盾构隧道建设风险分析与控制

合集下载

盾构施工风险和质量控制措施方案

盾构施工风险和质量控制措施方案
设备采购与检验
采购正规渠道的盾构设备,确保设备的先进性和可靠性;对设备进 行严格的检验,确保其性能良好,满足施工需要。
仓储管理
加强原材料和设备的仓储管理,防止材料设备在存储过程中发生损 坏或变质。
施工过程质量控制
施工工艺控制
施工参数监控
严格按照盾构施工的工艺要求进行操作, 确保每个施工环节的质量。
风险预警
建立风险预警机制,对监 测数据进行分析,一旦发 现异常,及时发出预警, 采取应对措施。
应急预案
制定完善的应急预案,明 确应急处置流程,提高应 对风险的效率和能力。
盾构施工风险后处理
事故调查
对发生的风险事故进行深入调查 ,查明事故原因,总结经验教训

损害评估
对事故造成的损失进行全面评估 ,为后续的赔偿和修复工作提供
新型盾构机和施工技术:研发 新型的盾构机和施工技术,以 适应更复杂的地质环境和更高 的施工质量要求。
对行业发展的展望。
随着科技的不断进步,我们相信盾构施工行业将 会有更大的发展空间:
绿色环保将成为行业重要趋势:在未来的发展中 ,盾构施工行业将会更加注重绿色环保,减少对 环境的影响。
科技进步将推动行业发展:随着勘测技术、人工 智能等科技的进步,盾构施工的精度和效率将会 得到显著提升。
加强施工人员培训,提高监督施工质量,确保 施工质量符合设计要求和相关标准。质量管理人员需 要对施工过程进行全面跟踪和记录,及时发现并处理 问题,确保施工质量稳定可靠。
04 盾构施工质量控 制措施
原材料与设备质量控制
原材料选择
选择优质的原材料,确保其符合相关标准和工程要求,从根本上 保证施工质量。
依据。
改进措施
根据事故调查结果,提出针对性 的改进措施,防止类似风险事故

盾构施工过程中的地质风险分析及治理措施设计

盾构施工过程中的地质风险分析及治理措施设计

盾构施工过程中的地质风险分析及治理措施设计一、引言盾构施工是一种在地下进行隧道掘进的技术方法,广泛应用于城市地下管网、地铁和隧道等工程建设中。

然而,在盾构施工过程中,地质风险是不可避免的。

本文将对盾构施工过程中的地质风险进行分析,并提出相应的治理措施设计。

二、盾构施工中的地质风险1. 岩层变化带来的地质风险:在盾构施工中,可能会遇到地质构造变化导致岩层的突变,例如断层、脆弱带等。

这会对盾构机的推进和掘进造成不稳定性,增加地质风险。

2. 地下水位对施工的影响:地下水位的高低会直接影响盾构施工的进行。

在水位较高的地区,可能会导致隧道涌水,对施工工艺和安全造成威胁。

3. 地下空洞和洞室的存在:在地下施工中,可能会遇到地下洞室或空洞,这会导致盾构机的下沉和地质灾害的发生,对施工风险形成潜在威胁。

4. 后期地质沉降引发的地质风险:盾构施工完成后,地下的岩土会发生固结沉降,可能会影响地面建筑物的稳定性,引发地质风险。

三、盾构施工中地质风险分析的方法1. 前期地质调查:在盾构施工前,进行详细的地质调查,掌握施工区域的地质情况,包括岩性、断层、脆弱带、地下水位等信息。

这有助于预测地质风险发生的可能性,为治理措施的设计提供依据。

2. 现场勘探与监测:在盾构施工过程中,进行地下水位监测、地质构造检测等现场勘探工作,及时掌握工程进展情况,发现地质风险的迹象,并采取相应的措施进行治理。

四、盾构施工中地质风险的治理措施设计1. 岩层突变风险治理:对于存在断层和脆弱带的区域,可以采取预处理或加固措施,如钻孔注浆、锚索加固等,提高盾构施工的稳定性。

2. 地下水位控制治理:根据地下水位调查结果,设计合理的水封措施,包括增加隧道内部的防水层、设置排水系统等,避免盾构施工过程中的涌水风险。

3. 地下空洞治理:对于已知的地下洞室或空洞,采取相应的填充或加固措施。

另外,通过地质勘探和监测,及时发现潜在的地下空洞,避免施工过程中悬空洞室的发生。

盾构法施工安全技术与风险控制

盾构法施工安全技术与风险控制

盾构法施工安全技术与风险控制一、风险分析(1)在吊装作业前,钢丝绳死弯、吊钩连接松动以及限位器发生失灵状况且未及时检测维修,可能造成吊装作业中钢丝绳断裂、吊钩脱落等后果,从而造成起重伤害。

(2)始发或接收盾构工作井端头地层未加固且未及时察觉,可能造成盾构机械在接收过程中因地基承载力不足而压垮工作井,造成地基坍塌。

(3)施工前掘进参数选择错误、开挖面失稳、隧道塌陷以及地表下沉等状况,可能造成坍塌等事故。

(4)通过浅覆土地层时,因开挖深度过小可能使上方地层承载力过小而坍塌;通过小净距、小半径曲线、大坡度地段时,易因开挖半径和开挖量选择过大或过小或洞壁支护不当而造成通道渗水、冒顶片帮、坍塌等事故。

(5)施工过程中,盾构机械的刀具、刀盘、主轴承等重要部件失效失灵,可能因刀具、刀盘碎裂而飞出伤人,主轴承断裂而造成机械伤害。

(6)施工人员在端口带压时更换刀片,可能在拆卸刀片时,因刀片飞出而造成机械伤害。

(7)施工运输指挥不当,信号和制动失灵,货车汽车超速、超载及机械故障等,可能会导致货车侧翻、机械损伤甚至导致车祸发生,造成车辆伤害。

(8)未配备或极少配备消防器材或消防器材失效,可能导致在意外火情发生时无法及时处理,从而酿成火灾、人体被灼烫等事故。

(9)盾构施工前,未对地层、地下管线、地上地下的建筑物、构筑物以及障碍物进行详细而周密地调查,可能导致在施工过程中不慎破坏地上地下的建筑物、构筑物以及地下管线等设施而造成坍塌,以及破坏地基稳定性,使隧道出现冒顶片帮等问题。

若管道为输水管道,还会导致隧道渗水,造成透水事故。

(11)施工单位未建立健全完善的安全生产保障体系及规章制度,未对施工人员进行安全教育和培训,盾构作业人员未进行专业技术培训考核或者未合格且颁发相应操作证后就上岗的,这会使施工风险大大增加,特别是盾构工作中因操作人员的错误操作,可能会造成机械伤害。

(12)盾构施工各工序作业前未编制安全作业规程和作业指导书,关键工序未编制专项安全技术措施或编制后未经监理单位审批后实施,可能导致施工过程中安全监管不严,工作人员疏忽大意,造成机械伤害、物体打击等各种伤害。

盾构隧道施工中的地质灾害风险分析与防治措施研究

盾构隧道施工中的地质灾害风险分析与防治措施研究

盾构隧道施工中的地质灾害风险分析与防治措施研究盾构隧道是一种用于地下交通工程、水利工程、城市基础设施等领域的重要施工方式。

然而,在盾构隧道施工中,地质灾害风险是一个需要高度重视的问题。

本文将从盾构隧道施工中的地质灾害风险分析以及防治措施研究两方面进行讨论。

首先,我们将对盾构隧道施工中的地质灾害风险进行分析。

盾构隧道的施工过程中,地质灾害是难以避免的。

常见的地质灾害包括地层塌陷、地下水涌入、岩溶地质、地震等。

这些地质灾害会给隧道施工带来一系列的问题,如施工工艺被打破、盾构机损坏、工期延误等。

因此,对盾构隧道施工中的地质灾害进行风险分析至关重要。

为了进行地质灾害的分析,我们需要充分了解地质条件和工程环境。

通过勘探和实地调查,可以获得地质灾害的基本信息,如地层结构、地下水位、地震活动频率等。

结合盾构隧道施工的特点和工程要求,可以进一步分析地质灾害的风险。

在分析地质灾害风险的基础上,我们需要制定相应的防治措施。

首先,应该加强地质灾害监测,建立科学的监测体系。

通过安装地质监测仪器和传感器,及时获取地质灾害发生的信息,为工程施工提供准确的数据支持。

其次,应采取针对性的处理措施。

根据不同的地质灾害类型,采取相应的治理方法。

例如,对于地层塌陷,可以采取加固地层、引导水流的方法进行处理;对于地下水涌入,可以采取封堵、抽水等措施进行处理;对于岩溶地质,可以采用喷锚等方法进行固结处理。

此外,在施工过程中,应加强安全管理和监控。

建立安全制度和应急预案,加强对施工人员的培训和教育,提高他们的安全意识和防灾意识。

对盾构隧道进行定期检修和维护,确保施工设备的良好运行和使用安全。

总结起来,盾构隧道施工中的地质灾害风险分析与防治措施研究是一个综合性的工程问题。

通过深入了解地质灾害的特点和施工要求,结合科学的监测和治理方法,可以有效降低地质灾害对盾构隧道施工的影响。

然而,地质灾害是一个复杂的问题,需要多学科、多层次的合作才能取得良好的效果。

盾构始发风险分析控制方案及应急预案

盾构始发风险分析控制方案及应急预案

盾构始发风险分析控制方案及应急预案盾构是一种用于地下隧道建设的机械设备,因其在工程建设中具有高效、安全等优点,被广泛应用于城市道路、铁路、地铁等建设项目中。

而盾构始发阶段是整个盾构施工过程中最为危险的一个阶段,如果不合理地进行风险分析和控制,将会对施工进程及周边环境造成巨大影响。

本文将探讨盾构始发风险分析控制方案及应急预案。

一、盾构始发风险分析1.环境影响盾构始发阶段过程中,需要进行大量土方开挖和地下水的引流处理工作,这些工作将会对周边环境造成影响。

首先,土方开挖会造成土壤松散,进而导致地面沉降和建筑物的损坏。

其次,地下水的引流可能会导致地面下降和地基沉降等问题。

因此,在盾构始发阶段需要进行严格的环境影响评估,并采取合理措施减少对周边环境的影响。

2.设备故障盾构始发阶段需要使用各种机械设备,如掘进机、泥水分离机、泥浆循环系统等。

这些设备在使用过程中可能会出现故障或机械損壞,导致施工进程受阻或安全事故发生。

为了尽可能的降低设备故障的风险,盾构始发阶段需要对设备进行质量检验和认真的维护保养工作。

3.安全事故盾构始发阶段是整个施工过程中最容易发生安全事故的阶段。

常见的安全隐患包括土石坍塌、瓦斯爆炸、火灾等。

为了确保施工过程的安全,盾构始发阶段需要对可能产生的安全隐患进行认真的安全评估,并采取有效的防范措施。

二、盾构始发风险控制方案1.环境保护措施为了减少盾构始发施工对周边环境的影响,需要采取以下措施:(1)进行环境影响评估在盾构始发阶段前,应进行详细的环境影响评估工作,确定施工对周边环境的影响范围和程度。

(2)加强土方开挖处置对于土方开挖而产生的土方和石方应进行分类处理和妥善处置,避免对土质的破坏。

(3)加强地下水管理盾构始发阶段需要对地下水进行大量的引流处理工作,需要严格遵守环保规定,防止对水源产生污染。

2.设备质量保证盾构始发阶段设备故障率较高,因此需要保证设备的质量和性能。

具体措施包括:(1)严格质量控制在设备选型和采购阶段,需要严格按照质量标准进行选择和审核,确保设备的质量符合要求。

盾构机施工中的风险分析与应对策略

盾构机施工中的风险分析与应对策略

盾构机施工中的风险分析与应对策略一、引言盾构机作为一种先进的地下施工设备,广泛应用于隧道、管道等工程的建设中。

然而,在盾构机施工过程中,一些风险和隐患也时常出现,可能导致工期延误、工程质量下降甚至损失人员生命安全。

为了确保盾构机施工的安全和有效进行,本文将对盾构机施工中的风险进行分析,并提出相应的应对策略。

二、盾构机施工中的风险分析1. 地质风险:地下地质情况的不确定性是盾构机施工中的重要风险源,包括岩土层的稳定性、断裂带和地下水位等问题。

如果地质风险得不到有效处理和防范,可能导致盾构机卡钻、坍塌等事故。

2. 设备故障:盾构机作为复杂的机械设备,其各个部件的正常运行对于施工的顺利进行至关重要。

设备故障可能导致施工的暂停、工期延误和维修成本的增加。

3. 安全管理风险:盾构机施工需要有经验丰富、高素质的施工人员进行操作和管理。

如果安全管理不到位,可能导致人员伤亡和事故发生。

4. 施工质量风险:盾构机施工的质量问题可能会导致隧道的稳定性和使用寿命出现问题,严重影响工程的安全性和可持续性。

5. 环境保护风险:盾构机施工会产生大量的噪音、振动和废水等对环境的影响,如果不加以控制和治理,可能导致环境的破坏和污染。

三、盾构机施工中的应对策略1. 在施工前进行详细的地质勘察,了解地质情况,制定相应的施工方案和风险评估,采取合适的地质处理措施,如加固岩土层、处理断裂带和降低地下水位等。

2. 做好设备的定期检修、维护和保养工作,加强对盾构机设备状态的监测和管理,及时处理设备故障,确保设备的可靠运行。

3. 设立专职安全管理团队,建立完善的安全管理制度,制定详细的安全操作规程,加强安全宣传教育,实施严格的安全监控,确保施工过程中的人员安全。

4. 引入国际标准和先进技术,加强施工质量的监控和检验,建立质量控制体系,严格执行质量验收标准,确保盾构机施工的质量。

5. 按照环保法规要求,制定合理的环境管理措施,控制噪音、振动和废水等对环境的影响,加强环境监测和治理,保护周边生态环境。

隧道盾构施工风险点及安全控制要点

隧道盾构施工风险点及安全控制要点
的人员资格符合要求。并且要求承包商编制施工方案指导施工;4、 检查吊机回转半径内的空间是否足够,会否和附近建(构)筑物、 树木、架空电线等发生干涉;
10
二、盾构机运输、吊装和吊出
• 5、大件吊装时进行旁站,防止吊装过程碰刮盾构井结构; • 6、跟踪检查吊装作业过程,防止吊点设置不合理或设备本体刚度
• 6、把握好始发的注浆工艺,防止过大注浆压力对洞门密封装置的 破坏;
• 7、盾构机刀盘在洞门范围时严禁转动刀盘,防止损坏压板; • 8、认真做好盾构机的调试验收工作,做好始发注浆的管理和盾尾
油脂的注入。
8
二、盾构机运输、吊装和吊出
1、盾构机运输过程 • 风险分析 :1、端头加固工法的选择不合理;2、端头加固范围不
5
一、盾构始发与到达
• 2、盾构到达 风险后果 :盾构机体进入加固体中时发生水土流失,直接导致地面 坍塌、盾构机无法正常进站。严重的可以导致成型隧道、盾构机体 及地铁车站的破坏。
• 风险原因简要分析 : • 1、端头加固方法和质量有问题; • 2、到达最后阶段的盾构掘进参数控制不合理(注浆、推力等等); • 3、洞门密封质量差,或安装方法有误,导致密封渗漏; • 4、洞门破除过早。
➢ 盾构法隧道施工,掘进速度快、质量优、对周围环境影 响小、施工安全性相对较高,但盾构施工技术有着自身 的特点,安全管理工作只有适应盾构施工的特点,才能 利用盾构的优势、克服传统隧道施工的劣势,真正做好 建筑施工企业的安全工作。
2
目录 • 1、盾构始发与到达 • 2、盾构机运输、吊装和吊出 • 3、盾构机开仓换刀 • 4、盾构掘进、管片拼装与注浆 • 5、盾构在特殊地层掘进
• 针对以上五个风险点主要分析产生的后果、原因简要分 析以及应对措施和监控要点

盾构隧道施工中的地质风险及其管理措施

盾构隧道施工中的地质风险及其管理措施

盾构隧道施工中的地质风险及其管理措施随着城市化进程的加快,地下空间的开发和利用逐渐成为一个重要的趋势。

而盾构隧道作为地下工程的主要施工方法之一,具有施工速度快、效率高的特点,被广泛应用于地铁、交通隧道等项目中。

然而,在盾构隧道的施工过程中,地质风险是一个不可忽视的问题,如果不加以合理的管理和措施,将会引发严重的后果。

地质风险是指在工程施工过程中,由于地下地质条件的复杂性和不确定性所带来的一系列风险和挑战。

盾构隧道施工中常见的地质风险主要包括地层变形、水土流失、地下水涌入、地质灾害(如地震、滑坡)等。

这些地质风险对隧道的施工安全和质量都有着重要的影响,因此必须采取一系列的管理措施来降低风险。

首先,要在隧道施工前进行综合地质勘察,详细了解地下地质情况和特征,确定隧道所经过的地层和岩土性质。

通过勘察,可以判断地下是否存在脆弱地层和不稳定地质体,并在设计阶段进行相应的调整和预防措施的制定。

其次,要建立完善的地质监测系统。

在施工过程中,通过地质监测系统可以实时监测和分析地下地质的变化情况,及时发现异常情况并采取相应的措施,减少事故的发生。

盾构隧道施工中常用的地质监测技术包括地下水位监测、地表沉降监测、地质体位移监测等。

通过这些监测手段,可以对隧道施工中的地质风险进行有效的控制。

第三,要进行合理的施工方案制定。

在制定施工方案时,应充分考虑地下地质情况,采用适当的施工方法和技术,减少地质风险。

例如,在遇到复杂地质层时,可以采取分段推进或加固地质体等措施,以降低隧道施工中的风险。

此外,要加强施工人员的技术培训和安全意识教育。

施工人员应对地质风险有着全面的了解,掌握应对突发地质事件的能力,同时也要提高安全意识,严格按照施工规范和操作规程进行施工,以保证施工安全。

此外,要加强与地质专家和相关机构的合作。

地质专家和相关机构具有丰富的经验和专业知识,能够提供科学的建议和指导。

在隧道施工过程中,应与地质专家和相关机构保持紧密的沟通和合作,共同解决地质风险问题,确保施工的顺利进行。

地铁隧道盾构施工常见风险及规避对策

地铁隧道盾构施工常见风险及规避对策

地铁隧道盾构施工常见风险及规避对策摘要:本文主要对我国地铁隧道盾构施工中常见的风险以及对应的解决措施,进行深入的研究和详细的分析,以期能够为我国地铁运输行业的稳定发展以及人们的出行安全提供坚实、有力的保障。

关键词:地铁隧道;盾构施工;常见风险;规避对策1、地铁隧道盾构施工常见风险分析1.1盾构进出洞存在的风险盾构进洞施工而言,其操作原理主要是运用反力架以及始发基座等设备,在始发井中进行施工操作,保证盾构机在脱离了盾构基座以后,能够在预先设置好路线的情况下,顺着井壁上挖凿的洞口,按照计划好的方向,展开后续施工操作。

对于盾构机而言,其操作原理主要是盾构机顺着竖向井洞的外侧方向进行逐渐挖掘,在挖掘到竖向井洞内部之后,对基座上相关内容展开操作。

根据实际调查研究能够了解,盾构出洞的具体流程为:盾构出洞准备工作、拆除洞门、施工进入、封堵洞门。

1.2开挖面失稳存在的风险在地铁隧道盾构施工开挖过程中,前方遇到了流沙或者管涌,导致盾构机出现突然下沉或者磕碰机头的情况。

地层空洞问题存在于地铁隧道盾构施工的挖掘工作中,会使盾构机的轴线在挖掘过程中出现塌方、沉陷、偏移等众多问题。

覆盖地面的沙土厚度比较浅,在盾构机进行推进操作的过程中,会导致冒顶问题的产生。

另外,如果有大量的水突然在盾构机运行过程中涌出,则很容易使大面积的塌方出现在盾构机的正面位置。

此外,当运用在盾构机开挖过程中的水泥浆,具有的性能难以满足施工要求时,不仅开挖土地无法具有较高的稳定性和牢固性,还会使周围地表产生大幅度的变形,对地铁隧道盾构施工安全以及进度造成严重影响。

1.3盾构机穿越密集建筑群沉降存在的风险我国地铁隧道盾构施工存在的众多风险中,盾构机在穿越密集度较大的建筑群时存在的沉降风险,对地铁工程整体质量具有的影响极大,对人们生命安全造成的影响是众多风险中程度最大的。

主要是因为地铁隧道盾钩机在进行前进挖掘的过程中,很容易导致周围的地表发生严重变形,其变形过程大致可以分为5个阶段:挖掘之前沉降、初期挖掘沉降、盾构挖掘沉降、盾钩空隙沉降、挖掘后期沉降。

盾构隧道建设风险分析与控制(典型案例)

盾构隧道建设风险分析与控制(典型案例)

(4)盾构上、下穿建筑物风险
运营地铁隧道、越江公路隧道及立交桥、高速铁路、房屋等重要构 筑物的变形要求极其严格。在盾构的穿越施工过程中稍有不慎,易对高 灵敏度软土产生相对较大的扰动,从而引起较大的地层损失率,导致被 穿越的重要建造物产生过大不均匀的变形,严重威胁人民生命财产,对 社会产生较严重的后果。
检查洞门加固效果。 在洞门处安装止水橡胶帘布和扇形压板;
密封装置安装前应对帘布橡胶的整体性、硬度、老化程度等进行检查,对圆环 板的成圆螺栓孔位等进行检查。盾构机进入预留洞门前在外围刀盘和帘布橡胶板 外侧涂润滑油以免盾构机刀盘挂破帘布橡胶板影响密封效果。盾构推进中注意观 察、防止刀盘周边损伤橡胶带;洞圈扇形钢板要及时调整,提高密封圈的密封性 ;备好注浆堵漏及承压水井点的施工条件,以应洞口涌水时急用。 应合理选择围护结构的破除时机,确保破除过程中端头处土体的稳定; 对盾构机始发姿态进行人工复测,确保盾构机始发姿态满足施工要求。 盾构始发前,从刀盘开口向盾构土仓内填塞土坯(基本充填满土仓),可使盾 构机在切入掌子面时就可建立一定的土压,防止始发时掌子面发生大面积坍塌。
4、吊件起升过程中,操作必须平稳,速度均匀,避免吊索受冲击力。 5、根据盾构各个部件的重量、尺寸、场地条件和吊装设备性能,制定完善 的吊装方案。 6、吊装过程中应派专人看守,尤其重点巡视吊装设备承重处地面情况。
(3)盾构始发与到达、过站及平移风险
盾构始 发与到 达是盾 构施工 中风险 较大的 环节之 一,极 易发生 安全质 量事故 。
层、高粘性土层、矿山法隧道盾构空推段等等)
(6)盾构机下穿江河水体风险 (7)盾构掘进遇障碍物施工风险 (8)盾构开仓作业风险
(1)地质与盾构选型风险
盾构机的选型应依据地质条件 ;地质条件及开挖面稳定性能 ;隧道埋深、地下水位;隧道 设计断面、路线、线性、坡度 ;环境条件、沿线场地;管片 衬砌类型;工期造价等。所以 如果盾构机选型失误,对地质 条件不适应,是盾构施工最大 的风险。

盾构下穿既有隧道的风险及控制

盾构下穿既有隧道的风险及控制

盾构下穿既有隧道的风险及控制摘要:近年来,随着中国经济的高速发展,城市发展越来越大,对交通的要求也越来越高,为解决交通问题,各地地铁建设及城轨建设如火如荼。

随着建设线路的不断增加,不可避免地会出现各线路交叉的情况,同时由于各线路建设时间或管理方不同,常常造成交叉处无法同时施工,存在新建线路下穿或上跨已建线路的问题,对原建线路会造成质量及安全影响,这时对已有线路隧道的保护措施就很重要,本文以某市城市轨道交通区间盾构隧道施工下穿已建某城轨环线隧道为例,对盾构下穿既有隧道进行风险分析及采取的措施进行总结,为今后类似工程提供参考。

关键词:盾构下穿;既有隧道;风险控制一、工程概况某城轨环线与某市城市轨道交通七号线西延线在陈村站换乘,两线交叉于某市城市轨道交通七号线西延线YCK0-927.574~YCK0-909.116处。

承包商投入的盾构机为直径Φ6280的泥水土压双模式盾构机,可根据需要随时进行切换掘进模式,以满足已建隧道及地表沉降控制需要。

1、下穿段平纵断面图1)下穿段平面布置图某市城市轨道交通七号线西延线陈村~陈村北站区间右线盾构始发后,经过21.750m在里程YCK0-929.905处开始下穿,于YCK0-913.901处通过某城轨环线陈村1号隧道结构边线;陈村~陈村北站区间左线盾构始发后,经过25.462m后在里程ZCK0-926.193处开始下穿,于ZCK0-909.116处通过结构边线,平面相交夹角约为77°。

2)下穿段纵断面图陈村~陈村北站区间纵向曲线在YCK0-930.077处变坡,陈村站段为2‰上坡,韦涌方向为25‰下坡。

土建工程区间隧顶距离某城轨环线陈村1号隧道底最近竖直距离为0.578m,相对位置纵断面布置图如图1所示。

同时在某城轨环线上方存在一道过街通道与其正交(与陈村~陈村北站区间平行),盾构下穿时也应加强监测。

图1 陈村~陈村北站区间左右线与广佛环位置关系图3)某城轨环线陈村1号隧道概况陈村1号隧道位于某市陈村镇,设计里程:DK30+333~DK30+748.5,隧道全长415.5m,隧道起始点濒临鱼塘,在DK30+520~DK30+660段下穿赤花村居民区,于DK30+665~DK30+715段下穿白陈公路,其终点与陈村车站相接。

盾构安全风险分析报告

盾构安全风险分析报告

盾构安全风险分析报告盾构是一种专门用于地下隧道建设的机械设备,它的造价昂贵且难以恢复,所以盾构施工的安全风险分析对于工程建设的顺利进行至关重要。

首先,盾构施工过程中可能会出现的安全风险是坍塌事故。

由于盾构机械在地下钻进时需要持续向前推进,而地下的土层和岩石的稳定性往往难以预测,如果遇到不稳定的土层或者岩层,就有可能导致地层坍塌,影响盾构机械的正常运行,甚至造成人员伤亡和设备损坏。

其次,盾构施工可能会遭遇地下水的涌入,导致隧道内部被淹。

在盾构开挖过程中,地下水位的高低以及水质的情况都很难预测,如果地下水位过高或者地下水的流速过大,就可能会对盾构机械和施工人员的安全构成威胁,甚至导致机械损坏和事故发生。

此外,盾构施工还可能遇到地下洞穴或者地下管道的存在,如果无法准确地掌握地下隧道的位置和范围,就有可能在施工过程中意外破坏现有隧道或者管道,造成财产损失和人员伤亡。

针对这些安全风险,我们可以采取以下措施来降低风险。

首先,施工前应进行充分的地质勘探,了解地下地质条件和土层的稳定性,可以采用先进的地质勘探技术,如地下探测雷达和地下水位监测仪等,尽量减少不稳定地层的影响。

其次,应加强对盾构机械的监测和维护,定期检查机械的状态和工作效果,确保设备的正常运行。

另外,应配备专业的维修人员和紧急救援队伍,及时处理设备故障和应对紧急情况。

此外,可以采用隔水墙和密闭掌子面等防水措施,以减少地下水涌入的影响。

同时,可以利用水泥浆和注浆技术进行地层固化,提高地下土层的稳定性。

最后,必须对施工现场进行严格的管理,确保工作人员遵守安全操作规程,配备足够的安全装备,加强安全教育和培训,提高员工的安全意识和应急反应能力。

综上所述,盾构施工存在一定的安全风险,但只要采取科学合理的预防措施和管理措施,可以有效降低风险,并确保施工过程的安全顺利进行。

地铁盾构区间隧道施工风险的分析与控制

地铁盾构区间隧道施工风险的分析与控制

地铁盾构区间隧道施工风险的分析与控制一、引言地铁盾构区间隧道是地铁建设中的重要组成部分,是连接地铁线路的重要节点。

盾构区间隧道施工是地铁建设中的一项重要环节,其施工风险较大,需要针对性地进行风险分析与控制,以确保施工过程的安全和顺利进行。

本文将对地铁盾构区间隧道施工风险进行分析,并提出相应的控制措施,以期为地铁盾构区间隧道施工提供一定的参考。

1. 地质情况不确定性盾构区间隧道施工中,地质情况的不确定性是一个重要的风险因素。

盾构隧道施工是在地下进行的,地下地质情况多变且不易预测,存在地层不稳定、地下水涌入、地下岩体破碎等问题,造成隧道施工困难。

2. 施工空间受限盾构区间隧道施工一般位于城市地下,施工空间受限,加之地下管线、地下设施繁多,施工空间狭小、复杂多变,施工难度大。

3. 盾构机故障盾构机是盾构隧道施工的主要设备,一旦盾构机发生故障,将严重影响隧道施工的进度和质量。

4. 地下水问题盾构区间隧道施工中,地下水的涌入是一个常见问题,将对施工过程造成严重影响。

5. 安全管理地铁盾构区间隧道施工地下操作繁忙,存在较大的安全隐患,如车辆碰撞、工人受伤等。

6. 人员技术素质不足盾构区间隧道施工需要熟练的操作人员和技术人员,一旦人员技术素质不足,将严重影响施工质量和安全。

1. 地质勘探与预测在盾构区间隧道施工前,进行全面的地质勘探和预测,了解地下地质情况,采取相应的地质勘探技术,对施工地点周围的地质情况进行分析,加强地质灾害监测,及时发现危险信号,采取相应的应对措施。

2. 施工空间优化在盾构区间隧道施工过程中,充分利用现有的施工空间,合理规划施工区域和施工工序,采取有效的排水、通风、供电和照明措施,确保施工空间的安全和顺利进行。

3. 盾构机设备维护在盾构区间隧道施工过程中,定期对盾构机设备进行检查维护,确保设备的正常运转,及时发现并排除隐患,提高设备的可靠性和稳定性,减少因设备故障带来的风险。

4. 地下水管控对盾构区间隧道施工地下水进行管控,采取有效的排水、围堰、防水、加固等措施,减少地下水对施工的干扰,降低地下水带来的风险。

盾构风险源与措施

盾构风险源与措施

盾构施工过程安全风险源分析及应对措施一、盾构进出洞风险源产生原因:粉砂质土体内加固质量差;砂层透水快。

可能引发的后果:洞圈内出现渗水、流泥、地面塌陷。

预控措施:在洞门凿样洞,对加固土体取芯,如达不到要求,进行旋喷加固处理。

应急处理措施:1、在凿样洞时出现渗漏,并且流量大时,将样洞用石子和快硬水泥快速封住,然后在洞圈范围内进行双液压密注浆2、在洞门混凝土凿除时,如果出现流泥现象,应立即用已装砂的编织袋进行封堵密实,然后采用双液压密注浆加固。

二、联络通道冷冻法施工1、隧道内钻冻结孔漏沙、涌水风险产生原因:没有预先安装阀门;地质处于流沙层。

可能引发的后果:漏沙、涌水、地面沉降、危害管线和附近建筑物。

预控措施:1、冻结孔施工前,在布孔范围内打若干小孔(4)38mm)探孔(有孔口密封装置),探测地层稳定情况。

2、在冻结孔钻孔施工期间,现场配备应急抢险堵漏物资和设备。

3、采用强力水平钻机,实现无泥浆钻进。

4、准备液氮,当出现险悄用液氮快速冻结。

应急处理措施:1、如发现有漏砂、涌水现象,逐根提出孔内管子,并用泥浆泵逐个焊缝打压,找出泄漏焊缝及原因,及时处理,并作好记录,二次下入后仍须自检。

在实际施工中,发生冻结孔打压保压不合格的冻结孔,要采用在泄露孔冻结管内下入小一级冻结管。

2、涌砂、涌水的地层,冻结孔采用二次开孔来控制泥浆涌出。

一次开孔用金刚石取芯钻头,在安装孔口管及密封装置前,管片留不小于100mm的厚度不能穿透。

对稳定地层或涌砂、涌水惜况不严重的地层则采用一次穿透。

2、土体化冻风险产生原因:维护冻结阶段,冷冻机发生故障,处理不当。

可能引发的后果:流砂、流水和位移变形,造成土体塌陷。

预控措施:加装应急密封门,一旦情况紧急流砂涌水不可控时立即关闭应急密封门加强设备的管理与维修,配备备用机组。

当冷冻机组发生故障停机时,立即启用备用机组。

应急处理措施:当发生故障停机时,应停止掘进,并及时对暴露的冻土进行保温支护,同时加强冻结温度的量测(用精密温度计插入被量测的土体内,□分钟后读出量测的土体温度),同时密切观察冻土的变形,如发现流砂、流水现象不连续,具有间断性或帷幕位移不超值(警戒值为±5mm)可以采取堆土法或加强支护加背板,调整开挖步距来处理;如流砂,流水或位移变形超值现象特别严重,必须封闭工作面(用堆土法或关闭安全应急门),然后进行注浆处理。

盾构施工风险控制和安全管理

盾构施工风险控制和安全管理

某隧道盾构施工 项目成功案例
某水利工程盾构 施工项目成功案 例
案例背景介绍
失败案例剖析
失败原因分析
风险控制措施不足
经验教训总结
经验教训总结
盾构施工风险识别与评估 风险控制措施及实施效果 安全管理策略及改进建议 案例分析与实践经验分享
未来发展趋势预测
智能化盾构机应用
自动化施工系统研发
数字化监控与预警系统升 级
常见风险类型及原因
地质风险:盾 构机在挖掘过 程中遇到复杂 的地质条件, 如软硬不均、
溶洞等
技术风险:盾 构机操作不当 或维护不及时 导致设备故障
或损坏
人为风险:施 工人员操作失 误或安全意识 不强导致事故
发生
环境风险:施 工环境恶劣, 如地下水位高、 地下管线复杂

风险对工程的影响
延误工期:盾构施工中的风险因素可能导致工程进度延误,增加工程成本。 质量受损:风险控制不当可能导致工程质量受损,影响工程的安全性和稳定性。 人员伤亡:盾构施工中的风险因素可能对现场工人和其他人员造成生命安全威胁。 设备损坏:风险控制不当可能导致盾构机和其他设备损坏,增加维修和更换成本。
制定应急预案
确定应急预案的目的和范 围
确定应急组织机构和职责
制定应急处置措施和程序
确定应急资源和保障措施
开展应急演练
制定应急预案:针对可能发生的盾构施工事故,制定相应的应急预案,明确应急处置流程和责 任人
组织演练:定期组织盾构施工应急演练,提高员工应对突发事件的能力
演练评估:对应急演练进行评估,总结经验教训,不断完善应急预案
实施安全检查与整改
定期进行安全检查: 对盾构施工设备、设 施进行全面检查,确 保其安全可靠

盾构隧道施工中的风险管理与应对策略

盾构隧道施工中的风险管理与应对策略

盾构隧道施工中的风险管理与应对策略隧道工程是一项复杂且危险性较高的工程,特别是在盾构隧道施工过程中,存在着多种潜在的风险。

这些风险可能来自于地质条件、施工工艺、安全措施等方面,因此,有效的风险管理与应对策略对于确保隧道施工的安全与高效非常重要。

本文将针对盾构隧道施工中的风险进行分析,并提出相应的管理和应对策略。

一、地质风险在盾构隧道施工中,地质条件是最主要的风险之一。

地质风险主要包括地下水、地层变异和围岩不稳定等。

为了应对地质风险,施工前需要进行详细的地质勘察和分析。

根据勘察结果确定隧道设计方案,选择合适的盾构机,并对施工过程中的地质条件进行实时监测。

同时,应建立健全的风险应对机制,及时采取合理的防治措施,如加固土壤,加装支护结构等,以保障施工的安全进行。

二、施工工艺风险盾构隧道的施工工艺复杂,并且涉及到多个施工环节,因此存在着施工工艺风险。

在工程施工前,需要制定详细的施工方案,并确保施工人员熟练掌握相关工艺技术。

在施工过程中,应加强工艺监控,遵循施工规范,确保每一步施工都符合设计要求,并及时修正和调整工艺方案。

此外,应建立健全的应急预案,针对可能出现的工艺问题,及时采取有效的措施进行应对,以降低施工工艺风险。

三、安全管理风险在盾构隧道施工中,安全管理是风险管理的核心要素。

施工现场存在着机械设备操作、物料运输、人员安全等多个方面的风险。

提高安全意识是保证施工安全的基础。

施工企业应加强对员工的培训和教育,确保每个人都具备相应的安全操作技能。

在施工过程中,应严格执行安全规范和操作程序,建立完善的安全管理制度。

及时修正和改进不安全行为和环境,确保施工现场的安全。

四、环境保护风险盾构隧道施工过程中可能会对周边环境造成一定的影响,如噪音、震动、粉尘等。

为了应对环境保护风险,施工前需要制定详细的环境保护方案,并按照相关法律法规的要求进行施工。

在施工过程中,应采取合理的防护措施,减少对周边环境的影响。

定期进行环境监测,确保施工过程中的环保指标符合要求。

地铁盾构施工风险防范及控制

地铁盾构施工风险防范及控制

地铁盾构施工风险防范及控制1. 引言随着城市化进程的不断推进,地铁交通成为人们生活中重要的一局部。

盾构施工作为地铁建设的主要方法之一,由于其施工过程复杂且具有较高的风险性,需要在施工过程中采取有效的风险防范措施。

本文将从盾构施工风险的定义、分析和控制等方面进行阐述,以帮助相关人员更好地了解地铁盾构施工风险并有效应对。

2. 盾构施工风险定义盾构施工风险是指在盾构施工过程中可能发生的事故、损失或环境破坏等不良情况。

由于盾构施工一般在地下进行,施工过程涉及到隧道掘进、土体变形、地下水涌入等各种复杂的地质和地下工程情况,因此存在一定的风险。

3. 盾构施工风险分析为了更好地识别和评估盾构施工风险,可以采用以下几种分析方法:- 统计分析方法:通过统计历史施工数据,分析盾构施工中最常见的风险类型和频率,以便更好地预测未来可能发生的风险,并制定相应的控制措施。

- 敏感性分析方法:通过模拟不同的施工条件和参数,评估这些变化对风险的影响,以确定哪些因素对盾构施工的风险具有较大的敏感性,从而采取相应的风险防范措施。

- 专家经验法:借助相关领域专家的知识和经验,进行风险识别和评估,以便更准确地分析盾构施工的风险。

4. 盾构施工风险控制措施为了降低盾构施工风险,可以采取以下控制措施: - 合理选址:在开始盾构施工前,需要仔细选择施工地点,并进行地质勘测,以了解地下情况,从而减少施工中的不确定性。

- 完善的施工方案:制定详细的盾构施工方案,包括施工工序、施工顺序、时间安排等,确保施工过程的顺利进行,并减少潜在的风险。

- 人员培训和监督:培训工人掌握平安操作技能,并进行定期检查和监督,保证施工人员的平安意识和操作标准。

- 监测系统:在施工过程中安装监测系统,实时监测地下水位、土体变形等情况,及时发现异常情况,并采取相应的措施。

- 紧急预案:制定完善的紧急预案,以应对可能发生的事故和突发事件,保障施工人员的平安并最大程度减少损失。

盾构施工过程风险分析与控制

盾构施工过程风险分析与控制
同 条 隧道 。然 而 在 盾 构 施 工 过 程 中 , 由于 盾 构 施 工 的 特 点 决 定 了盾 机 在 离 开 始 发 台之 前 不 能 调 向 ; 时 车 站 预埋 的 钢 环 位 置 一 般 情
构施工在不 同的地方有不 同的特点 ; 同时 由于盾构 施工对 技术管 理等方 面的要求 比较 高 , 各个施 工单 位施 工量大 , 成技 术力 而 造 量薄弱 、 管理出现漏洞 ; 还有部分城 市是首次 采用盾构 施工 , 对该 处地层 、 盾构的适用性 还在探 索 阶段等 原 因, 造成 盾构施 工 出现
一般这个力 到达 80 t 0 了越来越多 的事故 。因此 , 文从盾构施工 的每个环 节对盾 构施 时需要借助反力架提供的支撑力 向前掘进 , 本 以上 , 而一般情况 反力架 一半 支撑 在施工 完成 的车站 内 , 半要 一 工 过 程 中存 在 的风 险 进 行 再 次 分 析 , 提 出部 分 控 制 措 施 。 并
盾 构 施 工 过 程 风 险 分 析 与 控 制


控 制措 施 , 而 将 盾 构 施 工过 程 中 风 险 降到 最低 。 从

ห้องสมุดไป่ตู้
杨 红 军
要 : 过 对 盾 构 隧道 施 工 的概 述 , 地 铁 盾 构 隧 道 施 工过 程 中每 个 环 节存 在 的 风 险 进 行 了分 析 , 提 出相 应 的 风 险 通 就 并
2 盾 构施 工风 险分析 及控 制 2 1 盾 构运 输 、 . 吊装
用斜撑通过底板上的预埋钢板来提供反 力 , 多时候 由于车站施 很
工 和 盾 构 区间 施 工 的 不 是 同一 个 单 位 , 者 由 于 预 埋 件 的 位 置 不 或

盾构施工风险分析及控制措施PPT31页

盾构施工风险分析及控制措施PPT31页
电气维修未关闭电源、无专人看护、 误启动造成人员伤害
不当的盾构清洁,造成电气损坏和人 员触电
使用不恰当的灭火器进行电气灭火, 造成电气损坏和人员触电
修保养人员必须具备专业技术
设备检修或保养须断电停机
专人看护
液压检修还 必须泄压
控制
26
7.盾构机掘进中风险及控制
风险 9
泥水盾构
风 险
泥水循 环系统
操作原则
选型安全风险把控 运输进场风险及控制 盾构机现场组装风险及控制 盾构机调试风险及控制 盾构机始发风险及控制 盾构机掘进中风险及控制 盾构机接收风险及控制
1
–选型安全风险把控
盾构机是依据项目的地质、水文、沿途管线、地面建筑物、项目计划施工进度 等条件设计制造的,在此过程中有以下风险。
风险 1
风险控制
风 险 控 制
①遵戴②小及 登守并行动同 高安挂动作伴 作全好小幅的 业规安心度安 必定全,,全 须佩带减顾
电动工具、气动工 具、机械等伤害
动火焊接安全管 理
暴雨洪水淹没盾 构
风 险 控 制
①先行作进 可 电空操人行 作 动载作员专 业 工实 必业 具验 须培 等再 训 应进 方
② 操
风 险 控 制


泥故
水 管 路 易 磨
水 锤 现 象
障 或 操 作 错
损误

泥 水 管 路 接 头 泄 露
风险控制

ห้องสมุดไป่ตู้
先旁通再循环 循环转旁通 旁通转为停止
旁通正 常后才 能停机
定期进行壁厚检测并记录 及时进行加厚或更换
对于泥水软管、泥水管接头等附 近电气进行隔离防护
27
7.盾构机掘进中风险及控制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、不同工法之间的界面处理。
安全风险分析
洞门密封渗漏
(1)洞门密封钢环脱落或开裂,造成密封失效。
(2)洞门帘布橡胶板开裂或未拉紧造成密封失效。
(3)盾构机始发姿态偏差过大造成密封失效。
为了防止盾构始发掘进时泥土、地下水从盾壳和洞门的间隙处流失,以及
盾尾通过洞门后背衬注浆浆液的流失,在盾构始发时需安装洞门临时密封装
(5)特殊地段盾构施工风险
不良地质
➢软硬不均地层 ➢全断面硬岩地层 ➢孤石段地层(球状风化体) ➢富水厚砂层 ➢高黏土层 ➢砂卵石层 ➢断裂破碎段 ➢穿越水底浅覆土层
(5)特殊地段盾构施工风险
软硬不均、硬岩段地层风险
地层上软下硬,软硬不均现象明显,在这类地层中掘进效率低,刀具 磨损严重、刀座变形、更换困难;刀盘磨耗导致刀盘强度和刚度降低,刀 盘变形;刀盘受力不均匀导致主轴承受损或主轴承密封被破坏、刀盘堵塞 、盾构负载加大、易产生卡刀、斜刀、掉刀、刀具偏磨、线路偏移等,处 理起来速度比较慢,严重影响施工进度,有时甚至因施工无法进展而不得 不变更设计,花费成本较高,经济效益差。
地铁盾构 施工风险
4、盾构隧道建设风险分类 盾构隧道施工风险可分为管理风险、人工风险、技术与
材料风险、设备风险、社会环境风险和自然环境风险六类。
技术与材料
刀具更换
盾构施工的风险主要有:
(1)地质与盾构选型匹配性风险 (2)盾构组装与调试及拆吊风险 (3)盾构始发与到达、过站、平移作业风险 (4)盾构上、下穿建(构)筑物风险 (5)特殊地层段盾构施工风险(孤石、上软下硬地层、富水砂
度和刚度。 2.土舱内土压传感器不少于5个,且应该按上、中、下不同区位布置在
土舱隔板内(泥水盾构泥水仓压力传感器3个,气垫仓压力传感器2个)。 3.刀盘面板和土舱内土体改良剂注入口均不少于4个,且应合理分散布
置在刀盘面板和土舱隔板上的相应位置(泥水盾构无土体改良注入口,在泥 水管道上有2路膨润土注入口)。
壳内装有整机及辅助设备,在 盾壳的掩护下进行隧道土体开 挖、土渣排运、整机推进和管 片安装等作业,从而构筑隧道 的构特种施工装备。
泥水平衡盾构
1.刀盘 2. 主轴承 3. 推进油缸 4. 人舱 5. 螺旋输送机 6.管片安装机 7.排土闸门 8.管片输送车 9.管片吊机 10.皮带机
盾构的概念
盾构是集机、电、液
选型技术要求
刀盘 1.刀盘开口率应根据开挖地层的特点来确定,以保证渣土顺利进入土舱
内,适应快速掘进和建立土压的要求。 2.刀盘上刀具布置应充分考虑地质条件并具有一定高差,层次感强,且
为满足正反方向旋转的要求,对于磨蚀性较强的砂卵石地层和砂层,刀具应 增加耐磨性。
3.刀盘前方土体改良剂注入口不少于4个,应合理分散布置,且刀盘中 心须至少设置一个注入口。
检查洞门加固效果。 在洞门处安装止水橡胶帘布和扇形压板;
密封装置安装前应对帘布橡胶的整体性、硬度、老化程度等进行检查,对圆环 板的成圆螺栓孔位等进行检查。盾构机进入预留洞门前在外围刀盘和帘布橡胶板 外侧涂润滑油以免盾构机刀盘挂破帘布橡胶板影响密封效果。盾构推进中注意观 察、防止刀盘周边损伤橡胶带;洞圈扇形钢板要及时调整,提高密封圈的密封性 ;备好注浆堵漏及承压水井点的施工条件,以应洞口涌水时急用。 应合理选择围护结构的破除时机,确保破除过程中端头处土体的稳定; 对盾构机始发姿态进行人工复测,确保盾构机始发姿态满足施工要求。 盾构始发前,从刀盘开口向盾构土仓内填塞土坯(基本充填满土仓),可使盾 构机在切入掌子面时就可建立一定的土压,防止始发时掌子面发生大面积坍塌。
层、高粘性土层、矿山法隧道盾构空推段等等)
(6)盾构机下穿江河水体风险 (7)盾构掘进遇障碍物施工风险 (8)盾构开仓作业风险
(1)地质与盾构选型风险
盾构机的选型应依据地质条件 ;地质条件及开挖面稳定性能 ;隧道埋深、地下水位;隧道 设计断面、路线、线性、坡度 ;环境条件、沿线场地;管片 衬砌类型;工期造价等。所以 如果盾构机选型失误,对地质 条件不适应,是盾构施工最大 的风险。
浆液和泡沫
沿洞门密封 处涌出
(3)盾构始发与到达、过站及平移风险
始发与到达、过站及平移风险原因
端头加固方法及质量存在问题; 盾构始发/到达施工参数控制不合理(土压、注浆压力、推力等); 洞门密封质量差,或安装方法有误,导致密封渗漏; 洞门破除过早。
安全风险分析
端头加固质量不能满足施工需要 1.端头加固工法选择不合理(旋喷桩、搅拌桩、袖阀管、冷冻法) 2.端头加固范围不够。主要体现在加固长度、深度上。 3.端头加固质量未能达到设计要求。 ①加固体本身强度不够,难以满足抗滑移或剪切的要求。 ②加固体不连续,局部出现渗漏。 ③加固节点处理不好,特别是围护结构与加固体之间的间隙处理
盾构机吊装应对措施
1、吊装前对吊装环境进行验收。吊装场地地面硬化及吊装设备承重处地面 承载力情况,当承载力不满足要求时,应采取铺垫钢板、施工承载桩等措施来解 决;
2、吊装前对盾构设备吊环进行探伤,确保吊环满足要求,台车应采取吊装 保护措施。
3、吊装前对吊装设备吊索进行安全检查,对吊装设备操作等人员的操作证 书进行核查。
4、吊件起升过程中,操作必须平稳,速度均匀,避免吊索受冲击力。 5、根据盾构各个部件的重量、尺寸、场地条件和吊装设备性能,制定完善 的吊装方案。 6、吊装过程中应派专人看守,尤其重点巡视吊装设备承重处地面情况。
(3)盾构始发与到达、过站及平移风险
盾构始 发与到 达是盾 构施工 中风险 较大的 环节之 一,极 易发生 安全质 量事故 。
4.主机长度及其铰接设计应满足隧道设计最小转弯半径的要求,且应满 足线路半径为200m曲线的要求,特殊情况下应满足线路半径为150m曲线的要 求(泥水盾构无铰接)。
5.盾尾至少具备三道密封刷构成两道油脂密封腔且能够承受土压、水压 及同步注浆产生的压力,不低于0.5MPa。
6.每道盾尾密封舱密封油脂注入口不少于6个,且应能监测到每个注入 口油脂注入压力,及总油脂注入量。
(4)盾构上、下穿建筑物风险
既有运营线事故
安全风险分析
出渣量过多; 土仓压力设置偏低; 同步注浆量不足; 二次补充注浆不及时; 地质条件差; 盾构机其它掘进参数和掘进控制不合理。
施工对策
下穿前100m,设定为试验段; 采用超土压掘进模式,保证刀盘通过时地面有微隆起,并保持土压稳 定性; 掘进参数:以“超土压、控出渣、饱注浆、勤监测、动态调整”的思 路,制定掘进参数,保证连续推进。 严格控制出渣量,防止超挖; 加大同步注浆压力及注浆量,控制既有线沉降; 现场成立信息化反馈联动机制,根据监测数据实时调整掘进参数,做 到信息化施工; 及时进行管片壁后二次补强注浆; 盾构机上储备足量的膨润土,以备意外停机,向土仓内注入。 穿越期间执行项目领导现场带班制,24小时地面巡视。
并保证密封止水橡胶条的完好。
(2)盾构运输、组装、调试与拆吊风险
盾构机进、出场的运输,盾构吊装调试现场作业,主要风险有超重超 宽超高风险,对地上地下管线及结构物细致调查保护风险,大型起重吊 装风险,超大型设备协调配合调试风险等等。
盾构始发(出洞)阶段
盾构始发三大钢结构件: 1 . 洞门钢环 2 .始发接收托架 3 . 反力架
到达施工对策
盾构到达施工过程中
控制好盾构姿态,在保证出碴量正常、同步注浆回填密实的前提下,尽量快速 完成盾构的接收。 盾构到达进入加固区后应逐步减小土压直至降为0,同时降低总推力,降低推进速 度,缓慢向洞门推进,同时严格控制出土量; 盾构贯通时,对进洞口段至少10~15环管片进行纵向拉紧作业。 盾构机贯通后,应及时拉紧帘幕橡胶板钢丝绳,使帘幕橡胶板包紧盾构机前体,确 保洞门密封,防止洞口处涌水涌沙,同时保证同步注浆砂浆不流失。 做好同步注浆,保证管片壁后注浆,控制地表沉降。
盾构隧道建设风险分析与控制
中铁隧道集团有限公司 潘明亮
中国-上海 2015--10
提纲
一、盾构隧道建设中的风险认知 二、典型风险案例分析与处置 三、风险事故管控原则 四、总结与展望
当前国内地铁盾构类型
土压平衡盾构 泥水平衡盾构 双模式盾构 顶管机 TBM
盾构的概念
盾构,是一种具有金属外壳,
• “构”——“构筑”,指管片拼装或衬砌 。
盾构法主要施工程序 1、建造盾构工作井 2、盾构掘进机安装就位 3、出洞口土体加固 4、初推段掘进施工 5、掘进机设备转换 6、盾构连续掘进施工 7、接收井洞口土体加固 8、盾构进入接井
隧道盾构掘进示意图
开挖 衬砌
出土 运输
1、盾构隧道建设风险
盾构法施工具有施工安全快速、对周边环境及交通影响小
4.配备扭矩应根据开挖地层的特点来确定,对于砂卵石地层,直径为 6280mm刀盘额定扭矩不低于5000kN•m,脱困扭矩不低于6500kN•m。
5.刀盘背面应设置搅拌棒,通过刀盘的旋转带动搅拌棒对渣土进行搅拌 改良。
6.应充分考虑地层对刀盘的磨蚀性(尤其是砂卵石地层和砂层),刀盘 正面及侧面应具有足够的耐磨性。
等优点,在城市地铁、道路修建中得到了广泛应用。然而,地铁 盾构隧道建设事故时有发生,对盾构工程施工风险的认知和风险 控制技术有待进一步提高。
2、盾构隧道建设风险发生机理
风险认知
风险管控
风险后果
3、盾构隧道建设风险因素
盾构隧道施工风险的原因可分为环境因素、人为因素 和盾构机因素。
环境因素
人为因素
施工设备
带滚刀复合式面板式刀盘
选型技术要求
推进系统 1.推进系统提供的最大推力应根据地层条件和管片强度综合考虑,应能
克服盾构推进过程中所遇到的最大阻力。 2.推进油缸行程应根据管片的环宽和K块管片插入的长度来综合确定。 3.推进系统提供的最大推进速度达80mm/min。 4.推进油缸撑靴在与管片接触时能保证推力缓和均匀地作用在管片上,
相关文档
最新文档