碳酸盐岩储层

合集下载

碳酸盐岩储层

碳酸盐岩储层

四、裂缝渗透率、基块渗透率的计算
单走向垂直缝或水平缝: 多走向垂直裂缝: 网状裂缝: 基块渗透率:
K f 0.85 2f
K f 0.424 2f
K f 0.566 2f
Kb
0.136
4.4 b
S w2b
五、饱和度的计算
用阿尔奇方程求基块饱和度,方程中系数:
mb、nb:岩电实验
裂缝饱和度认为是常数。
– 识别储层类型和发育程度 – 判别储层的有效性 – 使有效厚度的确定更为准确 – 定量计算裂缝和孔洞参数
FMI极板:
电扣之间 0.2in(5.2mm)
两排之间间距 0.3in
ARI电极阵列和电流路径示意图
电阻率成象原理
地层中不同的岩石(泥岩、砂岩、石 灰岩)、流体,其电阻率是不一样的,通 过测量井壁各点的电阻率值,然后把电阻 率值的相对高低用灰度(黑白图)或色度 (彩色图)来表示,那么,井壁就可表示 成一张黑白图象或彩色图象。
161井理论曲线与实测曲线对比图
溶孔 基质孔
45井地层组分分析程序处理成果图
45井一井段ARI和FMI图像
24井地层组分分析程序处理成果图
收 获 率 7 3
.
16井地层组分分析程序处理成果图
4248.5 ~ 4268m, 未酸化 日产原 油15.45 方
第四节 储层参数的计算
一、孔隙度的计算
0.5
0.4
d=0.3
d=0.5
0.3
0.4
d=0.3 d=0.5
0.3
导电效率 导电效率
0.2
0.2
0.1
0.1
0.0 0.000
0.005
裂缝宽度
0.010

碳酸盐岩储集层

碳酸盐岩储集层

碳酸盐岩储集层碳酸盐岩油气储层在世界油气分布中占有重要地位,其油气储量约占全世界油气总储量的50%,油气产量达全世界油气总产量的60%以上。

碳酸盐岩储集层构成的油气田常常储量大、单井产量高,容易形成大型油气田,世界上共有九口日产量曾达万吨以上的高产井,其中八口属碳酸盐岩储集层。

世界许多重要产油气区的储层是以碳酸盐岩为主的;在我国,碳酸盐岩储层分布也极为广泛。

[1]碳酸盐岩的储集空间,通常分为原生孔隙、溶洞和裂缝三类。

与砂岩储集层相比,碳酸盐储集层储集空间类型多、次生变化大,具有更大的复杂性和多样性。

砂岩与碳酸盐岩储集空间比较(据Choquette和Pray,1970 修改)(一)原生孔隙1、粒间孔隙多存在于粒屑灰岩,特征与砂岩的相似,不同之处是,易受成岩后生作用的改变,常具有较高的孔隙度。

另外,有的由较大的生物壳体、碎片或其它颗粒遮蔽之下形成的孔隙,称遮蔽孔隙,也属粒间孔隙。

2、粒内孔隙是颗粒内部的孔隙,沉积前颗粒在生长过程中形成的,有两种:生物体腔孔隙:生物死亡之后生物体内的软体腐烂分解,体腔内未被灰泥充填或部分充填而保留下来的空间。

多存在于生物灰岩,孔隙度很高,但必须有粒间或其它孔隙使它相通才有效。

鲕内孔隙:原始鲕的核心为气泡而形成。

3、生物骨架孔隙4、生物钻空孔隙5、鸟眼孔隙(二)次生孔隙1、晶间孔隙2、角砾孔隙3、溶蚀孔隙根据成因和大小,包括以下几种:粒内溶孔或溶模孔:由于选择性溶解作用而部分被溶解掉所形成的孔隙,称粒内溶孔。

整个颗粒被溶掉而保留原颗粒形态的孔隙称溶模孔。

粒间溶孔:胶结物或杂基被溶解而形成。

晶间溶孔:碳酸盐晶体间的物质选择性溶解而形成。

岩溶溶孔洞:上述溶蚀进一步扩大或与不整合面淋滤溶解有关的岩溶带所形成的较大或大规模溶洞。

孔径<5mm或1cm为溶孔;>5mm或1cm为溶洞。

4、裂缝依成因可分为:①构造裂缝:边缘平直,延伸远,成组出现,具有明显的方向性、穿层。

②非构造裂缝:包括:成岩裂缝:压实、失水收缩、重结晶而形成。

石油地质学10-第三章-3-碳酸岩储层

石油地质学10-第三章-3-碳酸岩储层
在水动力能量较低的环境下形成的微晶或隐晶石灰岩, 不仅沉积时期,就是在成岩早期阶段也很难形成较发育的 孔隙。
(二)溶蚀作用
碳酸盐岩溶蚀孔隙的发育程度主要取决于3方面: ①岩石本身的抗溶能力、②地下水的溶解能力、③热动 力条件等因素。
①岩石本身的抗溶能力:不同岩性特征,溶解能力 不同。一般石灰岩比白云岩易溶,而泥灰岩比石灰岩和 白云岩难溶。粗晶结构比细晶结构的碳酸盐易溶,厚层 灰岩比薄层灰岩易溶(因质纯、晶粗)。
⑵溶蚀孔隙:系指碳酸盐矿物或伴生的其它易溶矿物被 水溶解后形成的孔隙。主要包括:粒间溶孔、粒内溶孔、晶 间溶孔、溶模孔。
一般,孔径小于5mm者称溶孔,大于5mm者称溶洞。
(二) 碳酸盐岩储集层的裂缝:
碳酸盐岩储集层的裂缝既是储集空间,又是渗滤通道, 对碳酸盐岩中油气的储集有重要的作用。按成因可将其分 为:构造裂缝,非构造裂缝。
二、影响碳酸盐岩储集层物性的主要因素:
影响碳酸盐岩储集层物性的主要因素有三方面:沉积 环境、溶蚀作用和成岩后生作用。
(一) 沉积环境
沉积环境主要影响碳酸盐岩原生孔隙的发育。
水动力能量比较强的沉积环境是发育粒间孔隙的有利 地带;有利于造礁生物繁殖的沉积环境是生物骨架孔隙较 发育的地带,因此,有利于原生孔隙发育的沉积环境是: 前缘台地斜坡相、生物礁相、浅滩相等。
第三节 碳酸盐岩储集层
碳酸盐岩为含油气层的油气储量占世界总储量的一半, 产量已达到总产量的60%以上。
其油气田储量大、产量高。世界有9口日产万吨以上的 高产井,其中8口为碳酸盐岩储集层的储存空间。
一、碳酸盐岩储集层的储集空间:
碳酸盐岩储集层的主要岩石类型为石灰岩、白云岩、 礁灰岩等。
其储集空间通常包括孔隙、溶洞和裂隙三类,其中前 两者是储集空间,而后者是主要的渗滤通道。

碳酸盐岩储层孔隙特征与评价

碳酸盐岩储层孔隙特征与评价

碳酸盐岩储层孔隙特征与评价碳酸盐岩储层是一种常见的油气储集岩层,其孔隙特征对于油气的储存和流动起着重要的控制作用。

本文将从孔隙类型、孔隙结构、孔隙连通性以及孔隙评价等方面对碳酸盐岩储层的孔隙特征进行论述。

一、孔隙类型碳酸盐岩储层的孔隙类型主要有溶蚀孔、溶洞孔和颗粒溶蚀孔等。

其中,溶蚀孔是由于地下水的溶蚀作用而形成的,其形状不规则,大小不一;溶洞孔是在溶蚀孔的基础上进一步扩大而成,通常呈洞穴状;颗粒溶蚀孔则是岩屑颗粒被溶解而形成的。

二、孔隙结构碳酸盐岩储层的孔隙结构包括孔隙度、孔隙分布和孔隙连通性等。

孔隙度是指岩石中的孔隙空间占总体积的百分比,是评价储层孔隙性质好坏的重要指标。

孔隙分布则是指孔隙在岩石中的分布情况,通常包括均质分布和非均质分布。

孔隙连通性是指孔隙之间是否能够形成连通通道,进而影响流体在储层中的运移。

三、孔隙评价对于碳酸盐岩储层的孔隙评价,常用的方法包括孔隙度测定、孔隙结构表征和物性参数计算等。

孔隙度可通过测定样品的饱和水、气渗透性或密度等方法来进行确定。

孔隙结构的表征通常通过介电常数测量、浸泡法、压汞法和扫描电镜等来进行分析。

物性参数的计算则基于孔隙度、孔喉直径和孔隙联通程度等指标。

碳酸盐岩储层的孔隙评价还需要考虑天然岩芯和井测数据,并结合地质背景、沉积环境和压力温度等因素进行综合分析。

通过孔隙评价,可以帮助石油工程师和地质学家更好地理解储层的储集规律和流体运移规律,从而指导油气勘探开发工作。

综上所述,碳酸盐岩储层的孔隙特征对于油气勘探开发具有重要意义。

通过对孔隙类型、孔隙结构和孔隙评价等方面的论述,可以深入了解碳酸盐岩储层的储层性质,进而为有效勘探和开发提供科学依据。

四.碳酸盐岩储层

四.碳酸盐岩储层

亮晶鲕粒灰岩,左侧照片的局部放大。 照 片对角线长度1.8mm
12
原生粒间孔
粒内孔
台缘鲕滩微相的鲕 粒白云岩和虫屑白 云岩-好储层
粒间和粒内溶孔
粒间和粒内溶孔
13
台缘生屑滩微相的粉晶棘屑白云岩-好储层。普光6井,10(59/137)
棘皮
加大边
土库曼斯坦上侏罗统牛津阶台地边缘生物礁,造礁生物主要 为厚壳蛤、珊瑚和层孔虫等,以厚壳蛤最为重要。
第四讲、碳酸盐岩储层
碳酸盐岩储层与油气关系十分密切,其孔、洞、 缝是油气富集的重要场所。所以,研究其储层发 育特征具有十分重要的理论和实际意义。 碳酸盐岩储层的形成虽然受多种因素控制,但 最重要的因素是沉积微相和成岩作用控制,其中 沉积微相的控制在不同的相模式中有不同的表现。
1
一、不同碳酸盐沉积 模式中的储层分布
鲕粒灰岩,台内鲕粒滩微相。Sam53-1井, ⅩⅤac层,2372.69m,照片对角线长度 4mm(-)
9
台内浅滩微相的颗 粒白云岩-好储层
10
粒白云岩-好储层
台内浅滩微相的颗
11
亮晶鲕粒灰岩—高能鲕滩(原生粒间孔)
亮晶鲕粒灰岩,原生粒间孔保存完好, 2372.69m ,ⅩⅤac层,照片对角线长度 4mm ,Sma53-1井
36
亮晶内碎屑灰岩—高能浅滩(原生粒间孔和生物体腔孔)
亮晶生物屑灰岩,有孔虫粒内溶孔。 ⅩⅤp层, 2409.78m, 4-43/80,铸体薄 片,对角线长度4.6mm(-) ,Sam53-1井
微-亮晶生物屑灰岩,生物屑主要为厚壳蛤, 其次为有孔虫、海百合、腕足和苔藓虫, 少许红藻。ⅩⅤm层,2447.92m,铸体薄片 (-),对角线长度4.6mm,Sam45-1井

碳酸盐岩储层特征

碳酸盐岩储层特征

碳酸盐岩储层与碎屑岩储层对比,具有以下主要特点:①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。

岩石化学成分、矿物成分比较简单,但结构构造复杂。

岩石性质活泼、脆性大。

②以海相沉积为主,沉积微相控制储层发育。

③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。

④断裂、溶蚀和白云化作用是形成次生储集空间的主要作用。

⑤次生储集空间大小悬殊、复杂多变。

⑥储层非均质程度高。

1.沉积相标志(1)岩性标志岩性标志包括颜色、自生矿物、沉积结构、构造、岩石类型等五方面。

①岩石颜色:岩石的颜色反映沉积古环境、古气候。

②自生矿物:a.海绿石:形成于水深10~50m,温度25~27℃。

鲕绿泥石:形成于水深25~125m,温度10~15℃。

二者均为海相矿物。

b.自生磷灰石(或隐晶质胶磷矿):海相矿物。

c.锰结核:分布于深海、开放的大洋底。

d.天青石、重晶石、萤石:咸化泻湖沉积。

e.黄铁矿:还原环境。

f.石膏、硬石膏:潮坪特别是潮上、潮间环境。

③沉积结构。

碳酸盐岩的结构分为粒屑(颗粒),礁岩和晶粒三种。

不同的沉积结构反映不同的沉积环境。

粒屑结构;粒屑结构由粒屑、灰泥、胶结物和孔隙四部分组成。

粒屑结构代表台地边缘浅滩相环境。

根据颗粒类型、分选、磨圆、排列方向性、填充物胶结进一步确定微相。

a.内碎屑、生屑反映强水动力条件。

b.鲕粒、核形石、球团粒、凝块石反映化学加积、凝聚环境,水动力中高能。

鲕粒包壳代表中等能量,持续搅动,碳酸钙过饱和的环境,核形石(藻包壳)、泥晶套反映浅水环境。

c.分选好,反映持续稳定的水动力条件,反之则反映强水动力条件。

d.磨圆度高反映强水动力环境,反之反映弱水动力环境。

e.颗粒、生屑化石平行排列,尖端方向交错,长轴平行海岸,反映振荡水流。

尖端指向一个方向,长轴仍平行海岸线,则为单向水流。

f.用胶结物和灰泥的相对含量反映水动力强弱。

胶结物/(胶结物+灰泥)在0~1之间,越接近0,水动力越弱,反之越强。

碳酸盐岩地下水储层特征与评价

碳酸盐岩地下水储层特征与评价

碳酸盐岩地下水储层特征与评价地下水资源是人类生存和发展的重要组成部分,而碳酸盐岩地下水层作为一种重要的地下水储层,在水资源利用和管理中扮演着重要角色。

本文将着重探讨碳酸盐岩地下水储层的特征以及评价方法。

一、碳酸盐岩地下水储层特征碳酸盐岩是一种由碳酸钙和/或碳酸镁主要组成的岩石,形成于古生代海洋环境中。

碳酸盐岩地下水储层是指沉积在碳酸盐岩中的地下水层,其特征主要包括以下几个方面:1. 孔隙结构特征:碳酸盐岩地下水储层的孔隙结构多样,既包括溶蚀孔、裂缝和微孔,也包括溶洞、缝洞和碎屑孔。

这些孔隙在地下水运移和储存中起到重要作用。

2. 渗透性特征:碳酸盐岩地下水储层的渗透性通常较低,受控于岩石的孔隙度、孔径和孔隙连通性等因素。

大部分碳酸盐岩地下水层的渗透性相对较弱,但也存在一些具有较高渗透性的地下水层。

3. 含水特征:碳酸盐岩地下水储层的含水性质各异,通常由岩石本身的孔隙水和裂隙水组成。

其中,孔隙水主要分布于微观孔隙中,而裂隙水则主要分布于岩石的裂隙中。

二、碳酸盐岩地下水储层评价方法对于碳酸盐岩地下水储层的评价,需要综合考虑其地质特征和水文地质条件,常用的评价方法主要包括:1. 地质调查方法:通过野外地质调查和钻探数据,了解碳酸盐岩地下水储层的地质分布、岩性特征、孔隙结构和渗透性等信息,为进一步评价提供基础。

2. 地球物理方法:包括地电、地磁、地震等方法,通过测量地下介质的电阻率、磁性和地震反射等特征,了解碳酸盐岩地下水储层的储集条件和分布情况。

3. 水文地质方法:通过地下水位、井水水质、水化学特征以及水质模拟等方法,评估碳酸盐岩地下水储层的储量、补给量、含水层厚度和水化学特征等参数。

4. 数值模拟方法:运用地下水数值模拟软件,基于已有的地质和水文地质数据,模拟碳酸盐岩地下水储层的地下水流动和储量预测,为资源开发和管理提供决策支持。

综上所述,碳酸盐岩地下水储层具有独特的地质特征,其评价需要综合考虑地质、地球物理和水文地质等多方面因素。

碳酸盐岩储层特征与评价

碳酸盐岩储层特征与评价

碳酸盐岩储层特征与评价碳酸盐岩储层是石油和天然气资源的重要储备基质之一。

对碳酸盐岩储层的特征和评价有着深入的研究,可以帮助油气开发人员更好地了解储层的性质和潜力,并提供指导性的依据。

本文将介绍碳酸盐岩储层的特征和评价方法。

一、碳酸盐岩储层的特征碳酸盐岩储层主要由碳酸盐矿物组成,其主要特征包括孔隙度、渗透率、储层构造和成岩作用。

以下将对这些特征逐一进行介绍。

1. 孔隙度碳酸盐岩储层的孔隙度是指储层中存在的孔隙和裂缝的总体积与岩石体积的比值。

碳酸盐岩的孔隙类型多样,包括生物孔隙、溶蚀孔隙、溶解缝、晶间隙和溶洞等。

碳酸盐岩储层的孔隙度通常较低,但是由于溶蚀作用的影响,部分碳酸盐岩储层的孔隙度可达到较高水平。

2. 渗透率碳酸盐岩储层的渗透率是指岩石中流体流动的能力,是储层导流能力的重要指标。

影响渗透率的因素包括孔隙度、孔隙连通性、孔喉半径和孔隙结构等。

通常情况下,碳酸盐岩储层的渗透率相对较低,但是由于孔隙结构的复杂性,有些储层的渗透率仍然较高。

3. 储层构造碳酸盐岩储层的构造特征包括裂缝、节理和构造缝洞等。

这些构造特征对储层的渗透性和储集性能有着重要影响。

通过对储层构造的研究和评价,可以了解储层的导流性和导存能力。

4. 成岩作用碳酸盐岩储层的成岩作用是地质历史过程中产生的物理、化学改变。

成岩作用包括压实作用、溶解作用、胶结作用和脱水作用等。

成岩作用对储层的物性和储集性能有着重要影响。

通过分析成岩作用的类型和程度,可以评价储层的成熟度和储集能力。

二、碳酸盐岩储层的评价方法对碳酸盐岩储层进行评价主要从储集条件、储集模式和储集效果等方面进行分析。

以下将介绍常用的评价方法。

1. 储集条件评价储集条件评价主要研究储层物性参数,包括孔隙度、渗透率、孔隙结构和岩性特征等。

可以通过岩心分析、测井解释和物性实验等方法获取储集条件的参数,从而评价储层的物性和储集潜力。

2. 储集模式评价碳酸盐岩储层的储集模式包括溶蚀缝洞型、晶间孔隙型和胶结型等。

碳酸盐岩储层特征

碳酸盐岩储层特征

碳酸盐岩储层特征
碳酸盐岩储层的岩性主要由碳酸盐类矿物组成,如石灰石、白垩、大理岩等。

这些岩石通常具有高含量的钙、镁、铁等元素,因此具有较高的韧性和耐磨性。

此外,碳酸盐岩储层还包括一些非碳酸盐岩,如黏土、砂岩等,这些非碳酸盐岩的存在会对储层特征产生影响。

碳酸盐岩储层的孔隙结构是其中一个最重要的特征。

碳酸盐岩通常具有多种多样的孔隙类型,包括晶间孔隙、颗粒孔隙、裂隙等。

晶间孔隙是由于岩石内部的碳酸盐类矿物互相之间的溶解形成的,其大小较小、分布较均匀。

颗粒孔隙是由岩石的颗粒之间的空隙形成的,通常大小较大、数量较少。

裂隙则是由于岩石变形和压力变化等因素造成的,其大小和形态各异,对储层的渗透性和储集性能有着重要的影响。

碳酸盐岩储层的渗透性是另一个重要的特征。

渗透性是指储层岩石中的孔隙和裂隙对流体流动的能力。

碳酸盐岩储层通常具有较低的渗透性,其主要原因是孔隙结构复杂、尺度小等。

然而,由于碳酸盐岩中晶间孔隙和裂隙的存在,它们仍然可以形成连通的渗流通道,使得储层具有一定的渗透性。

综上所述,碳酸盐岩储层具有特殊的岩性、孔隙结构、渗透性、韧性和脆性等特征。

深入了解和研究碳酸盐岩储层的特征,对于有效开发和利用该储层具有重要意义。

碳酸盐岩储层特征与勘探技术

碳酸盐岩储层特征与勘探技术

碳酸盐岩储层特征与勘探技术碳酸盐岩是一种重要的储层类型,其具有特殊的地质特征和储层形成机制。

本文将介绍碳酸盐岩储层的四大特征,并探讨相关的勘探技术。

一、碳酸盐岩储层特征1. 孔隙度高:碳酸盐岩中普遍存在着丰富的溶蚀孔洞和裂缝系统,使得其孔隙度相对较高。

这些孔洞和裂缝是物理储集空间的重要来源,对储层的储集和流动起着重要作用。

2. 渗透性差:虽然碳酸盐岩具有较高的孔隙度,但其渗透性却相对较差。

这是由于碳酸盐岩的溶蚀孔洞具有不连通性、细小性和复杂性等特点,使得流体在储层中的渗流受到一定的限制。

3. 孔隙类型多样:碳酸盐岩中的孔隙类型多样,主要包括海绵孔、缝状孔、溶蚀孔、溶洞和裂缝等。

这些孔隙种类的存在使得碳酸盐岩具备了多元的物理性质和流体储集方式,对勘探和开发提出了更高的要求。

4. 储层非均质性强:碳酸盐岩是一种典型的非均质储层,储集空间的分布和连通性较复杂。

因此,在勘探过程中需要进行准确的储层描述和预测,以避免勘探风险和开发难度。

二、碳酸盐岩储层勘探技术1. 地震勘探技术:地震勘探是碳酸盐岩储层勘探的主要技术手段。

通过地震波在不同层位的传播速度和反射强度,可以识别碳酸盐岩储层的存在与分布,并获得地质构造、岩性特征等信息。

2. 地质勘探技术:地质勘探是对碳酸盐岩储层进行详细的地质描述和解释的技术手段。

包括野外地质观察、岩心描述、层序地层分析等方法,可以帮助更全面地了解储层特征和分布规律。

3. 流体检测技术:流体检测技术是评价碳酸盐岩储层储集能力和勘探潜力的重要手段。

包括测井、石油地质化学和流体包裹体分析等方法,可以确定储层的孔隙度、渗透性、流体类型、含气饱和度等参数。

4. 工程地质技术:碳酸盐岩储层开发过程中,由于其非均质性强,需要进行开发过程的综合研究和监测。

包括岩石力学测试、封隔技术和水驱技术等方法,可有效解决碳酸盐岩储层的工程问题。

综上所述,碳酸盐岩储层具有孔隙度高、渗透性差、孔隙类型多样和储层非均质性强的特征。

碳酸盐岩储层的评价和开发

碳酸盐岩储层的评价和开发

碳酸盐岩储层的评价和开发碳酸盐岩储层是地球上一种非常重要的储层类型,具有较高的油气富集潜力和生产价值,而其评价与开发也成为了油气勘探开发领域的重要研究方向。

下面将对碳酸盐岩储层的评价与开发展开探讨。

一、碳酸盐岩储层的分类和形成机制碳酸盐岩通常分为生物碳酸盐岩、化学碳酸盐岩和变质碳酸盐岩三种类型。

其中生物碳酸盐岩是指由海洋生物的遗骸和废物沉积成岩的岩石,如白垩系中的广泛分布的中生代巨型珊瑚。

化学碳酸盐岩则是由溶液中溶解的成分沉淀成岩,如洞穴石、方解石等。

最后一种变质碳酸盐岩则是由古碳酸盐岩发生变质而形成的,比如云南的大理岩。

碳酸盐岩的形成机制是极其复杂的,在形成过程中有多种因素相互作用。

一般来说,碳酸盐岩的形成分为三个阶段:沉积、压实和溶解-重结晶。

在沉积阶段,海洋中的生物体和沉积颗粒沉积到海底,经过堆积和压实之后,形成了珊瑚礁、珊瑚峰、浅滩或是平原;在压实阶段,岩石中的孔隙逐渐减少,颗粒之间的接触逐渐增多,使得岩石的密度也随之增大;在溶解-重结晶阶段,溶液渗入岩石中,发生了重结晶和溶蚀作用,其结果就是岩石中孔隙和裂隙的增多。

二、碳酸盐岩储层的评价从油气勘探的角度来说,对储层的评价是非常重要的。

对碳酸盐岩储层进行有效的评价,可以为寻找油气藏的最佳开发方式提供指导。

储层评价的具体内容包括储层岩性、孔隙度、渗透率、饱和度、孔隙结构、圈闭类型、裂缝特征、油气分布特征和储层受力演化过程等。

首先,储层岩性是储层评价的一个重要指标。

岩性作为储层物质性质的表征,其主要影响储层的孔隙结构、渗透率和饱和度等参数。

在评价过程中,需要充分考虑储层岩性对油气的影响,进行岩石学和地球化学综合分析。

其次,孔隙度和渗透率是评价储层有效性的两个核心参数。

孔隙度是指岩石中的孔隙体积与总体积之比,而渗透率是指岩石中的孔隙连通性及孔隙间连通程度。

这两个指标直接影响着油气在储层中的移动和扩散能力,因此在储层评价中必须重视其影响。

最后,针对以上评价指标,需要采用多种方法进行实验和勘探。

碳酸盐岩储层的孔隙结构特征分析

碳酸盐岩储层的孔隙结构特征分析

碳酸盐岩储层的孔隙结构特征分析碳酸盐岩储层是一种重要的天然气和石油储集层,对于研究其孔隙结构特征具有重要意义。

本文将从孔隙结构特征的形成机理、影响因素和分析方法三个方面进行论述。

一、形成机理碳酸盐岩储层的孔隙结构特征与其成岩作用紧密相关。

在碳酸盐岩的成岩过程中,主要发生了溶蚀作用、背斜蚀变及压实等作用,这些作用对孔隙结构的形成具有重要影响。

首先,溶蚀作用是指水溶液对碳酸盐岩岩石中的碳酸盐矿物进行溶解的过程。

在碳酸盐岩储层中,水溶液通过溶蚀作用可以形成溶蚀孔、溶洞等各类孔隙结构。

其次,背斜蚀变是指碳酸盐岩在地壳挠曲、背斜变形等作用下产生的孔隙变形现象。

背斜蚀变形成的孔隙结构通常呈现出弯曲、伸展的形态,对储层的质量和导流能力产生显著影响。

最后,压实是指碳酸盐岩在受到地层压力影响下发生的密实过程。

压实作用会导致碳酸盐岩中的孔隙变小、孔隙喉道连接性变差,从而降低储层的孔隙度和渗透性。

二、影响因素碳酸盐岩储层的孔隙结构受到多种因素的综合影响。

主要的影响因素包括原生孔隙、次生溶孔、机械性质和成因等因素。

首先,原生孔隙是岩石形成时自身所具有的孔隙。

碳酸盐岩的原生孔隙包括晶体间隙、颗粒间隙、颗粒内孔隙等。

这些孔隙对碳酸盐岩的物理性质和储层特征有着重要影响。

其次,次生溶孔是指碳酸盐岩在成岩过程中,由于水溶液的溶解作用形成的孔隙。

溶孔的形成往往与地下水的渗流速度、水溶液的化学成分等因素有关。

再次,机械性质是指碳酸盐岩储层所具有的力学性质。

机械性质的好坏将直接影响岩石的孔隙结构,如碳酸盐岩的抗压强度、韧性等。

最后,成因也是影响碳酸盐岩储层孔隙结构特征的重要因素。

不同的成因将导致碳酸盐岩的成岩作用有所不同,从而形成不同类型的孔隙结构,如滩碳酸盐岩、珊瑚礁碳酸盐岩等。

三、分析方法对于碳酸盐岩储层的孔隙结构特征进行分析,常用的方法包括物理实验方法和数值模拟方法。

物理实验方法主要包括岩心样品的测井实验、薄片观察和扫描电镜分析等。

碳酸盐岩地质演化与储层特征

碳酸盐岩地质演化与储层特征

碳酸盐岩地质演化与储层特征碳酸盐岩是一种由碳酸钙及其它成分组成的岩石,广泛分布于地球的陆地和海洋中。

它们经历了漫长的地质历史,经过了多种地质过程的作用,形成了丰富的储层特征。

一、碳酸盐岩地质演化过程碳酸盐岩的形成过程经历了沉积、压实、溶解、重结晶和再沉积等多个阶段。

首先是沉积阶段,碳酸盐岩在浅海环境中大量沉积形成。

这些浅海环境包括温暖的海湾、礁湖和浅海隆起。

随后是压实阶段,随着沉积物的堆积和压力的增大,碳酸盐岩中的孔隙被逐渐压缩,岩石变得更加致密。

然后是溶解阶段,碳酸盐岩中的钙质成分容易溶解与腐蚀,形成洞穴和溶洞等地貌。

接着是重结晶阶段,由于地壳运动和地热作用,碳酸盐岩经历了再结晶和重晶粒的形成,使岩石发生变质,产生新的储层特征。

最后是再沉积阶段,碳酸盐岩在构造运动或气候变化的影响下,再次沉积,形成新的碳酸盐岩层。

二、碳酸盐岩的储层特征碳酸盐岩具有多种独特的储层特征,包括孔隙类型、孔隙度、渗透性和储层构建等方面。

首先是孔隙类型,碳酸盐岩中主要存在溶洞孔隙、间隙孔隙和晶间孔隙。

其中,溶洞孔隙是最主要的孔隙类型,由于钙质成分溶解而形成。

其次是孔隙度,碳酸盐岩中的孔隙度一般较低,常常在1%-10%之间。

碳酸盐岩的孔隙度与成岩作用、沉积环境以及现今地壳运动有关。

再次是渗透性,碳酸盐岩的渗透性较低,常常需要利用溶洞型孔隙进行油气的富集。

溶洞型孔隙的连通性和渗透性强,能够储存较大量的油气。

最后是储层构建,碳酸盐岩具有层理性和层序性的特点。

层理性意味着碳酸盐岩层具有一定的水平层面,方便油气的运移。

而层序性则暗示了碳酸盐岩在地层演化过程中存在着逐渐改变的特点。

总之,碳酸盐岩经历了多个地质过程的作用,形成了多样化的储层特征。

这些特征是否适合油气的富集和储存,与沉积环境、成岩作用和现今地质条件密切相关。

通过对碳酸盐岩地质演化和储层特征的深入研究,可以为油气勘探与开发提供重要的依据。

碳酸盐岩储层特征及沉积环境研究

碳酸盐岩储层特征及沉积环境研究

碳酸盐岩储层特征及沉积环境研究在地球演化的过程中,碳酸盐岩储层作为重要的油气储层,受到了广泛的关注和研究。

碳酸盐岩储层是由碳酸盐矿物主要构成的,包括方解石、白云石等。

这些储层的研究对于油气资源的开发与利用具有重要意义。

碳酸盐岩储层的特征主要包括储层类型、储层孔隙结构、储层物性以及储层沉积体系等。

首先,储层类型主要分为碳酸盐岩储层和碳酸盐岩凝灰岩储层两种。

碳酸盐岩储层是指由碳酸盐矿物组成的储层,如钙质碳酸盐岩、镁质碳酸盐岩等;碳酸盐岩凝灰岩储层是指碳酸盐岩与凝灰质组分共同组成的储层。

不同的储层类型具有不同的储层特征,对于油气储集条件以及开发方式都有着重要的影响。

其次,储层孔隙结构是指储层中包含的孔隙(洞隙)空间结构。

碳酸盐岩储层通常以晶粒间的孔隙为主,包括晶间孔隙、溶蚀孔隙和缝隙孔隙。

这些孔隙结构决定了储层的渗透性和储集性能,对于油气运移和储集具有重要作用。

不同类型的孔隙结构可能导致储集空间的不均匀性,从而影响油气开发效果。

储层物性是指储层中的物理性质参数,如孔隙度、渗透率和饱和度等。

孔隙度表示储层中孔隙空间所占比例,是储层评价的重要参数之一;渗透率反映了储层介质的导流能力,是储层可开发性的关键指标;饱和度则是指储层中油气密度与孔隙中流体总容积的比值,是评价储层储集性能的重要参数。

通过对储层物性的研究可以评价储层的潜力和可开发程度。

储层沉积体系是指储层形成的沉积环境和沉积作用。

碳酸盐岩储层的形成与沉积环境密切相关。

典型的碳酸盐岩沉积环境包括浅海盆地、滨浅海缓坡、珊瑚礁环境、湖泊沉积环境和下生达岩相带等。

不同的沉积环境导致了不同类型的碳酸盐岩储层,如珊瑚礁储层、滨浅海储层等。

研究储层的沉积体系有助于了解储层的形成机制和储层的特征。

在碳酸盐岩储层的研究中,还涉及到一些相关的学科和技术,如岩性分析、孔隙结构表征、岩心分析和地质模拟等。

这些技术方法的应用可以帮助科学家深入了解碳酸盐岩储层的特征和沉积环境,为油气资源的开发和利用提供重要的依据。

碳酸盐岩储层特征与石油勘探预测

碳酸盐岩储层特征与石油勘探预测

碳酸盐岩储层特征与石油勘探预测在石油勘探领域中,碳酸盐岩储层是一类重要的勘探对象。

碳酸盐岩是一种由碳酸钙和碳酸镁等成分组成的沉积岩石,在地质历史长时间的作用下形成了丰富的储层。

碳酸盐岩储层因其特殊的成分和微观结构,具有独特的储层特征,对石油勘探和预测起着重要的作用。

首先,碳酸盐岩储层具有较高的孔隙度和渗透率。

由于碳酸盐岩的成分中含有较多的溶解性矿物质,例如方解石和白云石,在地下水的侵蚀作用下,岩石中形成了较多的溶洞和孔隙。

这些孔隙和溶洞不仅能够存储大量的油气,而且对油气的流动也起到了重要的影响。

同时,碳酸盐岩储层还具有较好的渗透性,使油气能够在岩石中自由流动,进一步提高了勘探和开发的效果。

其次,碳酸盐岩储层具有较复杂的孔隙结构。

碳酸盐岩中的溶洞和孔隙不仅存在于岩石的内部,还存在于岩石的裂缝和断层中。

这种复杂的孔隙结构为石油勘探提供了更多的选择和可能性。

在勘探和预测过程中,需要精确地刻画碳酸盐岩储层的孔隙结构特征,包括孔隙大小、连接性、边界形状等,以便更准确地评估储层储量和可采储量。

此外,碳酸盐岩储层的成岩演化和分布规律也对石油的勘探和预测产生着重要的影响。

在地质历史的演化过程中,碳酸盐岩储层受到了多种成岩作用的影响,例如溶蚀、压实和溶解等。

这些成岩作用对储层孔隙结构和渗透性产生了重要的改变,需要在勘探和预测中进行全面的考虑和分析。

此外,碳酸盐岩储层的分布规律也受到多种因素的影响,包括构造、沉积环境和成岩历史等。

因此,在勘探和预测碳酸盐岩储层时,需要综合考虑这些因素的综合作用,以获得准确的预测结果。

最后,碳酸盐岩储层的上部和下部分别与其他沉积岩层和基底岩层接触,形成了特殊的储层结构。

上部与其他岩层的接触面通常比较平缓,有利于油气的储集和储层的形成。

下部与基底岩层的接触面通常比较复杂,有较多的断层和裂缝形成,为油气的储集和流动提供了更多的路径和通道。

因此,在石油勘探过程中,需要特别关注碳酸盐岩储层与其他岩层和基底岩层的接触关系,以获得更准确的储量评估和勘探预测结果。

碳酸盐岩储层分类标准

碳酸盐岩储层分类标准

碳酸盐岩储层分类标准
碳酸盐岩储层可以根据不同的分类标准进行划分,以下是常用的
碳酸盐岩储层分类标准:
1. 储集类型:根据储集空间的不同,可以将碳酸盐岩储层分为
孔隙型、裂缝型和溶蚀型。

孔隙型储层指的是岩石中存在天然孔隙的
储层,如溶洞、河流沉积物和堆积孔隙等;裂缝型储层指的是岩石中
存在裂缝的储层,如断层、节理和构造破碎带等;溶蚀型储层指的是
岩石中由于水溶作用形成的储层,如岩溶洞穴和岩溶孔隙。

2. 成岩作用:根据不同的成岩作用可以将碳酸盐岩储层分为碳
酸盐岩侵蚀裂缝型、碳酸盐岩溶蚀裂缝型、碳酸盐岩胶结高孔隙型、
碳酸盐岩胶结低孔隙型、碳酸盐岩溶蚀孔隙型等。

不同的成岩作用会
对岩石的孔隙度、孔隙结构和孔隙连通性等储集性质产生影响,因此
可以通过成岩作用的不同来划分储层。

3. 成岩时期:根据成岩时期的不同,可以将碳酸盐岩储层分为
早期成岩储层、中期成岩储层和晚期成岩储层。

不同成岩时期的储层
形成机制和储集特征不同,因此可以通过成岩时期的划分来区分储层。

4. 构造类型:根据构造作用的不同,可以将碳酸盐岩储层分为
隆起型、下凹型和胀缩型。

隆起型储层指的是由构造隆起形成的储层,如构造圈闭;下凹型储层指的是由构造下凹形成的储层,如构造坳陷;胀缩型储层指的是由结构胀缩形成的储层,如构造胀缩带。

以上是几种常见的碳酸盐岩储层分类标准,这些分类标准可以根
据不同的研究目的和实际情况选择使用。

碳酸盐岩储集层的储集空间

碳酸盐岩储集层的储集空间

碳酸盐岩储集层的储集空间碳酸盐岩储集层的主要岩石类型包括石灰岩、白云岩、粒屑灰岩、礁灰岩等,其储集空间通常包括孔隙、溶洞和裂缝三类。

一般说来,孔隙和溶洞是主要的储集空间,裂缝是主要的渗滤通道,也是储集空间。

碳酸盐岩储集空间的形成过程是一个复杂而长期的过程,它贯穿在整个沉积过程及其以后的各个地质历史时期。

它除了受沉积环境的控制外,地下热动力场、地下或地表水化学场、构造应力场等因素均对它们的形成和发展有巨大的影响。

由于碳酸盐岩的特殊性(易溶性和不稳定性),使碳酸盐岩储集空间的演化相当复杂,孔隙类型多、变化快,往往在同一储集层内存在着多种类型的孔隙,各种孔隙又往往经受几种因素的作用和改造。

因此,对碳酸盐岩储集空间分类时,既要考虑它的原始成因,又要考虑它在整个地质历史过程中的改造和变化。

关于碳酸盐岩孔隙类型的划分方案较多。

Choquette和Pray(1970)根据受组构控制与不受组构控制两项关系,将碳酸盐岩孔隙划分为三大类型16种孔隙,其中有几种为常见类型,其它则为比较特殊的类型。

将根据碳酸盐岩孔隙的形成时间及成因,将其分为原生孔隙和次生孔隙两大类来进行论述。

∙原生孔隙碳酸盐岩的原生孔隙主要是指在沉积时期形成的与岩石组构有关的孔隙。

它们在成岩期可以发生一些变化。

原生孔隙包括粒间孔隙、粒内孔隙、生物骨架孔隙、生物体腔孔隙、遮蔽孔隙、鸟眼孔隙和生物潜穴等。

粒间孔隙:粒间孔隙是指粒屑碳酸盐岩粒屑之间未被基质填积和胶结物充填的原始孔隙空间。

粒间孔隙只有在粒屑含量很高(一般应大于50%)形成颗粒支撑格架时才能出现。

粒间孔隙的发育程度与粒屑的含量、大小、形状、分选程度以及粒屑的堆积方式,胶结物含量等因素密切相关,而它能否得以保存还取决于沉积后的地质历史时期淀晶方解石或其它可溶矿物的充填程度。

粒间孔隙是碳酸盐岩储集层的主要孔隙类型之一。

世界上相当多的碳酸盐岩储集层发育此类孔隙。

粒内孔隙:粒内孔隙是指组成碳酸盐岩的各种颗粒内部的孔隙,如骨屑、团块、内碎屑、鲕粒等颗粒内部的孔隙。

碳酸盐岩储层损害机理及保护技术研究现状与发展趋势

碳酸盐岩储层损害机理及保护技术研究现状与发展趋势

碳酸盐岩储层损害机理及保护技术研究现状与发展趋势碳酸盐岩储层是一种常见的油气储层类型,但由于地质条件、油气开采过程及环境因素等影响,碳酸盐岩储层容易出现各种损害,限制了油气开采的效率和产量。

对碳酸盐岩储层损害机理的深入研究以及相应的保护技术的开发具有重要的意义。

本文综述了碳酸盐岩储层损害机理及保护技术研究的现状与发展趋势。

一、碳酸盐岩储层损害机理1. 孔隙结构变化碳酸盐岩储层中的孔隙结构是影响油气储层有效性的重要因素。

而地层的压实、溶蚀、侵蚀等过程都会导致孔隙结构的变化,影响岩石储层的孔隙连通性和孔隙度,从而影响油气的渗流性能。

2. 酸侵蚀酸侵蚀是碳酸盐岩储层常见的损害机理之一。

在油气开采过程中,注入的酸性液体会与碳酸盐岩发生化学反应,导致岩石溶解,矿物质溶解产生孔隙连接,使岩石储层的孔隙度和渗透率发生变化,从而影响岩石的储集性能。

3. 粒子脱落碳酸盐岩储层中的粒子脱落是导致储层损害的重要机理之一。

随着压力变化或渗透流体的侵蚀,碳酸盐岩岩石表面的颗粒会逐渐脱落,导致储层孔隙度和渗透率的减小,影响油气的储集和渗流。

二、碳酸盐岩储层保护技术1. 化学保护技术化学保护技术是通过注入各种化学剂物质,形成化学反应形成保护膜或填塞剂,改变油气与岩石的作用关系,以减缓或阻止储层的损害过程,提高储层的渗透性和持久性。

2. 物理保护技术物理保护技术主要采用注入微米级润湿剂、表面活性剂等物质,降低岩石孔隙表面张力,改善岩石的润湿性和渗透性,从而减缓或阻止储层的损害过程。

3. 工程保护技术工程保护技术主要包括井筒完井工程、注酸压裂技术、注气填充技术等,通过改善井筒结构和注入相应材料来保护储层,减少储层损害并提高油气的开采效率。

三、研究现状与发展趋势1. 研究现状目前,对碳酸盐岩储层损害机理及保护技术的研究已经取得了一系列进展,包括对孔隙结构变化、酸侵蚀、粒子脱落等损害机理的深入理解,以及化学、物理、工程保护技术的开发与应用。

碳酸盐岩储层讲义(精品)

碳酸盐岩储层讲义(精品)

孔隙性溶孔
沿孔隙溶蚀扩大所成

裂缝性溶孔
沿裂缝局部溶蚀扩大所成
膏盐性溶孔
石膏、盐岩的结核、斑块被溶蚀所成
塌陷砾间孔
石膏、岩石被溶所成大洞穴顶塌落砾石间的洞

构造砾间孔
构造角砾之间的洞
溶沟、暗河
溶缝、溶洞被溶蚀扩大为长串状洞穴,小为溶沟、大为暗河
成岩缝
由干裂或脱水收缩所成

风化缝
表生风化时期由机械破坏作用而产生
石都可能形成储层。
石灰岩在总量上多于白云岩,在时代上主要 分布于古生代,其次是中生代,新生代几乎没有。
碳酸盐岩中方解石与白云石的比率随时代变 老而降低(白垩纪为80:1,早古生代3:1,前 寒武纪1:3)。因此,早古生代主要是白云岩, 晚古生代和中生代主要是石灰岩。
主要岩石类型:粒屑(鲕粒/生屑/内碎屑)灰岩
针孔粉—细晶球粒白云岩-好的储层,针孔为球粒选择性溶蚀作用的产物。 普光6井,9(70/121),5×10,(-)
储层类型表
碳酸盐岩的储集空间构架
迈杰鲍尔(1980)将具有孔、洞、缝的储集层中 被裂缝分割的岩块称为”基质“
(二)、喉道类型(注意裂缝沟通孔洞的作用)
① 构造裂缝型 ② 晶间隙型 ③ 孔隙缩小型
长庆油气田(o ) 气2909亿方
川东北普光、龙岗等、川中磨溪、 川东~川东南、川西南~川南。普光 探明1143亿方。层位 J(大安寨)、 T(嘉陵江、雷口坡、飞仙关)、 P(阳新统)、C(川东)、震旦 系(威远)
我国主要碳酸盐岩油气田分布
第三节 碳酸盐岩储集层
二、储层岩石类型
储层岩石类型:石灰岩与白云岩以及过渡类型岩
④ 管状喉道
⑤ 解理缝型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界碳酸盐岩储层
碳酸盐岩中储集有丰富的石油、天然气和地下水。

碳酸盐岩是世界上重要的石油天然气产层,约占全球储量的一半,产量已达到总产量60%以上。

在世界范围内,大约有1/3油气资源储存于碳酸盐岩储层中,特别是中东、北美、俄罗斯的许多大型或特大型油气田均与碳酸盐岩密切相关。

碳酸盐岩和碳酸盐沉积物从前寒武纪到现在均有产出,分布极广,约占沉积岩总量的
1/5至1/4。

碳酸盐岩本身也是有用矿产,如石灰岩、白云岩,以及菱铁矿、菱锰矿、菱镁矿等,广泛用于冶金、建筑、装饰、化工等工业。

我国碳酸盐岩油气资源
我国海相碳酸盐岩储集层层系分布范围广泛,从震旦系至三叠系均有分布,约占大陆沉积岩总面积的40%。

据初步统计,我国有28个盆地发育分布海相碳酸盐岩地层,资源丰富,勘探潜力很大。

我国碳酸盐岩油气资源量约为385亿吨油当量。

我国碳酸盐岩缝洞型油藏一般经历了多期构造运动、多期岩溶叠加改造、多期成藏等过程,形成了与古风化壳有关的碳酸盐岩缝洞型油藏。

近几年的实践表明,我国碳酸盐岩勘探正处于大油气田发现高峰期,是近期油气勘探开发和增储上产的重要领域之一。

与常规的砂岩油气藏相比,碳酸盐岩油气藏勘探开发程度较低。

对于以“潜山”起家的华北油田而言,碳酸盐岩油藏探明储量比例只有41.6%。

因储层具有典型的双重介质特点,渗流规律特殊,加之非均质性严重、开发技术不完善,开采效果迥异。

碳酸盐岩勘探技术发展
近年来,中国石油开始全面开展碳酸盐岩物探技术研究,形成了成熟的碳酸盐岩配套技术,储层钻遇率大幅度提高,在塔里木盆地、鄂尔多斯盆地、四川盆地等地区发现了一批大型油气田,碳酸盐岩勘探成为油气储量产量增长的重要领域。

新中国成立到20世纪70年代,碳酸盐岩勘探以地表地质调查和重磁物探为主,发现了如四川威远、华北任丘等油气藏。

20世纪80年代至90年代,地震勘探技术在落实构造、发现碳酸盐岩油气藏的勘探中发挥了重要作用,发现了塔里木盆地轮古、英买力潜山及塔中等含油气构造。

进入21世纪,随着高精度三维地震技术的发展,深化了对碳酸盐岩非均质储层油气藏的认识,全面推动碳酸盐岩油气藏勘探开发进程。

在塔里木、四川等盆地实施高精度三维地震勘探超过1.5万平方公里,探井成功率提高了25%。

相关文档
最新文档