光的吸收;激光材料相互作用引起的材料相变;能量与动量的传递与转换;光致等离子体对激光的散射与吸收;熔池形成及演化;匙孔(keyhole)效应以及熔池凝固等。

从复杂物理现象中提取科学问题,并对这些科学问题开展研究工作具有重大意义。

2 异种金属激光焊接关键问题异种材料激光焊接机制复杂。

比如,焊接材料热物性随温度变化差异;异种金属对于激光的吸收率差异及其随温度变化特性;熔池形成及演化机制;凝固过程焊缝熔化区与热影响区组织演化;激光焊接接头缺陷的形成、焊接残余应力与变形产生等。

但其关键问题可归结为材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制和熔池凝固过程焊接缺陷及残余应力形成。

2.1 材料性能差异对焊接接头微观组织与宏观性能的影响异种金属材料具有热物性差异(常见金属热物性见表1所示),这种差异是影响焊接过程的最主要因素。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施大家好,今天我们来聊聊激光焊接铝合金这个话题。

咱们得明确一点,激光焊接铝合金可不是一件容易的事情。

它就像是谈恋爱一样,需要双方共同努力才能取得成功。

那么,激光焊接铝合金的难点在哪里呢?又该采取哪些工艺措施呢?别着急,我一一给大家讲解。

一、激光焊接铝合金的难点1.1 铝合金的高反射率咱们先来说说铝合金的特点。

铝合金是由铝、铜、镁、锰等金属组成的合金,具有轻质、耐腐蚀、导热性能好等特点。

但是,铝合金的高反射率却是一个让人头疼的问题。

这就意味着,激光在照射到铝合金表面时,很难被吸收,从而影响了焊接的效果。

1.2 铝合金的热传导性能差除了高反射率,铝合金还有一个问题,那就是热传导性能差。

这意味着,当激光照射到铝合金表面时,热量很难迅速传递到熔池中,导致焊接速度慢,效率低。

二、采取的工艺措施2.1 优化激光参数针对铝合金的高反射率和热传导性能差的问题,我们可以采取优化激光参数的方法。

具体来说,就是调整激光功率、脉冲宽度、频率等参数,使得激光能够更好地吸收铝合金表面的热量,提高焊接速度和效率。

2.2 采用预处理方法除了优化激光参数外,我们还可以采用预处理方法来提高焊接效果。

预处理方法包括清洗、去氧化皮、打磨等步骤,旨在去除铝合金表面的杂质和氧化层,提高光束吸收率,从而改善焊接效果。

2.3 选择合适的焊接工艺针对铝合金的特点,我们还可以选择合适的焊接工艺。

常见的焊接工艺有手工电弧焊、气体保护焊、激光焊等。

不同的焊接工艺有不同的优缺点,我们需要根据具体情况选择最适合的焊接工艺,以提高焊接质量和效率。

三、总结总的来说,激光焊接铝合金虽然存在一些难点,但只要我们采取合理的工艺措施,还是可以取得理想的焊接效果的。

就像谈恋爱一样,只要双方共同努力,克服困难,就一定能够走到一起。

希望我的讲解对大家有所帮助,谢谢大家!。

异种金属焊接问题及焊接工艺探讨

异种金属焊接问题及焊接工艺探讨

异种金属焊接问题及焊接工艺探讨摘要:科学技术的飞速发展给各行业带来了新的发展,重点表现在制造加工行业。

制造加工产业涉及的范围广泛,而且制造产品零件数量多,加工过程繁琐,加工难度较大,现如今对于制造产品的质量要求也越来越高,制造产品的质量除了与材料本身有关,还与产品的加工方式有关,比如焊接工艺就会影响零部件的整体性能。

本文主要介绍了异种金属焊接的特点,对常见的异种金属焊接问题进行了分析,结合个人的工作经验,给出了焊接工艺措施建议,仅供相关人士参考。

关键词:异种金属;焊接问题;焊接工艺引言随着新材料、新工艺、新设备的不断出现,对各类工程构件的性能提出了更高的要求,但是在工程技术中任何一种材料都不可能完全满足使用性能的要求。

由不同材料组成的结构不仅能充分利用各组成材料的优异性能,达到工程中的使用上的要求,而且还能节约贵重金属,降低结构整体成本,提高经济效益,在某些情况下异种材料结构的综合性能甚至超过单一金属结构。

因此异种金属焊接在各行业中得到越来越多的运用和受到人们的重视。

但近年来,国内外多次发生异种金属焊接结构的早期失效事故。

因此,如何保证异种金属焊接接头的可靠性就成为保证结构安全运行的关键。

所以,研究异种金属之间的焊接具有重要的工程实用意义。

1异种金属焊接的特点在各种加工制造行业中,采用铝合金与钢为基本材料的金属构件已经成为了一种主流,铝合金具有质量轻、耐腐蚀性强、塑性好等特点,钢则是目前机械加工行业最常见的金属材料之一,机械连接虽然能够实现高强度的连接,但是无法保证连接的气密性,而且进行机械连接会留下连接痕迹,影响美观。

因此焊接成为了异种金属的连接中最常用的连接手段,由于铝与钢的物理性能存在较大的差异,所以给焊接过程带来了一定的难度,具体包括以下几点:①不同材料结构中的分子或原子之前的相互作用力的强弱决定了彼此是否能够直接形成焊接连接,即两种不同金属材料在液体状态和固体状态时都能够无限互溶,这便于形成性能良好的焊接连接[1]。

铝与钢异种金属焊接深入研究及其发展概况分析论文

铝与钢异种金属焊接深入研究及其发展概况分析论文

铝与钢异种金属焊接的深入研究及其发展概况的分析【摘要】:随着社会的不断发展,人们对环保问题越来越重视,我国的汽车行业为了大力的提倡保护环境的理念,一直在努力减轻自身的重量。

铝建材的使用是重要措施之一,很多企业采用了铝与钢的异型金属焊接方式,很大程度的减轻了汽车的自身重量,本文就铝与钢的焊接问题进行研究与讨论。

【关键词】:铝;钢;异形金属;焊接;中图分类号:g71一、铝与钢异形金属焊接首先我们对铝和钢的物理特性进行研究和分析,铝的熔点为660℃、比热为900℃、密度为2700p、热导率为220、电阻率为265、弹性模量是71;铁的熔点为1538℃、比热为460℃、密度为7870p、热导率为73、电阻率为13.30、弹性模量为210;铝和铁的熔点为0.44℃、比热为1.96℃、密度是0.34p、热导率为3.01、电阻率为0.20、弹性模量为0.33,从以上物理数据我们可以看出,铝和钢的金属性能有很大的区别,这也是导致铝与钢焊接性能差的原因,其中主要存在的问题有:⑴铝和钢很难进行直接的焊接,因为它们的熔点和密度不同,钢的熔点较铝高,当铝熔为液体时,钢仍然处于固态;其次密度问题当钢融化后,液态的铝会浮在钢水上,当液体冷却后它们所焊接的成分不均匀,导致焊接头性能降低。

⑵钢和铝的热导数相差很大,容易产生焊接头变形和产生裂纹。

二、焊接方式目前,我国铝和钢的焊接方式主要以下几种:摩擦焊接、爆炸焊接、电弧焊接、钎焊接、激光焊接、扩散焊接和磁脉冲焊接等。

⑴摩擦焊接。

摩擦焊接是以机械能作为能源的固相连接法。

它主要是利用机械的两表面相互摩擦产生热来进一步实现金属的连接。

对于铝和钢来说,摩擦焊是非常有效的焊接方式。

摩擦焊可以有效的破坏铝表面的氧化膜,降低它的有害作用。

在1981年有研究学者证明金属间的化合物是影响铝与钢实现焊接的主要问题。

科学家们通过大量的试验最终得出结论,虽然摩擦焊可以把铝与钢很好的进行焊接,并得出焊接接头,但是要做出复杂的形状是不能使用这个模式的,所以我们还需继续研究与探讨。

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施

激光焊接铝合金的难点及采取的工艺措施大家好,今天我们来聊聊激光焊接铝合金的这个话题。

我们得了解一下什么是激光焊接。

激光焊接是一种利用高能激光束对金属材料进行加热,使其熔化并形成焊缝的过程。

这种方法在工业生产中非常常见,尤其是在汽车、航空、航天等领域。

那么,激光焊接铝合金有哪些难点呢?又该如何采取相应的工艺措施呢?接下来,我们就来一探究竟。

我们来说说激光焊接铝合金的难点。

其实,激光焊接铝合金并不难,关键在于掌握好一些技巧。

第一个难点就是如何保证激光的能量密度足够高。

因为铝合金的导热性能比较好,如果激光能量密度不够高,就会导致焊缝质量不高。

第二个难点是如何控制好激光的焦距。

激光的焦距对于焊缝的质量有很大影响,如果焦距不合适,就会导致焊缝过宽或者过窄。

第三个难点是如何处理好铝合金的特殊性质。

铝合金中含有大量的铝和其他杂质元素,这些元素会影响到激光的传播和聚焦,从而影响到焊缝的质量。

那么,针对这些难点,我们应该采取哪些工艺措施呢?其实,只要我们掌握了正确的方法,就可以轻松应对这些难点。

我们要保证激光的能量密度足够高。

这就需要我们在选择激光器的时候,要选择功率足够大、光束稳定性好的激光器。

我们还要根据铝合金的厚度和种类,调整好激光的能量参数。

我们要控制好激光的焦距。

这就需要我们在操作过程中,要时刻观察焊缝的情况,及时调整焦距。

我们要处理好铝合金的特殊性质。

这就需要我们在焊接前,对铝合金进行预处理,去除其中的杂质元素,提高激光的传播和聚焦效果。

激光焊接铝合金虽然有一些难点,但只要我们掌握了正确的方法,就可以轻松应对。

通过以上介绍的工艺措施,相信大家对激光焊接铝合金有了更深入的了解。

希望大家在今后的工作和生活中,能够运用所学知识,为自己的事业和生活增添一份光彩。

好了,今天的分享就到这里,谢谢大家!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异种金属激光焊接关键问题研究
现代工程结构要求对异种金属材料进行焊接。

激光焊接具有密度高、焊缝深宽比大、热影响区窄以及变形小等特点,成为异种金属材料焊接的有效方法。

异种金属激光焊接过程包含多种效应,机制复杂。

比如,材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制;熔池凝固过程焊接缺陷及残余应力形成等。

围绕异种金属激光焊接过程中的关键问题,国内外开展了诸多研究工作,对此进行了全面阐述。

在此基础上,指出异种金属材料激光焊接研究中的不足及发展方向。

1 引言
异种金属材料焊接是解决构件同时满足多方面性能要求的有效途径。

焊接方法有多种,比如氩弧焊(TIG)、电阻焊、摩擦焊、电子束焊以及激光焊等。

与其他焊接方法相比,激光焊具有热源密度集中、焊缝深宽比大、热影响区小、可控性好等特点,而且相对电子束焊,激光焊接气压要求低,通常不需要真空环境。

异种金属激光焊接始于20世纪70年代,目前成为航空航天、船舶制造、汽车制造诸领域重要的先进制造技术之一。

异种金属激光焊接过程包含多种物理效应。

具体表现为:金属材料对激光的吸收;激光材料相互作用引起的材料相变;能量与动量的传递与转换;光致等离子体对激光的散射与吸收;熔池形成及演化;匙孔(keyhole)效应以及熔池凝固等。

从复杂物理现象中提取科学问题,并对这些科学问题开展研究工作具有重大意义。

2 异种金属激光焊接关键问题
异种材料激光焊接机制复杂。

比如,焊接材料热物性随温度变化差异;异种金属对于激光的吸收率差异及其随温度变化特性;熔池形成及演化机制;凝固过程焊缝熔化区与热影响区组织演化;激光焊接接头缺陷的形成、焊接残余应力与变形产生等。

但其关键问题可归结为材料性能差异对焊缝微观组织与宏观性能的影响;焊接熔池的形成、演化机制和熔池凝固过程焊接缺陷及残余应力形成。

2.1 材料性能差异对焊接接头微观组织与宏观性能的影响
异种金属材料具有热物性差异(常见金属热物性见表1所示),这种差异是影响焊接过程的最主要因素。

具体表现为:异种材料熔点不同,熔点低的材料达到熔化状态时,熔点高的材料仍呈固体状态,这时已经熔化的材料容易渗入过热区的晶界,造成低熔点材料的流失、合金元素烧损或蒸发,使焊缝的化学成分发生变化,力学性能难以控制,尤其是焊接异种有色金属时更为显著。

异种材料线膨胀系数差异导致熔池结晶时产整较大焊接应力与焊接变形,由于焊缝两侧材料承受的应力状态不同,容易导致焊缝及热影响区产生裂纹,甚至导致焊缝金属与母材的剥离。

材料的热导率和比热容差异使焊缝金属的结晶条件变坏,晶粒严重粗化,并影响难熔金属的润湿性能。

异种材料焊接时易产生金属间化合搦,同时会发生组织变化,导致焊接接头力学性能下降,尤其是热影响区容易产生裂纹,甚至发生断裂。

向时,材料膨胀系数、热导率和比热容等热物性参数随温度变化而变化,导致异种材料激光焊接过程更加复杂。

表1 部分常用金属热物性参数(室温)
点击图片查看大图
激光焊接过程中激光束与材料吸收的相容性取决于材料的一些重要性能,如吸收率、反射率、热导率、熔点温度等,其中最重要的是吸收率。

常温下金属对激光的吸收率一般比较小(见表2所示),而且同种金属对于不同波长激光吸收率也具有差异。

另外,随着温度升高,当达到熔点附近时,吸收率会出现大幅增长。

针对吸收率差异较大的金属材料激光焊接,熔池容易出现偏熔现象,匙孔不稳定,给焊接过程建模带来困难。

表2 部分常用金属激光吸收率(室温)
点击图片查看大图
2.2 异种金属材料激光焊接熔池形成与演化机制
异种金属激光焊接熔池形成与演化过程具有多场(激光场、熔池流场、固体应力-应变场、温度场等)、多尺度(时间尺度10-3~100s):熔池形成-凝固过程,空间尺度(10-6~10-3m):微结构-熔池形貌)和多参数(激光功率、光强分布、移动速度等)的特点,如图1所示。

点击图片查看大图
图1 异种金属激光深熔焊接熔池示意图
熔池形成与演化是激光异种金属焊接中的关键科学问题,它涉及材料对激光束的吸收、能量与动量的输运与转换、固-液-气的快速相变及相界面移动、熔池中热-力场及梯度分布与演化规律、混合界面各相浓度分带等。

其中,较大梯度的温度、压力与浓度变化以及表面张力变化时熔池形成的状态产生影响。

熔池形成后,当激光密度达到阔值,就会形成气体蒸发和等离子体,伴随很大的压力与浓度梯度,产生匙孔效应。

对于异种材料激光焊接,由于热物性参数的差异,熔池偏熔严重,匙孔不稳定。

提高焊接质量的关键是对熔池形成过程进行准确描述。

2.3 熔池凝固过程焊接缺陷及残余应力的形成
激光异种金属焊接存在多场藕合,焊缝熔化区凝固过程及热影响区徽结构演化复杂。

在熔池凝固过程中,熔池的快速冷却、凝固的不均匀传热过程会产生很大热应力。

在热应力与相变应力共同终用下会引起塑性变形、生成微缺陷、形成残余应力。

其中接头典型缺陷主要有热裂纹、气孔以及有害相等。

在焊接过程中,由于低熔物的形成,扩大了焊缝的结晶温度范围,在焊接熔池凝固后期,熔池中大部分金属已凝固,在晶界的少部分低熔物还在液态状态下,激光接应力作用下,易成为裂纹萌生和开裂的地方。

激光焊接气孔是由焊接过程中形成的匙孔不稳定将保护气体卷入焊接熔池,以及匙孔底部金属蒸发间歇产生大量气泡所导致。

有害相的形成是由于焊接过程中的非平衡凝固导致焊接过程中元素的偏析所至。

3 异种金属激光焊接研究进展
3.1 异种金属材料的激光焊接
3.1.1 异种钢激光焊接
目前国内外异种钢激光焊接主要集中在不锈钢、低碳钢。

异种钢热物性差别主要是出于其金相组织的不同。

印度先进技术中心Kaul等采用钨极氩弧焊和激光方法对奥氏体钢与铁素体钢进行焊接,将焊接结果进行了对比分析,发现激光焊较钨极氩弧焊可以得到更小的焊缝熔化区和热影响区,从而获得较好的微观结构。

爱尔兰都柏林(Dublin)城市大学Anawa 等利用CO2激光器对不锈钢AISI316与不锈钢AISI1008进行焊接,也得到了铁素体和奥氏体钢焊接能够成功使用激光焊接的结论,并设计实验来优化焊接参数,得到了小的残余应力和
热影响区,并发现残余应力与输入能量有直接关系,具体体现在工艺参数中的焊接速度和激光功率。

3.1.2 铝钢激光焊接
铝/钢熔点差异大,易形成金属件化合物的异种材料,并且铝/钢合金具有高反射率和高热传导系数的特点,在焊接过程中难以形成匙孔,焊接时需要较高的能量密度。

北京工业大学激光工程研究院左铁镪等对高强铝合金的激光焊接性能进行了深入探索,研究了填充合金粉末对锅合金高功率CO2激光焊接功率阈值、焊缝成形和焊接过程稳定性的影响。

国内外对/zixun/钢铝异种材料填充焊丝的激光焊接技术进行了大量研究,并实现了生产应用,如德国的“空中客车”飞机的机翼和隔板T型接头的激光焊接。

法国酷彩(Le Creusot)公司激光材料处理实验室的Mathieu等对铝钢材料进行了Zn基钎料激光焊,指出钎焊可以限制脆硬相的生成。

日本阿南(Anan)国立技术学院Nishimoto等运用激光压力焊对铝合金A6061及低碳钢SPCC进行焊接,焊接过程如图2所示。

实验发现透过控制激光能量与材料的作用时间,可以减小界面反应层的厚度,有效控制中间相的生成。

点击图片查看大图
图2 激光压辊焊接过程图
3.1.3 镁铝及镁铝合金焊接
铝及其合金具套良好的耐蚀性、较高的比强度、较好的导电性及导热性等优点。

镁是比铝还轻的一种有色金属,也具有较高的比强度和比刚度及良好的抗震能力。

镁铝焊接的主要问题在于母材本身极易氧化,热传导系数大,易产生裂纹和气孔等焊接缺陷,且极易产生金属间化合物,从而显著降低了焊接接头的力学性能。

点击图片查看大图
图3 镁铝TIG-激光复合焊接接头微结构扫描电镜图片(中间层为铈金属)日本长冈(Nagaoka)理工大学Borrisutthekul等通过有限元分析,提出用一个支撑块作为散热片,减小中间层厚度,提高焊接质量。

大连理工大学三束材料改性实验室刘黎明等采用激光-TIG复合焊对镁铝异种金属进行焊接,TIG-激光复合热源利用激光增加TIG能量利用率,同时利用TIG增加激光的吸收率,适合于焊接激光低吸收率、高热导率的金属焊接,焊接接头如图3所示。

可见焊接接头没有宏观裂纹。

研究结果表明复合焊由于其焊速高以及对熔池的快速搅拌作用,使镁铝形成的金属间化合物由连续的层状变为弥散状,放而改善了异种金属镁铝的焊接性。

3.1.4 铜与其他金属及舍念焊接
钢焊接的主要困难在于高反射率。

印度科技学院冶金系Phanikumar等用连续CO2激光器对铜镍异种材料进行焊接,对焊缝/母材微观组织结构进行了研究,指出异种金属焊接熔池形状是不对称的,焊缝两侧有着完全不同的微观组织;对焊接熔池形貌以及两侧不同微观结构的演化过程进行了深入研究,所测焊缝区铜元素含量如图4所示。

新加坡制造技术研究院Mai等采用无钎激光焊对钢-镍钴合金、铜-钢、铜-铝进行焊接,且认为两种材料的熔化比例是控制焊接结果无裂纹的关键因素。

点击图片查看大图
图4 焊缝区铜元素含量分布图(虚线为焊缝中心)。

相关文档
最新文档