蜗杆受力分析

合集下载

蜗轮蜗杆受力分析

蜗轮蜗杆受力分析

蜗轮蜗杆受力分析
蜗轮蜗杆是一种常用的传动装置,广泛应用于机械工程中。

在进行蜗轮蜗杆的受力分析时,需要考虑以下几个方面:蜗轮蜗杆受力、力的传递路径、材料的应力和变形等。

首先要对蜗轮蜗杆的受力进行分析。

蜗轮蜗杆传动时,通过蜗杆的螺旋线与蜗轮的齿面配合,使蜗轮绕自身轴线旋转并传递力矩。

在这个过程中,蜗轮和蜗杆分别承受轴向力和径向力。

轴向力是由于蜗杆的螺旋线对蜗轮齿面的作用,使蜗杆的轴向力沿蜗杆轴线方向产生,而蜗轮受到等大反向轴向力。

径向力是由于蜗轮的齿面曲率半径与蜗杆螺旋线的半径差导致的,在传动过程中使得蜗轮和蜗杆受到径向力,造成受力状态的变化。

其次,要对力的传递路径进行分析。

蜗轮蜗杆传动的力矩是由蜗杆传递给蜗轮的,在传递过程中遵循力的平衡原理。

蜗杆上的力矩通过轴承传递给蜗杆轴承座,再通过蜗杆轴承座传递给机架。

而蜗轮上的力矩则通过蜗轮轴承传递给蜗轮轴承座,再通过蜗轮轴承座传递给机架。

这样,蜗轮和蜗杆上的力矩同时传递到机架上,实现了力的平衡。

最后,要考虑材料的应力和变形对蜗轮蜗杆的影响。

传动过程中,蜗轮和蜗杆上的受力会导致材料的应力产生变化,甚至会引起材料的变形。

在进行蜗轮蜗杆设计时,要考虑到材料的强度和刚度等因素,以确保蜗轮蜗杆的可靠性和稳定性。

总结起来,蜗轮蜗杆的受力分析是一个复杂的过程,需要综合考虑受力、力的传递路径、材料的应力和变形等因素。

只有在合理的受力分析基础上进行设计,才能确保蜗轮蜗杆的正常运转和长期使用。

蜗杆受力分析

蜗杆受力分析

指向蜗杆轴心
法向力
Fa2
αn
Fr1 = Fr2 = F 2tgα t
径向力 切向力
γ
Ft2
轴向力
Fr2 Fr1 Fa1
与转动方向相反 蜗杆左旋用左手,右旋用右手, 蜗杆左旋用左手,右旋用右手,握紧的 四指表示主动轮的回转方向, 四指表示主动轮的回转方向,大拇指伸 直的方向表示主动轮所受轴向力的方向
Ft1
练习:
Ft2 x Fa2 n2
Fr1 ⊙ Ft1 Fa1 Fr2
n1
Fr1 Fa1 x Fa2 n2 n1 · Ft2 Ft1 Fr2
右旋
2 3 Ⅱ 4 Ⅲ n4 Ⅰ 输出
已知:蜗杆轴Ⅰ为输入,大锥齿轮轴 Ⅱ为输出,轴Ⅲ转向如图。 试:确定各轮转向、旋向及受力。 1. n4→ n3 → n2 → Ft2 → Fa2 2. Fa3 → Fa2 → Ft1 →n1 蜗杆 → 右旋
coscoscoscoscoscos与转动方向相反指向蜗杆轴心蜗杆左旋用左手右旋用右手握紧的四指表示主动轮的回转方向大拇指伸直的方向表示主动轮所受轴向力的方向方向判定
二、蜗杆传动的受力分析
Fa1 F2 2T2 t Fn = = = cosαn cosγ cosαn cosγ d2 cosαn cosγ
1
蜗轮右旋
方向判定: 1)旋向判定 2)各分力方向 Fr:指向各自轮心 ※ Ft 蜗杆与n1反向 蜗轮与n2同向 Ft 2 = −Fa1 蜗杆:左、右手定则 蜗轮: Fa 2 = −Ft 1 v2 n1 n2 ∵ β =γ 蜗轮与蜗杆旋向相同。
Hale Waihona Puke Fa 3)蜗轮转向已知:n1、旋向→n2 左、右手定则:四指n1、拇指反向:啮合点v2→n2

机械设计基础蜗杆传动

机械设计基础蜗杆传动
分度圆直径是蜗杆和蜗轮设计的重要参数,与传动比、中心距等密切相关。
类型与特点
圆柱蜗杆传动
圆柱蜗杆传动具有结构紧 凑、传动比大、工作平稳 、噪音小等优点。常用于 减速装置中。
环面蜗杆传动
环面蜗杆传动的特点是承 载能力高、传动效率高, 但制造和安装精度要求较 高。
锥蜗杆传动
锥蜗杆传动具有较大的传 动比和较紧凑的结构,但 制造和安装精度也较高。
降低摩擦系数
加强冷却和润滑
通过采用先进的表面处理技术或添加减摩 剂等措施,降低蜗杆和蜗轮之间的摩擦系 数,从而减少摩擦损失。
采用有效的冷却和润滑措施,控制传动的工 作温度,以降低热损失和摩擦损失。
05
蜗杆传动的结构设计与制造工艺
结构设计要点
选择适当的蜗杆类型
根据传动要求选择合适的蜗杆类型,如圆柱 蜗杆、环面蜗杆等。
04
蜗杆传动的效率与润滑Biblioteka 效率分析1 2 3
蜗杆传动效率的计算公式
效率 = (输出功率 / 输入功率) × 100%。由于蜗 杆传动中存在滑动摩擦和滚动摩擦,因此其效率 通常低于齿轮传动。
影响蜗杆传动效率的因素
包括蜗杆头数、导程角、摩擦系数、中心距、传 动比等。其中,蜗杆头数和导程角对效率影响较 大。
首先根据蜗杆和蜗轮的相对位置及运动关系,确定作用在蜗杆和蜗轮上的外力 ;然后分析这些外力在蜗杆和蜗轮上产生的内力,包括弯矩、扭矩和轴向力等 。
蜗杆传动的受力特点
由于蜗杆和蜗轮的螺旋角不同,使得作用在蜗杆和蜗轮上的外力产生不同的分 力,这些分力在蜗杆和蜗轮上产生的内力也不同。因此,蜗杆传动的受力分析 较为复杂。
装配顺序与方法
按照先内后外、先难后易的原则进行 装配,注意保证蜗杆和蜗轮的正确啮 合。

蜗杆传动的受力分析蜗杆传动的受力分析与斜齿圆柱齿轮相似62页PPT

蜗杆传动的受力分析蜗杆传动的受力分析与斜齿圆柱齿轮相似62页PPT
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
蜗杆传动的受力分析蜗杆传动的受力分析 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。 与斜齿圆柱齿轮相似
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

蜗杆蜗轮传动受力分析与效率计算

蜗杆蜗轮传动受力分析与效率计算

力矩 、转速 、振动 和噪声 的要求 。 1 驱 动器传 动示 意图及 工作原理
驱动 器传 动示 意 图如 图 1 示 , 电机 末端 装有蜗 所 杆 1 ,蜗轮 2和 小齿 轮 3成为 一 体 ,在 蜗 杆 l的带动
下 转动 ,齿 轮 3又带 动大 齿轮 4 ,最 后输 出轴 5输 出 转矩与转速 。
I c8 0y sr o s iy r) {. ooa i +cs)。 …“ F Fcs.n /o = ( sy . y t ………………・1 ()
【 s i n
其 中: 为蜗杆 啮合处所 受法 向力 ; 、 、 分别 为 法 向力 在 方 向上 的分力 ; 为法 向压力 角; 7为蜗 杆 导程 角 ; 为蜗杆 蜗轮 啮合 面 之 间 的摩擦 系 数。
第 4期 ( 第 1 7期 ) 总 6
21 0 1年 8月
机 械 工 程 与 自 动 化
M E CH A N I CA L EN G I E ER I G & N N A UTO M A T1 N 0
No. 4
Aug.
文 章 编 号 :6 2 6 1 2 1 )0 - 2 10 1 7— 4 3( 0 1 4 00 - 3
4 蜗杆蜗 轮啮合效 率计 算分析
m ; = l; 02 m; m r 4mi = . m 蜗轮 分 度 圆半 径 R= 56 4 b l 5 1. 9
mm ; 0.8; = 0 /B O.8: c O.8: =1 。; 9 = 0 O.8: = 0 / = 0 z z 0 y= 。; 后 0.4 k = 1 0 9。 2 2 7 ̄ r O.8
O1 6
0.6 5


图 4 蜗杆蜗轮效率一 摩擦系数 曲线

蜗杆传动的受力分析蜗杆传动的受力分析与斜齿圆柱齿轮相似62页PPT

蜗杆传动的受力分析蜗杆传动的受力分析与斜齿圆柱齿轮相似62页PPT
蜗杆传动的受力分析蜗杆传动的受力 分析与斜齿圆柱齿轮相似
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。—பைடு நூலகம்贝多芬
45、自己的饭量自己知道。——苏联

蜗轮蜗杆受力分析PPT课件

蜗轮蜗杆受力分析PPT课件

12
3
4
5
6
2019/10/19
7
8
9
10
蜗杆的转向
右旋蜗杆 左旋蜗杆
右 以右手握住蜗杆,四指 手 指向蜗杆的转向,则拇 规 指的指向为啮合点处蜗 则 轮的线速度方向。
左 以左手握住蜗杆,四指 手 指向蜗杆的转向,则拇
规 指的指向为啮合点处蜗 则 轮的线速度方向。
11
2019/10/19
(2)蜗杆的轴向力Fa1(其大小等于 蜗轮上的圆周力Ft2,方向相反)
MT2=MT1iη , η为蜗
杆传动总效率
(3)蜗杆的径向力Fr1(其大小等 于蜗轮上的 径向力Fr2,方向相反) Nhomakorabea2
各力方向:
Ft —主动件与运动方向相反;从动件与运动方向相同 Fr —各自指向轮心 Fa —蜗杆用左右手定则判定。
§12.4 蜗杆传动的受力分析
一、受力分析
蜗杆传动时,齿面上作用的 法向力Fn和摩擦力Ff可分解为三 个相互垂直的分力:圆周力Ft、 径向力Fr和轴向力Fa。 ∑=90°且 蜗杆主动时,蜗杆蜗轮所受力的 大小和对应关系为
1
§12.4 蜗杆传动的受力分析
(1)蜗杆的圆周力Ft1(其大小等于 蜗轮上的力Fa2,方向相反)

学习课件蜗轮蜗杆受力分析.ppt

学习课件蜗轮蜗杆受力分析.ppt

精选
3
精选
4
精选
5
精选
6
精选
7
精选
8
精选
9
蜗杆的转向
右旋蜗杆 左旋蜗杆
右 以右手握住蜗杆,四指 左 手 指向蜗杆的转向,则拇 手
规 指的指向为啮合点处蜗 规
则 轮的线速度方向。

精选
以左手握住蜗杆,四指 指向蜗杆的转向,则拇 指的指向为啮合点处蜗 轮的线速度方向。
10
§12.4 蜗杆传动的受力分析
一、受力分析
蜗杆传动时,齿面上作用的 法向力Fn和摩擦力Ff可分解为三 个相互垂直的分力:圆周力Ft、 径向力Fr和轴向力Fa。 ∑=90°且 蜗杆主动时,蜗杆蜗轮所受力的 大小和对应关系为
精选
1
§12.4 蜗杆传动的受力分析
(1)蜗杆的圆周力Ft1(其大小等于 蜗轮上的力Fa2,方向相反)
(2)蜗杆的轴向力Fa1(其大小等于 蜗轮上的圆周力Ft2,方向相反)
MT2=M蜗杆的径向力Fr1(其大小等 于蜗轮上的 径向力Fr2,方向相反)
精选
2
各力方向:
Ft —主动件与运动方向相反;从动件与运动方向相同 Fr —各自指向轮心 Fa —蜗杆用左右手定则判定。

第9讲-蜗杆传动分析

第9讲-蜗杆传动分析

2.蜗杆导程角(是指蜗杆分度圆柱面)
蜗杆导程角
tg g
=
z1 px
pd1
=
z1p m pd1
= z1 m d1
在其他条件相同的情况下, g 越大则传动效率越
高,但考虑到 g 太大时,效率增量小而制造较困难, 因此在动力传动中,g 角的一般范围为:g =15~30 0
3.蜗杆的分度圆直径d1和直径系数q
应用 中小功率的动力传动或操纵机构中。一般:
P 50 kw v 15 m s i 5~80
二. 蜗杆传动的类型 蜗杆分类:根据蜗杆母体形状蜗杆可分为圆柱蜗杆,环 面蜗杆和锥蜗杆三类。
圆柱蜗杆最为常用,本章介绍圆柱蜗杆。 蜗杆还可以分为左旋右旋、单线和多线; 常用的是右旋蜗杆;蜗杆的线数就是蜗杆的齿数。
开式传动的主要失效形式为疲劳断齿和磨损,因 此应进行轮齿弯曲疲劳强度计算。
此外因蜗杆传动可分离性差,一般还应校核蜗杆 的刚度;蜗杆传动结构紧凑,效率较低,发热严重, 一般还应进行热平衡计算。
一. 接触疲劳强度和弯曲疲劳强度计算
计算原理与齿轮传动相同,影响强度的因素也大 致一样。接触强度和弯曲强度的计算公式分别为:
§3 蜗杆传动的失效形式、材料和结构
材料 蜗杆副材料要求:减摩、耐磨、抗胶合。
蜗杆是细长件,一般采用中碳钢、中碳合金钢调 质处理或低碳合金钢渗碳淬火。硬表面蜗杆能充分发 挥材料的潜能,值得提倡,但是必须要有专用的磨削 设备。
蜗轮常用铸造青铜。滑动速度大应采用含锡量大 的锡磷、锡锌铅青铜(价格相应也贵);滑动速度较 小时可采用不含锡的铝铁青铜或黄铜;低速重载情况 下,也可采用铸铁。
4.齿数和传动比
蜗杆齿数z1少,传动比大,但效率低;齿 数多,效率高,但太多会导致加工困难,故蜗

第12章蜗杆传动

第12章蜗杆传动

2.选材 2.选材 1)根据相对滑动速度 根据相对滑动速度v 1)根据相对滑动速度vs选材 1)高速重载 高速重载: 蜗杆用合金钢,淬火,磨削; (1)高速重载: 蜗杆用合金钢,淬火,磨削; 蜗轮用锡青铜; 蜗轮用锡青铜; 低速重载:蜗杆用45,调质; 45,调质 (2) 低速重载:蜗杆用45,调质; 铝青铜; 蜗轮 铝青铜; 3)低速轻载 低速轻载: 碳钢,不热处理;铸铁; (3)低速轻载: 蜗杆 碳钢,不热处理;铸铁; 铸铁; 蜗轮 铸铁; 三.结构类型 1.蜗杆---整体式 蜗杆--1.蜗杆---整体式 2.蜗轮---整体式 蜗轮--2.蜗轮---整体式 组合式
C
Fr2
Fa1 n1
12-5 圆柱蜗杆传动的强度计算
(不要求)
一.蜗杆的强度:足够; 二.蜗轮的强度计算; 1.齿面接触强度计算与斜齿轮来自似, 2.齿根弯曲强度:富裕.
12-6 圆柱蜗杆传动的效率、润滑和热平衡计算 一.蜗杆传动的效率
闭式蜗杆传动的功率损耗包括三部分 其中η1-考虑轮齿啮合的功率损耗的效率; η2-考虑轴承中摩擦损耗的效率; η3-考虑搅动箱体内润滑油的油阻的效率;
一 个 齿 高
ra/3
潘存云教授研制
三.蜗杆传动的热平衡计算 对于连续工作的闭式蜗杆传动进行该项计算.
1000 P1 (1 − η ) ∆t = ≤ [∆ t ] αt A
其中:∆t------温差,=t—t0; η-----传递效率 A------散热面积 ------------(12-11)
阿基米德蜗杆的工艺性能好, t 是目前应用最广泛的一种蜗杆。
α=200 阿基米德螺旋线
圆柱蜗杆传动 的主要参数和几何尺寸
一.圆柱蜗杆传动的主要参数 圆柱蜗杆传动的主要参数 [一].主平面 主截面 主平面(主截面 一 主平面 主截面) 1定义 通过蜗杆轴线并垂直于蜗轮轴线的平面。 定义:通过蜗杆轴线并垂直于蜗轮轴线的平面 定义 通过蜗杆轴线并垂直于蜗轮轴线的平面。 讨论主平面内的主要参数( 2讨论主平面内的主要参数(这是蜗杆传动特 有的问题

蜗杆、蜗轮受力分析

蜗杆、蜗轮受力分析

5、齿面塑性变形
现象:齿面失去正常齿形 原因:齿面较软、重载,齿面形成凹沟、 凸棱;主动轮上摩擦力分别朝向齿顶和齿 根 —— 形成凹沟;从动轮上摩擦力由齿顶 和齿根朝向中间 ——— 形成凸棱
塑性变形是由于在过大的应力作用下,轮齿材料 处于屈服状态而产生的齿面的永久变形。
减缓或防止措施:
提高齿面硬度,采用粘度高的润滑油。
②直齿锥齿轮轴向力Fa 的方向:由小端指向大端。
圆柱齿轮和直齿锥齿轮传动各分力方向的判断方法可综合如下表:
斜齿圆柱齿轮和直齿锥齿轮传动各分力方向的标示 方法如下图所示:
六、典型例题分析
齿轮传动受力分析这类题目,一般给定 传动方案、输入或输出齿轮轴转向以及某个 斜齿轮的轮齿旋向,另可附加一些其他条件。 要求确定输出或输入齿轮轴转向,其余待定 齿轮轮齿旋向,标出齿轮所受各分力的方向 以及画出某齿轮轴的空间受力简图等。
疲劳裂纹
一、齿轮传动的失效形式
1. 轮齿折断
现象:齿根处产生裂纹→扩展→断齿
原因: 1.根部应力集中 2.根部受交变弯曲应力作用 3.材料较脆 4.突然过载或冲击
提高轮齿抗弯强度的措施:
增大齿轮模数 增大齿根圆角半径 采用正变位
2、齿面磨损
油不净→磨料磨损→齿形破坏 →齿根减薄(根部严重)→断齿
1)圆周力Ft :主反从同,即主动轮的圆周力为阻力,与回
转方向相反;从动轮的圆周力为驱动力,与回转方向相同。
2)径向力Fr:分别指向各自轮心。注意:这一结论在大多
数情况下是正确的,唯一例外的是对于圆柱内齿轮其径向力Fr 应为背离其轮心。
3)轴向力Fa :直齿圆柱齿轮没有轴向力,即Fa = 0 ,它可视
二、齿轮强度设计计算准则 轮齿的主要破坏形式和强度计算依据

蜗轮蜗杆受力分析

蜗轮蜗杆受力分析

油膜厚度
油膜厚度对润滑效果有很大影响,厚度过大会增加 摩擦阻力,过小则可能无法起到润滑作用。
防护措施
为防止灰尘、水分等杂质进入蜗轮蜗杆系统 ,需采取有效的防护措施,如密封圈、防尘 盖等。
04
蜗轮蜗杆的制造工艺
材料选择
蜗轮蜗杆的材料选择对其性能和寿命至关重要。常用的材料包括铸铁、铸钢、钢材等,这些材料具有较高的强度、耐磨性和 耐腐蚀性,能够满足蜗轮蜗杆的工作需求。
02
在轻工机械中,蜗轮蜗杆传动 常用于缝纫机、卷烟机、食品 包装机等设备中,以实现精确 的传动和调速。
03
在汽车工业中,蜗轮蜗杆传动 常用于发动机的配气机构和变 速箱中,以实现高速和高效的 传动。
02
蜗轮蜗杆的受力分析
蜗轮蜗杆的法向力
定义
法向力是指蜗轮蜗杆在垂直于其轴线方向上所受到的 作用力,也称为正压力。
产生原因
由于蜗轮蜗杆的齿面接触,使得齿面之间产生正压力, 从而产生法向力。
影响
法向力的大小直接影响蜗轮蜗杆的传动效率和承载能 力。
Hale Waihona Puke 蜗轮蜗杆的切向力定义
切向力是指蜗轮蜗杆在沿着其轴线方向上所受到的作用力,也称 为切向推力或扭矩。
产生原因
由于蜗轮蜗杆的传动过程中,蜗杆的旋转会对蜗轮产生推力,从 而产生切向力。
案例二:某传动装置中的蜗轮蜗杆受力分析
总结词
该案例详细分析了传动装置中蜗轮蜗杆 的受力情况,包括法向力、切向力和轴 向力,并提出了相应的优化措施。
VS
详细描述
在传动装置中,蜗轮蜗杆的受力情况复杂 。法向力是传递动力的主要力,切向力产 生摩擦以传递扭矩,轴向力则与传动方向 垂直。为了提高蜗轮蜗杆的寿命和传动效 率,需要对其受力进行详细分析,并采取 相应的优化措施,如调整模数、齿数等参 数,或改变润滑方式等。

蜗轮蜗杆传动承载能力计算

蜗轮蜗杆传动承载能力计算

普通圆柱蜗杆传动承载能力计算(一)蜗杆传动的失效形式、设计准则及常用材料和齿轮传动一样,蜗杆传动的失效形式也有点蚀(齿面接触疲劳破坏)、齿根折断、曲面胶合及过度磨损等。

由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,所以失效经常发生在蜗轮轮齿上。

因此,一般只对蜗轮轮齿进行承载能力计算。

由于蜗杆与蜗轮齿面间有较大的相对滑动,从而增加了产生胶合和磨损失效的可能性,尤其在某些条件下(如润滑不良),蜗杆传动因齿面胶合而失效的可能性更大。

因此,蜗杆传动的承载能力往往受到抗胶合能力的限制。

在开式传动中多发生齿面磨损和轮齿折断,因此应以保证齿根弯曲疲劳强度作为开式传动的主要设计准则。

在闭式传动中,蜗杆副多因齿面胶合或点蚀而失效。

因此,通常是按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。

此外,闭式蜗杆传动,由于散热较为困难,还应作热平衡核算。

由上述蜗杆传动的失效形式可知,蜗杆、蜗轮的材料不仅要求具有足够的强度,更重要的是要具有良好的磨合和耐磨性能。

蜗杆一般是用碳钢或合金钢制成。

高速重载蜗杆常用15Cr或20Cr,并经渗碳淬火;也可用40、45号钢或40Cr并经淬火。

这样可以提高表面硬度,增加耐磨性。

通常要求蜗杆淬火后的硬度为40~55HRC,经氮化处理后的硬度为55~62HRC。

一般不太重要的低速中载的蜗杆,可采用40或45号钢,并经调质处理,其硬度为220~300HBS。

常用的蜗轮材料为铸造锡青铜(ZCuSnlOPl,ZCuSn5Pb5Zn5)、铸造铝铁青铜(ZCuAl10Fe3)及灰铸铁(HTl5O、HT2OO)等。

锡青铜耐磨性最好,但价格较高,用于滑动速度Vs≥3m/s的重要传动;铝铁青铜的耐磨性较锡青铜差一些,但价格便宜,一般用于滑动速度Vs≤4m/s的传动;如果滑动速度不高(Vs<2m/s),对效率要求也不高时,可采用灰铸铁。

为了防止变形,常对蜗轮进行时效处理。

(二)蜗杆传动的受力分析蜗杆传动的受力分析和斜齿圆柱齿轮传动相似。

12蜗杆传动解析

12蜗杆传动解析
横截面齿廓为阿基米 德螺旋线。
渐开线蜗杆
可用两把刀具加工,刀具 顶面与基圆柱相切,一把 刀具的刀刃高于蜗杆轴线, 另一把刀具的刀刃低于蜗 杆轴线;
横截面为渐开线齿廓,轴 截面为凸曲线齿廓;
齿廓能磨削加工,加工精 度高,多用于较高速,较精 密或较大功率传动.
法向直廓蜗杆
车刀刀刃平面位于螺 旋线的法面上;
P=πm
z1=1、2时,L≥(11+0.06 z2)m; z2=4时,L≥(12.5+0.09 z2)m; 磨削蜗杆加长量: 当m<10(mm)时,加长25(mm)
§12—3 圆柱蜗杆传动失效形式
一、失效形式,设计准则及常用材料
失效形式
过度磨损
齿面胶合
设计准则
闭式传动: 按齿面接触疲劳强度设计;校核齿根 弯曲疲劳强度 计算热平衡
蜗杆头数与蜗轮齿数的荐用值
传动比 i 蜗杆头数z1 蜗轮齿数z2
7~13 4
28~52
14~27 2
28~54
28~40 >40 2、1 1 28~80 >40
4 、蜗杆分度圆直径系数 q 和导程角
蜗杆的分度圆直径: 蜗杆上理论齿厚等于齿槽宽的圆柱称为蜗杆的 分度圆柱。
tan z1 px z1m z1 d1 d1 q
ma1 mt2 m ;
a1 t2 ;
2
3、传动比 i、蜗杆头数 z1、和蜗轮齿数 z2
蜗杆头数:是指组成蜗杆螺纹线的数量 z1, (通常取为:1,2,4, 6)
蜗轮齿数:z2 ,一般取 z2=26~80
传动比: i n1 Z 2
n2 Z1
注意:
若率要低得;到 z1 越大大传传动动比效,率可越取高z1,=但1,加但工此越时困传难动。效 z度2 过增少加易,根导切致,蜗过杆多刚会度使降结低构,尺影寸响过啮大合,精蜗度杆。长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、蜗杆传动的受力分析
Fa1 F2 2T2 t Fn = = = cosαn cosγ cosαn cosγ d2 cosαn cosγ
指向蜗杆轴心
法向力
Fa2
αn
Frபைடு நூலகம் = Fr2 = F 2tgα t
径向力 切向力
γ
Ft2
轴向力
Fr2 Fr1 Fa1
与转动方向相反 蜗杆左旋用左手,右旋用右手, 蜗杆左旋用左手,右旋用右手,握紧的 四指表示主动轮的回转方向, 四指表示主动轮的回转方向,大拇指伸 直的方向表示主动轮所受轴向力的方向
1
蜗轮右旋
练习:
Ft2 x Fa2 n2
Fr1 ⊙ Ft1 Fa1 Fr2
n1
Fr1 Fa1 x Fa2 n2 n1 · Ft2 Ft1 Fr2
右旋
2 3 Ⅱ 4 Ⅲ n4 Ⅰ 输出
已知:蜗杆轴Ⅰ为输入,大锥齿轮轴 Ⅱ为输出,轴Ⅲ转向如图。 试:确定各轮转向、旋向及受力。 1. n4→ n3 → n2 → Ft2 → Fa2 2. Fa3 → Fa2 → Ft1 →n1 蜗杆 → 右旋
Ft1
方向判定: 1)旋向判定 2)各分力方向 Fr:指向各自轮心 ※ Ft 蜗杆与n1反向 蜗轮与n2同向 Ft 2 = −Fa1 蜗杆:左、右手定则 蜗轮: Fa 2 = −Ft 1 v2 n1 n2 ∵ β =γ 蜗轮与蜗杆旋向相同。
Fa 3)蜗轮转向
已知:n1、旋向→n2 左、右手定则:四指n1、拇指反向:啮合点v2→n2
相关文档
最新文档