热力学公式
热能的三种计算公式
![热能的三种计算公式](https://img.taocdn.com/s3/m/9f7eee0959fb770bf78a6529647d27284b73370c.png)
热能的三种计算公式热能的三种计算公式是:1、内能计算公式:内能U=∑miVi,其中 m 为物体的质量,V 为物体的速度。
内能又称动能,它表示物体运动时所拥有的能量,只要有质量和速度,就有内能。
2、势能计算公式:势能 U=mgh,其中 m 为物体的质量,g 为重力加速度,h 为物体高度。
势能又称重力能,它表示物体处于重力场中时所拥有的能量,只要有质量和高度,就有势能。
3、热能计算公式:热能Q=mcΔT,其中 m 为物体的质量,c 为物体的比热容,ΔT 为物体的温差。
热能又称热力学能,它表示物体温度发生变化时所拥有的能量,只要有质量和温度,就有热能。
以上三种计算公式分别用来衡量物体拥有的不同类型的能量,它们是物理中能量的基础。
内能是物体运动时所拥有的能量。
当物体质量和速度固定时,内能也是固定的。
如果物体的质量或速度发生变化,则内能也会随之发生变化。
内能的大小取决于物体质量和速度的大小,可以用内能计算公式U=∑miVi 来计算。
势能是物体处于重力场中时所拥有的能量。
当物体质量和高度固定时,势能也是固定的。
如果物体的质量或高度发生变化,则势能也会随之发生变化。
势能的大小取决于物体质量和高度的大小,可以用势能计算公式 U=mgh 来计算。
热能是物体温度发生变化时所拥有的能量。
当物体质量和温度固定时,热能也是固定的。
如果物体的质量或温度发生变化,则热能也会随之发生变化。
热能的大小取决于物体质量和温度的大小,可以用热能计算公式Q=mcΔT 来计算。
以上三种能量都可以用来衡量物体所拥有的能量,但它们之间也有相互转化的关系。
例如,当物体从一个高点自由落体时,物体将把势能转化为内能;当物体受热而温度升高时,物体将把热能转化为内能。
因此,只要有质量、速度、高度和温度,就可以用上述三种计算公式来测量物体所拥有的能量。
这些计算公式不仅可以帮助我们更好地理解物理定律,而且也可以用来计算各种物理现象所涉及的能量,从而更好地预测物理现象的发展趋势。
四个热力学基本公式推导
![四个热力学基本公式推导](https://img.taocdn.com/s3/m/e79f7b91f71fb7360b4c2e3f5727a5e9856a27ed.png)
四个热力学基本公式推导热力学是研究热现象和能量转化规律的科学,其中有四个基本公式在热力学的理论体系中具有极其重要的地位。
这四个公式分别是:dU= TdS PdV、dH = TdS + VdP、dA = SdT PdV、dG = SdT +VdP 。
接下来,我们逐步推导这四个公式。
首先,我们要明确一些基本的热力学概念。
内能(U)是系统内部能量的总和,焓(H)定义为 H = U + PV ,自由能(A)也称为亥姆霍兹自由能,定义为 A = U TS ,吉布斯自由能(G)定义为 G = H TS 。
我们从热力学第一定律和第二定律出发进行推导。
热力学第一定律表示为 dU =δQ δW ,其中δQ 是系统吸收的热量,δW 是系统对外所做的功。
对于可逆过程,δQ = TdS (其中 T 是温度,S 是熵)。
而对于常见的体积功,δW = PdV 。
所以,dU = TdS PdV 。
接下来推导焓的变化公式 dH 。
因为 H = U + PV ,对其求微分可得:dH = dU + PdV + VdP 。
将 dU = TdS PdV 代入上式,得到 dH= TdS PdV + PdV + VdP ,整理后可得 dH = TdS + VdP 。
再看自由能 A 的变化公式 dA 。
因为 A = U TS ,对其求微分得到:dA = dU TdS SdT 。
将 dU = TdS PdV 代入,就有 dA = TdS PdV TdS SdT ,化简后得到 dA = SdT PdV 。
最后推导吉布斯自由能 G 的变化公式 dG 。
由于 G = H TS ,求微分可得:dG = dH TdS SdT 。
把 dH = TdS + VdP 代入,得到 dG =TdS + VdP TdS SdT ,整理可得 dG = SdT + VdP 。
这四个热力学基本公式反映了热力学系统在不同条件下的能量变化规律,具有广泛的应用。
在实际应用中,比如研究化学反应的方向和限度时,吉布斯自由能的变化是一个关键的判断依据。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/fb44d12edf80d4d8d15abe23482fb4daa58d1d11.png)
H U pV
(1)
H U (pV )
式中 (pV ) 为 pV 乘积的增量, 惟独在恒压下
(pV)
p(V 2
V 1
)
在数值上等于体
积功。
(2)
H 2 nC d T
1
p,m
此式合用于理想气体单纯 pVT 变化的一切过程,或者真实气体的恒压变温过程,
或者纯的液体、固体物质压力变化不大的变温过程。
U 2 nC d T 此式合用于理想气体单纯pVT 变化的1 一切V ,m过程。
(1) 组成
摩尔分数
yB (或者
xB) =
n/ B
n A
A
体积分数
y V /
B
B
m,B
y V A m ,A
A
式中
n
为混合气体总的物质的量。
V
m,A
表示在一定
T,p 下纯气体
A 的摩
A
A
尔体积。 y V 为在一定 T,p 下混合之前各纯组分体积的总和。 A m ,A A
(2) 摩尔质量
式中 m m
V* (l) 与V* (g)
m
m
相
比可忽稍不计,在T1
_
T 2
的温度范围内摩尔蒸发焓可视为常数。
对于气- 固平衡,上式编 H 则应改为固体的摩尔升华焓。
vap m
定义:
=
(? (?
)
)
其中 X 为广延量,如 V ﹑ U ﹑ S......
全微分式: d
=
(|(
? ?
))|
+
? (|( ?
))|
+
(1) (2)
(3)
热学公式
![热学公式](https://img.taocdn.com/s3/m/32cb62bbf121dd36a32d82f1.png)
1、热力学第零定律在不受外界影响的条件下,两个热力学系统同时与第三个热力学系统处于热平衡,则两个热力学系统也必定处于热平衡。
2、在宏观上,温度是决定一系统是否与其它系统处于热平衡的物理量。
一切互为热平衡的系统都具有相同的温度值。
开氏温标 理想气体定律:P tr 为气体温度计在水的三相点时的压强。
热力学温度与摄氏温度的关系: t = T- 273.15物态或状态方程 1、玻意耳定律P V = C (当T 不变) 2、盖吕萨克定律V = V 0(1 + αV t ) (P 不变) 气体膨胀系数αV 3、查理定律P = P 0( 1 + αP t ) (V 不变) 气体压强系数 αP①该三条定律近似地适用于所有气体,只要温度不太低,则气体愈稀薄(低压气体),以上三式就能愈准确地描述气体状态的变化;②在气体无限稀薄的极限下,所有气体的αV 、αP 趋于共同的极限α ,其数值约为1/273。
αV =αP = 1/T 0=1/273 理想气体物态方程 1、同一成份(A )同一状态之间关系(门捷列夫-克拉珀龙方程)PV = ν RT =(M/M mol )RT γ为混合气体的总摩尔数γ1+γ2 (B )同一系统不同平衡态之间关系: P 1V 1 / T 1 = P 2V 2 / T 2 2、道尔顿分压定律混合气体总压强等于各种组分的分压强之和。
P = P 1+P 2+……+P n3、几种成份:P = P 1 + P 2 + ...... + P n = ( ν1 + ν2 + ......+ νn )RT/ VR = 8.31 J mol -1 K -1称为普适气体常量。
阿伏伽德罗常数:N A = 6.02× 10 23 mol -1理想气体的微观模型无外场时,分子在各处出现的概率相同 N 个分子给予器壁的压强n :分子数密度分子热运动平均平动动能 压强公式:trX XK X T 16.273)(=0()PV T P Rγ=()273.16limtr P trP T P K P →=⋅单位时间内碰在单位面积器壁上平均分子数理想气体物态方程的另一种形式k = R/N A = 1.38×10-23 J K -1温度的微观意义 温度是平衡态系统的微观粒子热运动程度强弱的量度。
物理高中热学公式
![物理高中热学公式](https://img.taocdn.com/s3/m/47114891f424ccbff121dd36a32d7375a417c611.png)
物理高中热学公式1. 热力学第一定律:ΔU = Q + W,其中ΔU为内能变化,Q为系统与外界交换的热量,W为系统所做的功。
2. 热力学第二定律:ΔS = Q/T,其中ΔS为系统熵的变化,Q为热量,T为温度。
3. 热容:C = Q/ΔT,其中C为热容,Q为系统吸收或释放的热量,ΔT为温度变化量。
4. 比热容:c = C/m,其中m为物体的质量。
5. 热传导定律:Q = kAΔT/x,其中Q为热量,k为热导率,A为面积,ΔT为温度差,x为导热距离。
6. 热辐射定律:P = σA(T^4 – T0^4),其中P为单位时间内辐射的能量,σ为斯蒂芬—玻尔兹曼常数,A为发射体参考面积,T为发射体温度,T0为参考温度。
7. 热力学循环效率:η = (W净 / Q热) × 100%,其中W净为系统净工作量,Q热为系统吸收的热量。
8. 热力学效率公式:η = (T1 – T2) / T1,其中T1为热源温度,T2为冷源温度。
9. 热平衡方程:m1c1ΔT1 = m2c2ΔT2,其中m为物体的质量,c为比热容,ΔT为温差。
10. 热力学势公式:G = H – TS,其中G为吉布斯自由能,H为焓,T为温度,S为熵。
11. 熵变公式:ΔS = Qrev / T,其中ΔS为系统的熵变,Qrev为可逆过程吸放热量,T为温度。
12. 等温过程:Q = W,即等温过程中外界对系统所做的功等于系统吸收的热量。
13. 等体过程:W = 0,即等体过程中系统不做功,热量全部转化为内能。
14. 等压过程:W = PΔV,即等压过程中外界对系统所做的功等于压力乘以体积的变化量。
15. 等焓过程:Q = ΔH,即等焓过程中外界与系统的热交换量等于系统焓的变化量。
化工热力学公式总结
![化工热力学公式总结](https://img.taocdn.com/s3/m/7a56706dae45b307e87101f69e3143323968f5db.png)
化工热力学公式总结1.热平衡公式:对于封闭系统,内能变化等于热变化和功变化之和。
即:ΔU=Q-W其中,ΔU表示内能变化,Q表示系统吸收或放出的热量,W表示系统对外做功。
2.热容公式:热容是单位质量物质温度变化1°C所吸收或放出的热量。
Q=mCΔT其中,Q表示吸收或放出的热量,m表示物质的质量,C表示热容,ΔT表示温度变化。
3.平衡常数(K)公式:对于化学反应:aA+bB↔cC+dD反应的平衡常数(K)定义为反应物浓度的乘积与生成物浓度的乘积之比:K=[C]^c[D]^d/[A]^a[B]^b其中,[A]、[B]、[C]、[D]表示反应物和生成物的摩尔浓度。
4.反应焓变(ΔH)公式:反应焓变是化学反应进行过程中吸热或放热的量。
根据焓守恒定律,反应焓变可以通过反应物和生成物焓变的差值表示:ΔH=ΣnΔHf(生成物)-ΣmΔHf(反应物)其中,n和m为反应物和生成物的系数,ΔHf表示物质的标准生成焓。
5.反应熵变(ΔS)公式:反应熵变是化学反应进行过程中熵的变化。
根据熵守恒定律,反应熵变可以通过反应物和生成物熵变的差值表示:ΔS=ΣnS(生成物)-ΣmS(反应物)其中,n和m为反应物和生成物的系数,S表示物质的熵。
6.反应自由能变(ΔG)公式:反应自由能变是化学反应进行过程中自由能的变化,可以通过反应物和生成物的自由能差值表示:ΔG=ΣnG(生成物)-ΣmG(反应物)其中,n和m为反应物和生成物的系数,G表示物质的自由能。
7.热力学平衡公式:对于可逆反应,根据吉布斯自由能变可以推导出热力学平衡公式:ΔG=ΔH-TΔS其中,ΔG为反应的吉布斯自由能变,ΔH为反应的焓变,ΔS为反应的熵变,T为温度。
以上是化工热力学中常用的公式总结,这些公式在研究和设计化工过程中起到了重要的作用。
通过应用这些公式,可以计算和预测系统的热力学性质和能量转化,从而优化化工过程的设计和操作。
同时,这些公式也为研究反应机理和确定过程条件提供了理论基础。
热学三大公式
![热学三大公式](https://img.taocdn.com/s3/m/bbe663540a1c59eef8c75fbfc77da26924c59652.png)
热学三大公式
热学是物理学中的一个重要分支,涉及到热量、热力学能量、热传递等方面的知识。
在热学中,有三个非常重要的公式,分别是:
1. 热力学第一定律公式:Q = U + W
这个公式表示热量 Q 等于内能 U 加上摩擦功 W。
它表明了热量和内能之间的关系,说明了热传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
2. 热力学第二定律公式:N = Q - W
这个公式表示净热量 N 等于热量传递 W 减去摩擦功 N。
它表明了热量传递的方向和热量传递的多少取决于内能差异的大小,而与摩擦功无关。
这个公式在解释热传递的规律和计算热量传递的效率时非常有用。
3. 热力学第三定律公式:热量不可能自发地从低温物体传到高
温物体
这个公式表示热量传递是一种自发的过程,也就是说,热量传递是从高温物体向低温物体传递的。
这个公式表明了热传递是一种不可避免的自然现象,同时也说明了热量传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
这三个公式是热学中最基本的公式,对于理解热学概念和应用具有非常重要的意义。
此外,热学还有很多其他的公式和规律,例如热力学第二定律的另一种表述方式——熵增定律,以及热力学第三定律的应用,等等,这些都需要深入学习才能掌握。
热力学计算公式整理
![热力学计算公式整理](https://img.taocdn.com/s3/m/205539fdc67da26925c52cc58bd63186bceb9284.png)
热力学计算公式整理热力学是研究物质的热与能的转化关系的学科,是广泛应用于化学、物理、工程等领域的重要理论基础。
在热力学计算中,有一系列公式被广泛应用于热力学参数的计算和分析。
1.热力学基本方程:对于一个热力学系统,其内部能量U可以由其热力学状态变量来表示,常用的基本方程有:U=TS-PV+μN其中,U为内部能量,T为温度,S为熵,P为压力,V为体积,μ为化学势,N为摩尔数。
2.热力学函数的计算:(1)焓(H)的计算公式:H=U+PV其中,H为焓,U为内部能量,P为压力,V为体积。
(2)外界对系统做的功(W)计算公式:W=-∫PdV其中,W为功,P为压力,V为体积,积分为从初态到末态的过程。
(3)熵(S)的计算公式:dS=dQ/T其中,S为熵,dS为熵的微分,dQ为系统的热量变化,T为温度。
(4) Helmholtz自由能(A)的计算公式:A=U-TS其中,A为Helmholtz自由能,U为内部能量,T为温度,S为熵。
(5) Gibbs自由能(G)的计算公式:G=U-TS+PV其中,G为Gibbs自由能,U为内部能量,T为温度,S为熵,P为压力,V为体积。
3.热力学热力学参数的计算:(1)热容的计算公式:Cv=(∂U/∂T)V其中,Cv为定容热容,∂U/∂T为导数,V为体积。
Cp=(∂H/∂T)P其中,Cp为定压热容,∂H/∂T为导数,P为压力。
(2)趋近于绝对零度时的熵变ΔS的计算公式:ΔS = Cvln(T2/T1) + Rln(V2/V1)其中,ΔS为熵的变化,Cv为定容热容,T2和T1为温度的变化,R 为气体常数,V2和V1为体积的变化。
(3)等温过程中的吸热计算公式:q=ΔH=nCpΔT其中,q为吸热,ΔH为焓的变化,n为物质的摩尔数,Cp为定压热容,ΔT为温度的变化。
(4)等温过程中的做功计算公式:w=-ΔG=PΔV其中,w为做功,ΔG为Gibbs自由能的变化,P为压力,ΔV为体积的变化。
热力学公式
![热力学公式](https://img.taocdn.com/s3/m/5a9763225901020207409c50.png)
1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/d120603b0508763230121289.png)
式中m = m B为混合气体的总质量,B n=為n B为混合气体总的物质的量。
上B第一章气体的pVT关系主要公式及使用条件1. 理想气体状态方程式pV =(m/M )RT = nRT或pV m 二p(V/ n) = RT式中p,V,T及n单位分别为Pa, m3,K及mol。
V m=V /n称为气体的摩尔体积,其单位为m3・mol-1。
R=8.314510 J mol-1・K-1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物(1)组成摩尔分数y B (或X B) = n B「:二n AA体积分数「B =y B V m,B 八,y A V m,AA式中V皿为混合气体总的物质的量。
V m,A表示在一定T,p下纯气体A的摩A尔体积。
7 y A V m,A为在一定T,p下混合之前各纯组分体积的总和。
A(2)摩尔质量M mix f Y B M B=m/ n =亠M B P 诵B B B述各式适用于任意的气体混合物(3)y =/ n 二P B / P = V B /V式中p B为气体B,在混合的T, V条件下,单独存在时所产生的压力,称为B 的分压力。
V B为B气体在混合气体的T,p下,单独存在时所占的体积。
3. 道尔顿定律上式适用于任意气体。
对于理想气体P B= nBRT /V4. 阿马加分体积定律*V B = n B RT / p此式只适用于理想气体。
第二章热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式U 二Q W或dU二3 Q 3 W =3 Q-an Pd V ' W规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中p amb为环境的压力,W为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式H -U pV3. 焓变(1)H = U (pV)式中(P V)为P V乘积的增量,只有在恒压下:(P V)二P(V2 -V i)在数值上等于体积功。
工程热力学公式知识点总结
![工程热力学公式知识点总结](https://img.taocdn.com/s3/m/43de90c4cd22bcd126fff705cc17552707225e2e.png)
工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。
它不仅适用于工程领域,也适用于物理、化学、地质等领域。
热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。
本文将对工程热力学公式知识点进行总结,并进行详细解释。
1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。
数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。
1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。
热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。
开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。
而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。
}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。
数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。
2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。
卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。
卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。
物理化学公式大全
![物理化学公式大全](https://img.taocdn.com/s3/m/fd2a360ba9956bec0975f46527d3240c8547a14c.png)
物理化学公式大全物理化学是研究物质的物理性质和化学性质之间的关系的学科。
以下是一些在物理化学中常用的公式:1.热力学方程:-理想气体状态方程:PV=nRT其中P为气体压强,V为气体体积,n为气体摩尔数,R为气体常数,T为气体温度。
-内能变化公式:ΔU=q+w其中ΔU为系统内能变化,q为系统吸取或放出的热量,w为系统对外界做的功。
-能量守恒定律:ΔE=q+w其中ΔE为系统总能量变化,q为系统吸取或放出的热量,w为系统对外界做的功。
2.动力学方程:-反应速率公式:r=k[A]^m[B]^n其中r为反应速率,k为反应速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。
- Arrhenius 公式:k = A * e^(-Ea/RT)其中 k 为反应速率常数,A 为 Arrhenius 常数,Ea 为活化能,R为气体常数,T 为反应温度。
3.量子力学方程:- 波函数公式:Ψ = Σcnφn其中Ψ 为波函数,cn 为系数,φn 为基态波函数。
- Schroedinger 方程:HΨ = EΨ其中H为哈密顿算符,Ψ为波函数,E为能量。
4.热力学方程:- 熵变公式:ΔS = q_rev / T其中ΔS 为系统熵变,q_rev 为可逆过程吸放热量,T 为温度。
- Gibbs 自由能公式:ΔG = ΔH - TΔS其中ΔG 为 Gibbs 自由能变化,ΔH 为焓变化,ΔS 为熵变化,T 为温度。
5.电化学方程:- Nerst 方程:E = E° - (RT / nF) * ln(Q)其中E为电池电势,E°为标准电势,R为气体常数,T为温度,n为电子数,F为法拉第常数,Q为电化学反应的反应物浓度比。
- Faraday 定律:nF = Q其中n为电子数,F为法拉第常数,Q为电荷数。
以上公式只是物理化学中的一小部分,这里列举的是一些常见的、基本的公式,实际上物理化学领域有非常多的公式和方程可供使用。
热力学热功与热效率公式整理
![热力学热功与热效率公式整理](https://img.taocdn.com/s3/m/a38fa5b982d049649b6648d7c1c708a1284a0a8b.png)
热力学热功与热效率公式整理热力学是研究能量转换和能量传递的科学分支。
在热力学中,热功和热效率是两个重要的概念,可以通过一些公式进行计算和表达。
本文将对热力学中热功和热效率的公式进行整理和介绍。
一、热功的计算公式热功是指系统通过热量传递产生的功。
在热力学中,热功的计算公式可以表示为:W = Q - ΔU其中,W表示热功,Q表示系统吸收的热量,ΔU表示系统内能的变化。
根据上述公式可以看出,热功的大小与系统吸收的热量和内能的变化有关。
如果系统吸收的热量大于内能的变化,那么系统将进行正功,否则系统将进行负功。
二、热效率的计算公式热效率是指系统在能量转换过程中所做的有效功与吸收的热量之比。
热效率的计算公式可以表示为:η = (W/Q) × 100%其中,η表示热效率,W表示系统所做的有效功,Q表示系统吸收的热量。
根据上述公式可以看出,热效率的大小与系统所做的有效功和吸收的热量有关。
热效率是衡量系统能量转化效率的重要指标,通过提高热效率可以减少能量的浪费和损耗。
三、热功和热效率的实例分析为了更好地理解热功和热效率的概念和计算方法,下面以汽车发动机为例进行实例分析。
汽车发动机是将燃料的化学能转化为机械能的装置,其工作效率高低直接影响到汽车的动力性能和燃油消耗情况。
在汽车发动机中,热功可以表示为发动机所做的有效功,而吸收的热量可以表示为燃烧室内燃烧所释放的热量。
根据热功的计算公式可以得出:W = Q - ΔU其中,发动机的内能变化可以忽略不计,因此热功可以近似表示为: W = Q此时,发动机的热功等于吸收的热量,即表示发动机通过燃烧转化的能量全部用于做功。
而热效率则可以表示为发动机所做的有效功与吸收的热量之比。
在实际应用中,汽车发动机的热效率往往不高,一般在20%到40%左右。
提高汽车发动机的热效率可以通过改进燃烧室设计、提高燃料燃烧效率、减少冷却热损失等多种方法来实现。
通过提高热效率,可以减少燃料的消耗,降低环境污染,并提高汽车的可持续发展性能。
热力学公式总结
![热力学公式总结](https://img.taocdn.com/s3/m/326a869cb04e852458fb770bf78a6529657d3550.png)
热力学公式总结热力学公式,作为热力学研究的基础,是描述能量转化和热力学过程的数学表达式。
它们通过简洁的符号和方程式,揭示了物质和能量之间的相互关系。
以下是几个常见的热力学公式及其含义,让我们一起来了解一下吧。
1. 热力学第一定律:ΔU = Q - W热力学第一定律是能量守恒定律在热力学中的表达,它说明了一个封闭系统内部能量的变化等于系统所吸收的热量减去对外界做功的大小。
这个公式告诉我们,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
2. 熵的定义:ΔS = Q/T熵是描述系统无序程度的物理量,它是热力学中的一个重要概念。
熵的增加代表了系统的无序性增加,而熵的减少则代表了系统的有序性增加。
这个公式告诉我们,熵的变化与系统所吸收的热量和温度有关,系统吸收的热量越多,熵的增加越大。
3. 理想气体状态方程:PV = nRT理想气体状态方程是描述理想气体性质的基本公式,它将气体的压力、体积、摩尔数和温度联系在一起。
这个公式告诉我们,当气体的压力、体积和摩尔数一定时,温度越高,气体的体积越大。
4. 热力学第二定律:ΔS ≥ 0热力学第二定律是热力学中的一个基本原理,它表明在一个孤立系统中,系统的熵不会减小,或者说系统总是趋向于更高的熵。
这个公式告诉我们,自然界中熵的增加是不可逆的,系统的有序性总是会不可避免地变差。
以上是几个常见的热力学公式,它们揭示了能量转化和热力学过程的规律。
通过理解和运用这些公式,我们可以更好地理解和分析能量转化和热力学过程,为实际问题的解决提供依据。
热力学公式的应用广泛,涵盖了能源、化学、物理等多个领域,对于推动科学技术的发展和改善人类生活质量起到了重要的作用。
希望今天的介绍能让大家对热力学公式有更深入的了解,并在实际应用中发挥出更大的作用。
热力学第一定理公式
![热力学第一定理公式](https://img.taocdn.com/s3/m/3f4067b26aec0975f46527d3240c844769eaa07b.png)
热力学第一定理公式
热力学第一定理公式是:△U=Q+W。
表述为:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。
即热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
其推广和本质就是著名的能量守恒定律。
热力学第一定律本质上与能量守恒定律是的等同的,是一个普适的定律,适用于宏观世界和微观世界的所有体系,适用于一切形式的能量。
自1850年起,科学界公认能量守恒定律是自然界普遍规律之一。
能量守恒与转化定律可表述为:自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,但在转化过程中,能量的总值不变。
热力学公公式
![热力学公公式](https://img.taocdn.com/s3/m/03eeeaf4aef8941ea76e05f0.png)
热力学第一定律:W,Q , ΔU 和ΔH 的计算 任何过程都适用的公式:Δ(pV )是始终态的pV 差,不是功。
理想气体适用的公式范式气体适用的公式一、理想气体的简单变化过程1. 等温可逆过程2. 等温恒外压不可逆过程3. 等容过程4. 等压过程5. 绝热过程6. 节流过程和自由膨胀7. 任意变温过程8.多方可逆过程二、实际气体1.节流过程 2. 实际气体等温过程 范德华方程式:适用条件: 封闭系统,范德华气体,只作膨胀功,等温过程。
3. 实际气体的变温过程 WQ U +=∆dVp W V V ⎰-=21)(pV U H ∆+∆=∆dTC U T T V ⎰=∆21dTC H T T p ⎰=∆21dV V adT C U mV ⎰⎰+=∆20=∆=∆H U 2112ln ln p pnRT V V nRT W Q ==-=0=∆=∆H U )(12V V p W Q -=-=0=W dT C Q U T T VV ⎰==∆21dT C H T T p ⎰=∆21dT C U T T V ⎰=∆21dT C Q H T T p p⎰==∆21)()(2112T T nR V V p W -=--=0=Q dT C W U T T V⎰==∆21dTC H T T p ⎰=∆21⎪⎪⎪⎩⎪⎪⎪⎨⎧----=⎰)(11)(1112112221T T V p V p dT C W T T V γγ0===∆=∆W Q H U ⎰-=21V V pdV W dT C U T T V ⎰=∆21U W Q ∆+=dT C H T T p ⎰=∆210=∆H 0=Q W pV U -=∆-=∆)(nRT nb V V a n p =-+))((22RT b V a p m =-+))(V (22m 22122221V a n V a n dV V a n U V V -==∆⎰)()(1122V p V p U pV U H -+∆=∆+∆=∆W U Q +∆=dV Van dT C U V ⎰⎰+=∆22)(PV U H ∆+∆=∆22122ln V a n V a n nb V nb V nRT W -+---=常数=δpV )(112T T nR W --=δ)(111122V p V p --=δdT C U T T V⎰=∆21W U Q -∆=dT C H T T p ⎰=∆21三、相变过程1. 熔化(凝固)2. 蒸发(冷凝)3. 升华(凝华)四、化学反应C p 与C v:单原子理想气体双原子理想气体 一般温度下:高温下:化学反应热效应的求算:Δr H m =(ΣνB Δf H m (B))产物-(ΣνB Δf H m (B))反应物=ΣνB Δf H m (B)即:反应热等于产物的生成热之和减去反应物生成热之和。
高中热学公式
![高中热学公式](https://img.taocdn.com/s3/m/b29c9c75cc175527072208d6.png)
二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。
气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。
温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。
三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。
Welcome !!! 欢迎您的下载,资料仅供参考!。
第一章 化学热力学基础 公式总结
![第一章 化学热力学基础 公式总结](https://img.taocdn.com/s3/m/40a7255ab0717fd5370cdc51.png)
第一章 化学热力学基础 公式总结 1.体积功 We = -Pe △V2.热力学第一定律的数学表达式 △U = Q + W 3.n mol 理想气体的定温膨胀过程。
定温可逆时:Wmax=-Wmin=4.焓定义式 H = U + PV在封闭体系中,W ′= 0,体系发生一定容过程 Qv = △U在封闭体系中,W ′= 0,体系发生一定压过程 Qp = H2 – H1 = △H5.摩尔热容 Cm ( J ·K —1·mol —1 ):定容热容 CV(适用条件 :封闭体系、无相变、无化学变化、 W ′=0 定容过程适用对象 : 任意的气体、液体、固体物质 )定压热容 Cp⎰=∆21,T T m p dTnC H (适用条件 :封闭体系、无相变、无化学变化、 W ′=0 的定压过程适用对象 : 任意的气体、液体、固体物质 )单原子理想气体: Cv,m = 1.5R , Cp,m = 2.5R 双原子理想气体: Cv,m = 2。
5R , Cp,m = 3.5R 多原子理想气体: Cv,m = 3R , Cp ,m = 4RCp ,m = Cv ,m + R6。
理想气体热力学过程ΔU 、ΔH 、Q 、W 和ΔS 的总结7。
定义:△fHm θ(kJ ·mol —1)-- 标准摩尔生成焓△H —焓变; △rHm —反应的摩尔焓变 △rHm θ-298K 时反应的标准摩尔焓变;△fHm θ(B)—298K 时物质B 的标准摩尔生成焓; △cHm θ(B ) —298K 时物质B 的标准摩尔燃烧焓。
8.热效应的计算1221ln ln P PnRT V V nRT =nCC m =⎰=∆21,T T m V dTnC U由物质的标准摩尔生成焓计算反应的标准摩尔焓变 △rH θm = ∑νB △fH θm ,B 由物质的标准摩尔燃烧焓计算反应的标准摩尔焓变 △rH θm = -∑νB △cH θm ,B 9.Kirchhoff (基尔霍夫) 方程△rHm (T2) = △rHm (T1) +如果 ΔCp 为常数,则 △rHm (T2) = △rHm (T1) + △Cp ( T2 - T1)10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
Am,*V表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
1. 热力学第一定律的数学表示式W Q U +=∆或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0)V W == p Q H =∆ (d 0,'0)p W ==pVU H +=2,m 1d V U nC T∆=⎰6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -= 此式只适用于理想气体。
7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p TH T H T C T ∆=∆+∆⎰或 vap m vap ,m (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功 (1)定义式V p W d amb -=∂或 V p W d amb ∑-=(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。
(3) )(21amb V V p W --= 适用于恒外压过程。
(4) )/ln()/ln(d 121221p p nRT V V nRT V p W V V =-=-=⎰ 适用于理想气体恒温可逆过程。
,m//p p p c C m CM==(5) ,m 21()V W U nC T T =∆=- 适用于,m V C 为常数的理想气体绝热过程。
9. 理想气体可逆绝热过程方程,m2121(/)(/)1V C R T T V V = ,m2121(/)(/)1p C R T T p p -=1)/)(/(1212=r V V p p上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。
10. 反应进度B B /νξn ∆=上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=∆,B,0n 为反应前B 的物质的量。
B ν为B 的反应计量系数,其量纲为一。
ξ的量纲为mol 。
11. 标准摩尔反应焓θθθr m B f m B c m (B,)(B,)H H H νβνβ∆=∆=-∆∑∑式中θf m (B,)H β∆及θc m (B,)H β∆分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。
上式适用于ξ=1 mol ,在标准状态下的反应。
12. θm r H ∆与温度的关系21θθr m2r m1r ,m ()()d T p T HT HT C T ∆=∆+∆⎰式中 r ,m ,m B (B)p p C C ν∆=∑,适用于恒压反应。
13. 节流膨胀系数的定义式J T (/)H T p μ-=∂∂T J -μ又称为焦耳-汤1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据amb sy s iso S S S ∆+∆=∆{0, 0, >=不可逆可逆式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变7. 熵变计算的主要公式222r111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ r d δ/S Q T =amby s amb amb amb //S T Q T Q s -==∆对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出 (1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112ln(/)ln(/)S nR V V nR p p ∆==此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
(3) ,m 21ln(/)p S nC T T ∆=此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。
8. 相变过程的熵变此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。
9. 热力学第三定律或 0)0K ,(m =*完美晶体S 上式中符号*代表纯物质。
上述两式只适用于完美晶体。
10. 标准摩反应熵)B (Bm B m r ∑=∆θθνS S2r m 2r m 1r ,m 1()()(/)d p S T S T C T T θθ∆=∆+∆⎰上式中r ,m p C ∆=B ,m B(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔反应熵的计算。
0)(lim m =*→完美晶体S T 0TH S /βαβα∆=∆11. 亥姆霍兹函数的定义12. r d δ'T A W = 此式只适用n 一定的恒温恒容可逆过程。
13. 亥姆霍兹函数判据V T A ,∆⎩⎨⎧=<平衡自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ∆作为过程的判据。
14. 吉布斯函数的定义15. ,r d δ'T P G W =此式适用恒温恒压的可逆过程。
16. 吉布斯函数判据⎩⎨⎧=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ∆作为过程的判据。
17. 热力学基本方程式d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。
说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。
也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。
TSU A -=TSH G -=,T pG ∆18. 克拉佩龙方程m m d /d /()p T H T V ββαα=∆∆ 此方程适用于纯物质的α相和β相的两相平衡。
19. 克劳修斯-克拉佩龙方程2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)p p H RT T p p H R T T =∆=∆-此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。
对于气-固平衡,上式vap m H ∆则应改为固体的摩尔升华焓。
20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -=式中fus 代表固态物质的熔化。
m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点1. 偏摩尔量:定义: C n p,T,n X X ⎪⎪⎭⎫⎝⎛∂∂=B B (1)其中X 为广延量,如V ﹑U ﹑S ......全微分式:d ⎛⎫∂∂⎛⎫=++ ⎪ ⎪∂∂⎝⎭⎝⎭∑B B B B Bd d d p,n T,n X X X T p X n T p (2)总和: ∑=BB B X n X (3)2. 吉布斯-杜亥姆方程在T ﹑p 一定条件下,0d BB B =∑X n , 或0d BB B=∑X x。