大学物理-动量定理和动量守恒定律

合集下载

大学物理-第二章2-3 动量和动量定理

大学物理-第二章2-3 动量和动量定理


t
0
P F d t d p p p0
P0
3
力 F 对时间的积累,称为力 F 的冲量(implus),即 t I F dt
所以 I p p mv mv 0 0
t0
此式表示,在运动过程中,作用于质点的合力 在一段时间内的冲量等于质点动量的增量。这个结 论称为动量定理。 F为恒力时 I = F (t - t 0 ) F 为变力,且作用时间很短时,可用平均值来代替 t t0 F d t F I = F (t - t 0 ) t t0 4
16
三、 动量守恒定律
如果
Fi 0
n i 1

n

mi vi 恒矢量
i 1
n d ( mi vi ) 0 d t i 1
在外力的矢量和为零的情况下,质点系的总动量
不随时间变化——动量守恒定律。
m v
i 1 n i
n
ix
恒量
恒量
(当 Fix 0 时) (当 Fiy 0 时) (当 Fiz 0 时)

A 跳水运动中游泳池的设计深度
24
F b S v k b S
dv 2 m = kv dt
v
2
F k v
2
m d v= kv d x
m v0 x ln k v
1 1
dv x k = d x v0 v 0 m
3
k 0.251.010 0.08kg m 20kg m
t
此式表明,合外力在某一方向的冲量等于在该方
向上质点系动量的增量。
12

大学物理 动量 动量守恒定律汇总

大学物理 动量  动量守恒定律汇总

Fdt (m dm)v (mv dm 0) vdm vkdt
F k v 200 4 8 10
2
N
12
3-9 一小船质量M=100kg,船头到船尾长度l=3.6m。现 有一质量m=50kg的人从船尾走到船头时,船头将移动多 少距离?假定水的阻力不计。
Fi外
Fij
j
i
内力-----是质点系内各质点间的作用力; 外力------是质点系外物体对质点系内质点的力。
由牛顿第三定律,内力必定是成对出现,且每对内力 都沿两质点连线的方向。
3
i质点合力

t2
t1
( Fi外 f ji )dt mi vi 2 mi vi1
j 1
n 1
F i外 f
9
n
例2.5 一弹性球,质量m=0.20kg,速度 v=5m/s, 与墙碰撞后弹回.设弹回时速度大小不变,碰撞前后的 运动方向和墙的法线所夹的角都是α,设球和墙碰撞 的时间Δt=0.05s,α=60°,求在碰撞时间内,球和 墙的平均相互作用力. 解:以球为研究对象.设墙对 球的平均作用力为 f ,球在 碰撞前后的速度为 v1和 v 2 , 由动量定理可得
2
t1 t2
Fx dt mv2 x mv1x
Iy Iz

t1 t2
Fy dt mv2 y mv1 y Fz dt mv2 z mv1z
2
t1
3
二 质点系的动量定理
如果研究的对象为多个质 点,则称为质点系 对质点系,受力可分为 “内力”和“外力”。
质点系
Fj外
Fji
§2.2 动量 动量守恒定律
力对时间的累积效应

动量定理和动量守恒定律

动量定理和动量守恒定律

动量定理和动量守恒定律
动量定理(或称为莱布尼兹动量定理)是物理学中的一条基本定理,它说明了物体受
力时动量发生变化的定律,即在任何时刻点,物体动量的变化等于向物体施加的力的矢量积。

动量定理的数学公式可以表达为:
$$\vec{P}= \frac{d\vec{p}}{dt} = \sum \vec{F_T}$$
其中,$P$ 代表物体的动量,$F_T$代表施加在物体上的外力,$p$代表物体的线速度,$t$代表时间。

从上式可以看出,动量的定义比较宽泛,除了物体的位置和速度外,还包括了力对物
体的作用,也就是动量改变的原因就是因为物体受力,所以又叫做力学定理。

在微分形式中,动量定理也可以写作:
动量定理的重要意义是:动量是物体受力变化的定律,这个定律蕴含着物体受力量变
化的定律,即动量守恒定律。

动量守恒定律是物理学中最基本也是最重要的定律,它非常宽泛地适用于物理学问题,它宣布了外力作用下物体总动量(包括质量和速度)保持不变。

即:
总动量 $$P_1 + P_2 + ...+ P_N = P_1^{'} + P_2^{'} + ...+ P_N^{'}$$
因此,当外力改变物体的总动量时,实际上就是通过物体内部各外力矢量积之和改
变物体的总动量。

动量守恒定律是一个强有力的物理定律,依照这个定律,动量的总和将
始终守恒不变。

第四章 动量定理与动量守恒定律

第四章 动量定理与动量守恒定律

v dpi v v (e) v (i) = Fi = Fi + Fi dt
m1
v ex Fi
v in m i m2 Fi
求和, 求和 有
合外力 合内力
v v (e) v (i) dpi d v ∑ dt = dt ∑ pi = ∑Fi + ∑Fi
因为内力成对出现, 上式可写为: 因为内力成对出现 上式可写为
I x = ∫ Fxdt = mvx mvx0
t0 t
t
I y = ∫ Fydt = mvy mvy0
t0 t
I z = ∫ Fzdt = mvz mvz0
t0
May 31, 2010 Page #
ANHUI UNIVERSITY
大学物理学
第四章 第四章动量定理与动量守恒定律
(3) 在碰撞或冲击问题中 牛顿定律无法直接应用 而动 在碰撞或冲击问题中, 牛顿定律无法直接应用, 量定理的优点在于避开了细节而只讨论过程的总体效果. 量定理的优点在于避开了细节而只讨论过程的总体效果 (4) 动量定理仅适用于惯性系 且与惯性系的选择无关 动量定理仅适用于惯性系, 且与惯性系的选择无关. 如图, 锤从高度为h 例 如图 一重锤从高度为 =1.5m的地方由 的地方由 静止下落, 静止下落,锤与被加工的工件的碰撞后的 末速度为零. 若打击时间分别为10 末速度为零 若打击时间分别为 -1s, 10-2s, 10-3s, 10-4s,试计算这几种情形下平均冲力 , 与重力的比值. 与重力的比值 如图坐标系, 设重锤质量为m 解: 取如图坐标系 设重锤质量为 . 重锤初速度
10-1s 6.5 10-2s 56
Page #
由此解得
计算结果如下
t

动量及动量守恒定律

动量及动量守恒定律

动量定理
t2
t1
t2
t1
(F1
(F2

F12 )dt
F21)dt

m1v1
m 2v2

m1v10 m2 v 20
因为内力 F12 F21 0 ,故
质点系
F1
F12
m1
F2
F21
m2
t2
t1
(F1

F2
)dt

(m1v1

X

v1
Y
变质量问题

F

f N
v2
v(m1 0
t)g

dP dt
竖直 (m0 t)g N v1
N v1 (m0 t)g

水平 F f v2
v2
F v2 f
v2 N
(m0 t)g (v2 v1)
X

v1N
Y
Ff

(m0 t)g
例 一柔软链条长为l,单位长度的质量为.链条放在 桌上,桌上有一小孔,链条一端由小孔稍伸下,其余部分堆 在小孔周围.由于某种扰动,链条因自身重量开始落下 .求 链条下落速度与落下距离之间的关系 . 设链与各处的摩 擦均略去不计,且认为链条软得可以自由伸开 .

t2 n
Fiex )dt (
Fiin )dt
n
mi vi
n
mi vi0
t1 i1
i 1
i 1
I

p

p0
物理意义:作用于系统的合外力的冲量等于系统 动量的增量。
质点系的总动量的变化只与质点系所受的外力的矢 量和有关,与内力的冲量无关。

动量定理和动量守恒

动量定理和动量守恒

二、实验演示
三、实验注意事项
1、实验前应先调节斜槽,使其末端切线沿水平方 向,以保证小球碰撞前时速度沿水平方向。 2、重复实验时,每次都应使小球由斜面的同一位 置滚下。 3、为保证碰后两球速度方向相同,入射小球的质 量应大于被碰小球。 4、在本实验中,我们采用以各球的水平射程代替 程度,所以测量记录时一定要明白各线段代表的是物体 哪个时刻的速度。

随 堂 练 习
1、甲乙两船自身质量为120 kg,都静止在静水 中,当一个质量为 30 kg的小孩以相对于地面 6 m/s的水平速度从甲船跳上乙船时,不计阻力, 甲、乙两船速度大小之比v甲∶v乙= .
2、如图所示,A、B两质量相等的物体,原来静止在平板 小车C上,A和B间夹一被压缩了的轻弹簧,A、B与平板车 上表面动摩擦因数之比为3∶2,地面光滑。当弹簧突然 释放后,A、B相对C滑动的过程中 ①A、B系统动量守恒 ②A、B、C系统动量守恒 ③小车向左运动 ④小车向右运动 以上说法中正确的是( ) A.①② B.②③ C.③① D.①④
课 堂 小 结
概念
动量
动 量
动量变化: P=P2-P1 动量定理:Ft=P2-P1 规 律
成立条件:系统 所 受和外力为零 碰撞 应用 返冲运动
动量守恒定律
课 后 习 题
1、两球A、B在光滑水平面上沿同一直线,同一方 向运动, m A =1 kg , m B =2 kg , v A =6 m/s , v B =2 m/s。当A追上B并发生碰撞后,两球A、B速度的 可能值是( ) A.vA′=5 m/s,vB′=2.5 m/
矢量性:动量不仅有大小还有方向。 且其方向与速度方向一致。
动量的变化量:若一运动物体在某一过程中的初、末动量分 别为p、p′,则称∆p=p′−p为物体在该过程的变化。

动量定理与动量守恒定律

动量定理与动量守恒定律

动量定理与动量守恒定律动量是物体运动的重要物理量,揭示了物体运动的性质以及相互作用过程中的变化规律。

动量定理和动量守恒定律是描述物体运动中动量变化和守恒的重要原理。

一、动量定理动量定理又称牛顿第二定律,它指出:当外力作用于物体时,物体的动量变化率等于外力的合力。

在公式表示上,动量定理可以表达为:F = ma其中,F为物体所受到的合外力,m为物体的质量,a为物体的加速度。

根据动量定理,可以得出以下结论:1. 外力对物体的作用时间越长,物体的动量变化越大。

2. 给定外力作用时间不变的情况下,物体的质量越大,其动量的变化越小。

3. 给定物体质量不变的情况下,外力的大小越大,物体的动量变化越大。

二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的原理。

在封闭系统中,物体之间发生相互作用,它们的动量之和保持不变。

根据动量守恒定律,可以得出以下结论:1. 在没有外力作用的封闭系统中,物体的总动量保持不变。

2. 当物体发生碰撞或相互作用时,只要没有外力干扰,物体的动量总和保持不变。

3. 动量的守恒还适用于多个物体之间的相互作用,无论是弹性碰撞还是非弹性碰撞。

应用动量守恒定律,可以对各种现象进行解释,例如:1. 汽车碰撞:当两辆车发生碰撞时,它们的合动量在碰撞前后保持不变,因此可以用动量守恒定律来分析和解释碰撞过程。

2. 运动员跳远:运动员在起跳瞬间通过腿部发力,推动自己前进。

由于系统是封闭的,跳远过程中动量守恒,从而产生更大的跳远距离。

3. 火箭喷气推进:火箭通过排出高速喷射的气体,产生反冲力推动自身前进。

根据动量守恒,喷气气体的动量变化与火箭的动量变化相互抵消,从而实现火箭的推进。

综上所述,动量定理和动量守恒定律是物理学中对物体运动和相互作用过程进行描述的重要原则。

了解和应用这些定律,可以更好地理解和解释物体的运动行为,对各种物理现象进行分析和解决问题。

大学物理-第三章三大守恒定律

大学物理-第三章三大守恒定律

i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某

b v2


d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a

v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv

动量和动量守恒定律

动量和动量守恒定律

3)若某一方向合外力为零,则此方向动量守恒 。
Fxex 0 , Fyex 0 , Fzex 0 ,
px mi vix Cx p y mi viy C y pz mi viz Cz
4)动量守恒定律只在惯性参考系中成立,是自然 界最普遍,最基本的定律之一。
2-2 动量和动量守恒定律 一、质点和质点系的动量定理 1、冲量 质点的动量定理
d(mv) F 由牛顿第二定律 dt t2 v2 两边乘以dt并积分: Fdt d(mv) mv2 mv1
t1 v1
合力的冲量 I
I Fdt —–力的冲量 t
1
动量的增量
t2
*单位:N· s
I x Fx dt
例题 一质量为0.05kg、速率为10m· s-1的刚球,以与 钢板法线呈45º 角的方向撞击在钢板上,并以相同的速 率和角度弹回来。设碰撞时间为0.05s。求在此时间内 钢板所受到的平均冲力 F 。
解:建立如图坐标系, 由动量定理得
Fx t mv2 x mv1x mv cos (mv cos ) 2mv cos Fy t mv2 y mv1 y
2 1 2 1 2
说 明
1
mv
mv1
F
mv2
t1 Fdt F (t2 t1 ) t2 t1 Fdt mv 2 mv1 F t2 t1 t2 t1
t2
结论:物体动量变化一定的情况下,作用时间越长, 物体受到的平均冲力越小; 反之则越大。 海绵垫子可 以延长运动员 下落时与其接 触的时间,这 样就减小了地 面对人的冲击 力。
b
W ( Fxdx Fy dy Fz dz)

大学物理上第2章2-动量--角动量 守恒定律

大学物理上第2章2-动量--角动量 守恒定律
(2)当外力作用远小于内力作用时,可近似认 为系统的总动量守恒。(如:碰撞,打击等)
动量守恒的分量式:
Px mivix 常量 Py miviy 常量 Pz miviz 常量
动量守恒定律是物理学中最重要、最普遍的规律 之一,它不仅适合宏观物体,同样也适合微观领域。
力矩 ( Moment of Force /Torque )

j)
2.质点系的动量定理
设有 n 个质点构成一个系统

第 i 个质点: 质量mi

Fi
内力 fi
初速度 末速度
外力
vviio
Fi
i
由质点动量定理:
fi
t
to
Fi
fi
dt mivi
mi vio
t




to Fi fi dt mi vi mivio
车辆超速容易 引发交通事故
结论: 物体的运动状态不仅取决于速度,而且与物 体的质量有关。
动量(Momentum) :运动质点的质量与
速度的乘p 积。mv
单位:kg·m·s-1
由n个质点所构成的质点系的动量:
p
n
pi
n
mivi
i1
i1
2-2-2 动量定理
1.质点的动量定理
冲量:作用力与作用时间的乘积
⑴ 恒力的冲量:
I F (t2 t1)
⑵ 变力的冲量:

I
t2
F
(t)

dt
t1
单位:N·s
⑶ 平均力的冲量:
牛顿运动定律:
F

大学物理-动量定理

大学物理-动量定理
υ
M
V

解:水平方向上车和人系统不受外力作用, 故动量守恒; υ m 设车和人相对地面速度 M 分别为V 和 υ V MV mv 0 m 即: V v ——两者运动方向相反 M
人相对于车的速度为:
υ
Mm υ' υ V υ M
to
t
④.平均冲力的计算由:
I F t
例:质量为 60kg 的撑杆跳运动员,从 5 米的横 杆跃过自由下落,运动员与地面的作用时间分别 为 1 秒和 0.1 秒,求地面对运动员的平均冲击 力。
解: 以人为研究对象,可分为两个运动过程,
1.自由下落过程—到达地面时的速率为:
v 2gh
2.与地面接触碰撞过程,受力分析,规定 向上为坐标正向。
§1.7 质点的动量定理 一、动量定理
动量
momentum momentum theorem
质点质量与速度的乘积,可以表征质点瞬时运动的量,称为动量。
p mv
dp F dt
单位:千克· 米/秒, kg· m/s
由Newton第二定律,得:
dv d (mv ) F ma m dt dt
例5.图示一圆锥摆,质量为m的小球在水平面内以角速度匀速转动。在 小球转动一周的过程中,求:
①小球动量增量的大小。 ②小球所受重力的冲量大小。 ③小球所受绳子拉力的冲量大小。
解: ①小球运动一周动量变化为0。

I mg mgT
2 mg

2 mg
③由①可知,小球所受重力和拉力的冲量为0,因此,拉力的冲量必然等 于小球重力冲量的负值,即:
注意
内力不改变质点系的动量

大学物理 动量和动量守恒定律

大学物理 动量和动量守恒定律
t1
t2
•动量守恒定律
n 若F外 0, 则P= mi v i 恒 矢 量
i 1
惯性系
若f内 F外 , 则P= mi vi 恒矢量
i 1 n
n
若F外x 0, 则Px= mi vix 恒量
i 1
大学 物理学
§2-3 功 动能 势能 机械能守恒定律
F
解:
I 垂直 y0 mv2 mv1 m 2 g (m 2 gy0 ) m gy0 (1 2 ) 2
I 水平
v0 1 mv1 m m v0 m v0 mv2 2 2
大学 物理学
三、 质点系动量定理和动量守恒定律
Fi
质点系
· · · · f j · f · ··
m1 v2 v v' 2.17103 m s 1 m1 m2
v1 3. 1710 m s
3 1
y
s v
z'
y'
s' v'
m2
m1
z
o
o'
x x'
大学 物理学
例2.12在光滑的水平面上,有一长为L,质量 为M的小车,车上站一质量为m的人,人和 车原来保持静止。当人从车的一端走到另一 端时,问人和车相对于地面各走了多远?
质点系所受合外力为零时,质点系的总动量
不随时间改变。这就是质点系的动量守恒定律。 即 F外 0 时,P 常矢量 说明:
Fi ,而不 0 2.动量守恒定律的条件是
t2
1
1.动量定理及动量守恒定律只适用于惯性系。
是 t ( Fi )dt 0 。这是因为后者只说明始末 两态的动量相等,不能保证动量始终不变。

大学物理动量定理

大学物理动量定理

子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小

,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W

r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:

大学物理--动量定理

大学物理--动量定理
m(v1
u)
u)
mv2

mv1
二.质点系动量定理 质点系:由有相互作用的若干个质点组成
的系统。 内 力:系统内各物体间的相互作用力。
外 力:系统外物体对系统内物体的作用 力。
1.两个质点的质点系
F1
F根相1据加牛fF1顿21 定Fd律d2pt1 f1F22f2f121ddpdtd1pt2
人相对于车的速度为
v'

v

V
M

m
v
M
设人在时间 t 内走到另一端
l t v'dt M m t vdt M m x
0
M0
x M l
v M m
pB mvB 2 kg m

方向如图

It1t2 mvB mvA
s
mvA I t1t2
mvB
It1t2 mvA2 mvB2
6 N s 方向 tg mvB 2
mvA 2
54o44'

mv
It1 t2
A
mvB
dp p1

fij

0
或 F
dp总动量
p2

p1
dt
合外力
即系统所受合外力的冲量等于质点系总动量
的增量。
----质点系的动量定理
三.系统动量守恒

当合p外i 力mFivii
0 时:
=常矢量
d dt pi 0
即质点系所受合外力为零时,质点系的总动
量保持不变。 ----系统的动量守恒定律
2

2(2 t)dtj

动量守恒与动量定理

动量守恒与动量定理

动量守恒与动量定理动量是一个物体的运动状态的量度,它是由物体的质量和速度决定的。

在物理学中,动量守恒是指在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。

动量定理是指当有外力作用时,物体的动量变化率等于外力的大小乘以作用时间。

1. 动量守恒动量守恒定律是描述封闭系统中动量守恒的基本原理。

当一个封闭系统内没有外力作用时,系统的总动量保持不变。

例如,考虑一个封闭系统,由两个物体组成。

初始时,物体1的质量为m1,速度为v1;物体2的质量为m2,速度为v2。

根据动量的定义,物体1的动量为p1 = m1v1,物体2的动量为p2 = m2v2。

根据动量守恒定律,系统的总动量为p = p1 + p2 = m1v1 + m2v2。

当没有外力作用时,系统的总动量保持不变,即p = m1v1 + m2v2 = 常量。

动量守恒定律在物理学中有广泛的应用。

例如,在碰撞问题中,我们可以利用动量守恒定律来求解物体碰撞后的速度或方向的变化。

2. 动量定理动量定理是描述物体在外力作用下动量变化的基本原理。

动量定理表明,物体的动量变化率等于外力的大小乘以作用时间。

设物体质量为m,速度为v。

根据动量的定义,物体的动量为p = mv。

当物体受到外力F作用时,根据牛顿第二定律F = ma,可以得到物体的加速度为a = F/m。

将加速度代入动量定义式中,可得物体的动量变化率为dp/dt = m(dv/dt) = m(a) = F。

动量定理表明,物体的动量变化率等于外力的大小。

动量定理在解决物体的运动问题中非常有用。

通过计算外力对物体的作用时间,我们可以确定物体动量的变化情况。

例如,在推动物体的问题中,我们可以利用动量定理来计算所需的外力大小和作用时间。

3. 动量守恒与动量定理的关系动量守恒定律和动量定理是相互关联的。

当没有外力作用时,系统的总动量保持不变,即动量守恒成立。

当有外力作用时,根据动量定理,物体的动量会发生变化。

在一个封闭系统中,如果没有外力作用,根据动量守恒定律,系统的总动量保持不变。

动量定理和动量守恒定律(大学物理)

动量定理和动量守恒定律(大学物理)
恢复 系数
e 0,碰撞后两球以同一速度运动,并不分开,
称为完全非弹性碰撞。 ,分离速度等于接近速度,称为完全弹性碰撞。 e 1
v2 v1 e v10 v20
0 e 1 ,机械能有损失的碰撞叫做非弹性碰撞。
v2 v1 e v10 v20
可以证明恢复系数等于恢复过程和压缩过程的冲量之比。
F 1.9 104 N F 1.7 105 N
t 0.01s
例题、如图所示,沙子从h=0.8m高处下落到以3m/s的速率水平 向右运动的传送带上,取g=10m/s2,则传送带给予沙子的作用 力的方向为::
(A)与水平夹角530向下;(B)与水平夹角530向上; (C)与水平夹角370向下;(D)与水平夹角370向上。
Fx t mv2 x mv1x x mv cos (mv cos ) mv2 2mv cos Fy t mv2 y mv1 y y mv sin mv sin 0 2mv cos F Fx 14.1 N t 方向与 Ox 轴正向相同. F' F
一、质点的动量定理 dp F Fdt dp 两边积分有: dt
作用于物体上的合外力的冲量等于物体动量的增量 ——质点的动量定理
F
I x Fx dt mv2 x mv1x
分量表示式
t2
I y Fy dt mv2 y mv1 y
t1
t1 t2
m1
10
b
y

10
b
m2
d
x
m1

b
y
b 1 y 10 sin 10 d
10 m

大学物理-第三章三大守恒定律-PPT精品文档

大学物理-第三章三大守恒定律-PPT精品文档
1
t 1
定义:动量
动量定理
p m v I p p 2 1
p 1
P m v 2 2 t2 注意: 1 . 动量是表征物体运动状 态的物理量。 ( m kg s )
P m v 1 1
dp 2 . F m a 与 宏观低速等价,高速否 F dt
I dt p p mv mv z z z z z z F 2 1 2 1
t 1
t 1 t 2
4.
对于碰撞、打击、爆炸 等过程,物体之间的 互作用
称为冲力,其特点是峰 值大,变化大, t 短,在某
力、弹力)。一般用平 均力替代变力。
上一页 下一页
难准确确定。在该过程 中,可忽略物体所受 其它力(
缓冲外力作用。而打桩 机,锻压机则是利用 力。
上一页 下一页
例:已知小球 m 在 y 高度,水平初速 v ,与地碰撞后 大 0 0 y 1 0 高度 ,水平速率 v ,求碰撞过程中, 对小球的 0 2 2 冲量与水平冲量。 y
解:分阶段解题。 A B过程机械能守恒。
可求出碰撞前小球速度 v v i2 gy j B 0 0
v 20 i 1
mv mv . 3 ( 26 20 ) 2 x 1 x 0 F 1380 ( N ) x t 0 . 01
0
x
mv mv . 3 15 2 y 1 y 0 F 450 ( N ) y t 0 . 01
上一页 下一页
F
第 三 章 三 大 守 恒 定 律
教学基本要求
一 理解动量、冲量概念, 掌握动量定理和 动量守恒定律 .
二 掌握功的概念, 能计算变力的功, 理解 保守力作功的特点及势能的概念, 会计算万有 引力、重力和弹性力的势能 . 三 掌握动能定理 、功能原理和机械能守 恒定律, 掌握运用守恒定律分析问题的思想和方 法. 四 了解完全弹性碰撞和完全非弹性碰撞 的特点 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t0 i 1 i 1
注意
内力不改变质点系的动量
初始速度
v g 0 v b0 0
m b 2m g
则 则
推开后速度 v g 2 v b
且方向相反
推开前后系统动量不变
p p0
p0 0 p 0
动量定理常应用于碰撞问题 t Fdt mv mv0 t 0 F t t0 t t0 注意
F 21
F2
m2

t
t0
( F1 F 2 ) d t ( m 1 v 1 m 2 v 2 ) ( m 1 v 10 m 2 v 20 )
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量. n n t I p p0 F外 d t m i v i m i v i 0
Fx t mv x mv0 x mv cos (mv cos )
x

mv0
2mv cos Fy t mv y mv0 y

mv
y mv sin α mv sin 0 2mv cos F Fx 14.1 N 方向沿 x 轴反向 t
在 p 一定时
mv
mv0
F
mv
F
Fm
F
t 越小,则 F 越大 .
例如人从高处跳下、飞 机与鸟相撞、打桩等碰 撞事件中,作用时间很 短,冲力很大 .
o
t
t1
日常生活中,经常利用动量定理处理一些具体问题 例
贵重或易碎物品的包装,采用海绵、纸屑、绒布等 体育运动中,人从高处落到沙坑里或海绵垫上 等等。。。
t0
冲量 力对时间的积分(矢量)I

t
Fdt
t0
动量定理
I p p0
动量定理 在给定的时间内,外力作用在质点 上的冲量,等于质点在此时间内动量的增量 .
1)矢量式
2)分量形式
I p p0
I I xi I y j I zk
即达到最高点。若棒与小球的接触时间是 0 .0 2 s ,并忽
略小球的自重,求棒受到的平均冲力。
例 2 一质量为0.05kg、速率为10m·-1的刚球,以与 s 钢板法线呈45º 角的方向撞击在钢板上,并以相同的速率 和角度弹回来 .设碰撞时间为0.05s.求在此时间内钢板所 受到的平均冲力 F . 解 建立如图坐标系, 由动量定理得

动量守恒定律
质点系动量定理 I

t0 i
t
Fi d t

i
pi

i
pi0
若质点系所受的合外力为零 F 外

Fi 0
则系统的总动量守恒,即 p

i
i p i 保持不变 .
1)系统的动量守恒是指系统的总动量不变,系 统内任一物体的动量是可变的; 各物体的动量必相对 于同一惯性参考系 .
Ix Iy Iz

t
t0 t
Fxdt m v x m v 0 x Fydt m v y m v0 y Fzdt m v z m v 0 z

t0 t
t0
3)将过程量与状态量相联系。
例1 用棒打击水平方向飞来的小球,小球的质量为 0 .3 k g ,
速率等于 2 0 m s 1。小球受棒击后,竖直向上 运动 1 0 m
e
p

i 1
n
m i v i 恒矢量


即 p e pν p N 0

pN
p e 1 . 2 10
22
kg m s
1
pe

p 6 . 4 10
23
kg m s
1
系统动量守恒 , 即 pe pν pN 0 又因为
§2-2动量定理和动量守恒定律
一 质点组 内力和外力
二 冲量 动量 质点的动量定理
p mv
dv dt dp dt
F ma m
n个质点构成的质点组,有: n n p pi 或 p mi vi
i 1 i 1
质点动量定理 (从时间的角度讨论力的积累效应) Fdt dp d (m v) t Fdt p p0 m v m v0
2)守恒条件:合外力为零
i 当 F 外 F内 时,可略去外力的作用, 近似地认
F外


Fi
0
为系统动量守恒 . 例如在碰撞, 打击, 爆炸等问题中. 3)若某一方向合外力为零, 则此方向动量守恒 .
Fx 0 , Fy 0 , Fz 0 , px py pz
二 质点系的动量定理

t
t0
( F1 F12 ) d t m 1 v 1 m 1 v 10
质点系
F1
F12
m1
因为内力 F12 F 21 0 ,故

t
t0
( F 2 F 21 ) d t m 2 v 2 m 2 v 20
m v m v m v
i i i
ix
Cx Cy Cz
iy
iz
4) 动量守恒定律只在惯性参考系中成立, 是自然 界最普遍、最基本的定律之一 (宏观、微观均成立).
例 3 设有一静止的原子核,衰变辐射出一个电子和 一个中微子后成为一个新的原子核. 已知电子和中微子 的运动方向互相垂直,且电子动量为1.210-22 kg· s-1,中 m· 微子的动量为6.410-23 kg· s-1 . 问新的原子核的动量 m· 的值和方向如何? 解 F i 外 F i 内 p

2
pN
p e pν
pN ( pe pν )
2

1 2
代入数据计算得
p N 1 . 36 10
kg m s
1
arctan
pe pν
61 . 9
1 8 0 1 1 8 .1
0
例4 一炮弹以速率 v 0 沿仰角θ的方向发射出去 后,在轨道的最高点爆炸为质量相等的两 块,一块沿此45°仰角上飞,一块沿45°俯 角下冲,求刚爆炸的这两块碎片的速率各为 多少?
相关文档
最新文档