随机信号分析(第3版)课后习题解答
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析(第3版)习题及答案
1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
随机信号分析[常建平 李海林]习题答案解析
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
《随机信号分析》-高新波等-课后答案
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
随机信号分析(常建平-李海林版)课后习题答案
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析(第3版)课后习题解答
随机信号分析(第3版)课后习题解答《随机信号分析》课程(32学时)—— 2007年教学内容建议1 概率论基础 1.12 随机信号2.1 两条样本函数为:0)(0=t X 、wt t X cos 21)(1=;1)0,(=x f X 、2)4,(=w x f X π;)(0-)2,(x wx f X δπ= 2.2 3103532)2,(=++=X E 、)()()(5-313-312-31)2,(x x x x F X εεε++= 2.3 )()(1-2121)21,(x x x F X εε+=、)()(2-21121)1,(x x x F X εε++=;)()()()(2-,1411,1412-,411,41)1,21,,(21x x x x x x x x x x F X -++-+++=εεεε2.4 略2.5 )()(1-1.09.0)5,(x x x F X εε+=;)()(y x y x y x F ,11.0,9.0)0025.0,0,,(-+=εε;0因为其概率为0.9;1的概率为1(样本函数),它是可预测的,就是样本函数。
2.6 略 2.7 略 2.8 )()(121121),(-++=x x n x f X δδ、0121)1(21)(=?+-?=n X E 、{})()]()([)]()()][()([),(2121221121n n n X n X E n m n X n m n X En n Cov X X -==--=δ;不可预测2.9 (2.19)10103523)()(),(2111=?==t t t t Cov σσρ、所以(X,Y )满足10103;5,2;2,2的高斯分布。
其概率密度函数为:-+--?--?-=-+--?----=5)2(5)2)(2(32)2(5exp215)2(10)2)(2(1010322)2()10/91(21exp 21),(2222y y x x y y x x y x f XY ππ;特征函数为:++-+=)6)(5)(2(21)22(exp ),(21222121v v v v v v j y x XY φ3 平稳性与功率谱密度3.1 kk k u t t u u f-=)4exp(2*21),,;,,(211π ;因为k 阶概率密度函数与绝对时间无关,所以为严格平稳过程。
随机信号分析(第3版)第五章习题及答案
5.1 求题图5.1中三个电路的传输函数(不考虑输出负载)。
RRC1C 2C 1C 2C 1R 2R题图5.1解根据电路分析、信号与系统的知识, 第一个图中系统的传输函数 1/1()1/1j C H j R j C j RCωωωω==++ 第二个图中系统地传输函数 ()21112211/1()/11/1/j C j RC H j R j C j R C C j C R j C ωωωωωωω+==++++ 第三个图中系统地传输函数()2222212111221212121122/1/()//1/1/R j C R j C R j R R C H j R j C R j C R R j R R C C R j C R j C ωωωωωωωωω++==++++++5.2若平稳随机信号)(t X 的自相关函数||2)(ττ-+=BeA R X ,其中,A 和B 都是正常数。
又若某系统冲击响应为()()wth t u t te -=。
当)(t X 输入时,求该系统输出的均值。
解: 因为[]()22X EX R A =∞=所以[]E X A A =±=±。
()()()()()20wt A E Y t E h X t d E X t h d A te dt wξξξξξ∞∞∞--∞-∞±⎡⎤=-==±=⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰⎰⎰ 5.35.4 若输入信号00()cos()X t X t ω=++Φ作用于正文图5.2所示RC 电路,其中0X 为[0,1]上均匀分布的随机变量,Φ为[0,2π]上均匀分布的随机变量,并且0X 与Φ彼此独立。
求输出信号Y(t)的功率谱与相关函数。
解:首先我们求系统的频率响应()H j ω。
根据电路分析、信号与系统的知识,/1/11()()()1/1t RCj C H j h t e u t R j C j RCRCωωωω-==↔=++ 然后,计算)(t X 的均值与自相关函数,[]()1/2X m E X t ==[]{}(){}{}0000(,)cos cos X R t t EXt X t τωωτ+=++Φ+++Φ=⎡⎤⎣⎦()01/31/2cos ωτ+可见)(t X 是广义平稳的。
随机信号分析常建平李林海课后习题答案第二章习题讲解
随机信号分析常建平李林海课后习题答案第⼆章习题讲解2-1 已知随机过程0()cos X t A t ω=,其中0ω为常数,随机变量A 服从标准⾼斯分布。
求000,3,2t πωπω=三个时刻()X t 的⼀维概率密度?解:221~(0,1)..........()2A a A N f a π-=21211()~(0,1)(0)2t X x X t A N f x eπ-==?=;,2223203A 12()~(0,)()242X t x X t N f x e πωπωπ-==?;=, 002323()0()()t X t f x x πωπωδ===,;(离散型随机变量分布律)2-2 如图所⽰,已知随机过程()X t 仅由四条样本函数组成,出现的概率为1131,,,8484。
t()X t 1t 1()x t 2()x t 3()x t 4(x t o图习题2-2在1t 和2t 两个时刻的分布律如下:1ζ2ζ3ζ4ζ1()X t 1 2 6 3 2()X t54211212(,)k k p t t 1/8 1/4 3/8 1/4求1212[()],[()],[()()]E X t E X t E X t X t ()41129[()]8k k k E X t x p t ===∑221[()]8E X t =()()(){}121212121122[()()],,X k k E X t X t R t t k k p X t k X t k ====∑∑[][][]()()()22221212221121222()cos cos ()()()()cos cos cos cos 12(,)cos cos cos cos cos cos 1cos c 232o X XYD aE X t E A t XH t EA XHD X tE X t E X t D X t D A t XH D A t D XH tt DA R t t E A t XH X a D X b D Y abC EA EA A t XH t t XH t t XH t =+=?+??=-??=+=+=?=+++==+=+++公式:+b =Y⽅法:()2212s cos cos 2XH t t t XH +++()()()()22cos 022~,322cos 022~,cos 0()2122,cos 2cos cos cos c 21322,(;)cos o 2s 2X k t k t tX t U XH XH k t k t t X t U XH XH t k t X t XHk t k XH x XH t k t k XH x XH f x t t x X t t t t ππππππππππππππππππδ-+<<+>+<<+<=+==-+<<+<<-++<<+<+++<=-对某⼀固定时刻对某⼀固定时刻概率密度⽤冲激函数表⽰()=+=2-4 已知随机过程()X t A Bt =+,其中,A B 皆为随机变量。
随机信号分析(第3版)第三章 习题答案
Z (t )的均值: E[ Z (t )] = E[ A ⋅ X (t ) ⋅ Y (t )] = E[ A] ⋅ E[ X (t )] ⋅ E[Y (t )] = 2 E[ X (t )] ⋅ E[Y (t )]
2 mX = RX (∞) = lim
2 cos ω0τ = 0 → mX = 0 τ →∞ eτ
⎡ 2 1.3 0.4 __ ⎤ ⎢ __ 2 1.2 0.8⎥ ⎢ ⎥ ⎢ 0.4 1.2 __ 1.1 ⎥ ⎢ ⎥ ⎣ 0.9 __ __ 2 ⎦ 3.12 解:根据广义平稳随机信号过程的自相关函数矩阵的对称性,得到: ⎛ 2 1.3 0.4 0.9 ⎞ ⎜ 1.3 2 1.2 0.8 ⎟ ⎟ C= ⎜ ⎜ 0.4 1.2 2 1.1 ⎟ ⎜ ⎟ ⎝ 0.9 0.8 1.1 2 ⎠ 3.13
= E[100 sin 2 (ω 0 t + θ ) ×100 sin 2 (ω 0 t + ω 0τ + θ ) ] = 2500 E[1 − cos(2ω 0τ ) − cos(4ω 0 t + 2ω 0τ + 4θ )] = 2500 E[1 − cos(2ω 0τ ) ] ∴ R Z (τ ) 仅与 τ 有关,且均值为常数,故 Y(t ) 是平稳过程。
3.6 给定随机过程 X ( t ) = A cos (ω 0t ) + B sin (ω 0t ) ,其中 ω 0 是常数, A 和 B 是 两个任意的不相关随机变量,它们均值为零,方差同为 σ 2 。证明 X ( t ) 是广义平 稳而不是严格平稳的。 3.6 证明:Q m X (t ) = E[X(t )] = E[ A cos(ω 0 t ) + B sin(ω 0 t) ] = 0
[VIP专享]随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解
、随机过程 X(t)=A+cos(t+B),其中 A 是均值为 2,方差为 1 的高斯变量,B 是(0,2)上均匀分布的随机变量, 且 A 和 B 独立。求 (1)证明 X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x2(2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F (3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。
随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解
、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析(第3版)第七章习题及答案
7.17.2[]A A ,-的双极性二进制传输信号{}(),0U t t ≥的码元符号概率为[],q p 。
将)(t U 送入码元幅度取样累加器,累加器输出为{}(),1,2Y n n =,简记为n Y 。
试求:(1)画出()Y n 的状态图;(2))(n Y 的状态概率)(n k π和[]0≥n Y P ,假定初始分布为等概的; (3))(n Y 状态转移概率),(n m p ij 和[]4,3,13108115====Y Y Y Y P 。
解 (1)将U(t)送入码元幅度取样累加器,则相当于1()()1,2,()()()(),nk Y n X k n Ap X k Aq Y n X n A Y n A A ===⎧⎨-⎩∑其中=对,如果的取值为,则增加否则减少画出状态转移图为(2)222(()),1,01,(())0||0,(())0,(())k kP Y n kA k n n n nP Y n kA n k n k P Y n k p k P Y n k π===--+-==->==<== n-|k|n-|k|2nn-|k|n-|k|2n n-|k|n当n-|k|等于奇数时,可知n-|k|而当等于偶数时,则在个样本中必须选择个样本互相抵消,2可知一共有C种方法,每种方法中,抵消项的发生概率为则C (pq)则C(220||(())0,||0,||k kk k qn k P Y n k p k n k q k n k π--⎧⎪⎪==≥-⎨⎪⎪<-⎩n-|k|2n-|k|n-|k|2n n-|k|n-|k|2npq)为奇数综上所述=C (pq)为偶数C (pq)为偶数20(0)nkn k P Y pq p=∴≥=∑n-|k|n-k 2nC()(3)111122(,)(|)(|)()()()0,nn k n k ij n m nmk k k k nk k m n m k k n m j i n mY X Y P m n P Y j Y i P X j X i P X j i P X j i P Y j i n m j i p j i n m j i ====-=-->=∴========-==-==---+=-≥--+∑∑∑∑∑ n-m-|j-i|n-m-|j-i|2n n-m-|j-i|n-m-|j-i|n设可以得到是马尔可夫序列为奇数C 为偶数C (pq)0,i j q j i n m j i -⎧⎪⎪⎨⎪⎪-<--+⎩2为偶数151810151052223[3|1,3,4][3|4][1]()10P Y Y Y Y P Y Y P Y pq q p q -=========-==5-|-1|5-|-1|(-1)5C7.3 7.4 7.57.6设{}()1X n n ≥,是相互独立随机变量序列,令:∑==ni pi Xn Y 1)()(,p 是任意的整数,试证明:随机序列)(n Y 是马氏链。
随机信号分析1-3部分答案
1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由 1)(=⎰∞∞-dx x f得2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A 21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解可编辑】
、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2) 3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim 2TT T E X t X t X t X t dt A T -→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X X E X t G d R F G F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j TR E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+ 22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳;②求()Z t 的功率谱密度()Z G ω?③求()X t 和()Y t 的互谱密度()XY G ω?④求()X t 和()Z t 的互相关函数()XZ R τ?⑤求()V t 和()Z t 的互相关函数()VZ R τ解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G eE X t R E X t R e E Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析常建平 李海林习题答案第三章 习题讲解.doc
J、随机过程X(t)=A+cos(t+B),其中A是均值为2,方差为1的高斯变量,B是(0, 2兀)上均匀分布的随机变量,且A和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1) E[X(t)] = E[A\ + E[cos(r + 8)] = 2A与与相互独立7?x + 丁] = EA~ H—cos T = 5 —cos T1 1r(2) E[x2(r)] = 5-<oo nX(r)是平稳过程--- 1 C T / \X(0= lim ——\ X (t)dt = AT Too 2T「T ''3-1己知平稳过程x(f)的功率谱密度为G、(〃)=y刀,求:①该过程的平均功率?0+16)②口取值在(-4,4)范围内的平均功率?2x4 42 + ®=4七州 R =R(0)=4 方法二(频域法) f] — ——J Gx(cd)dco =lr_71 J-8 1+ .oo 3? - r” =4CD \ '4JV 1arc tan x) = ---- r7 1 + x 2 (2) 口取值范围为(-4, 4)内的平均功率 •4 32,,da) =2P 2 2〃 7?(r) = F-1[G x (®)] = 4-F-1 (1): P = E [X 2 (?)] = —方法一(时域法)3-7如图3.10所示,系统的输入X。
)为平稳过程, 系统的输出为W) = x(。
-x(—『)。
证明:输出W) 的功率谱密度为Gy (口) = 2Gx㈣(1 - cos或)期) +--------------------------------------- ------------------- *—延时T ----解:已知平稳过程的表达式n 利用定义求R Y(r) = E[Y(t)Y(t + T)]^G y(®) = F[7?y(r)]7?r(r)= E[y(z)y(r + r)]= E[{X(t)-X(t-T)}{X(t + r)-X(t + T-T}]= 2Rx(f)-Rx(—T)-Rx("T)系统输入输出平稳GxO)0Rx(J)Gy®)。
随机信号分析基础第三章课后答案
第三章,平稳随机过程的n 维概率密度不随时间平移而变化的特性,反映在统计特征上就是其均值不随时间的变化而变化,mx 不是t 的函数。
同样均方值也应是常数。
(2)二维概率密度只与t1,t2的时间间隔有关,而与时间起点t1无关。
因此平稳过程的自相关函数仅是单变量tao 的函数。
则称他们是联合宽平稳的。
第三章Chapter 3 ==========================================3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020222220002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()120212021202021202022212020220210120220222020100222222002010212121221122102122121212212122222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
随机信号分析(常建平李海林)习题答案
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机信号分析》课程(32学时)
—— 2007年教学内容建议
1 概率论基础 1.1
2 随机信号
2.1 两条样本函数为:0)(0=t X 、wt t X cos 21)(1=;1)0,(=x f X 、2)4,(=w x f X π;)(0-)2,(x w
x f X δπ
= 2.2 3103532)2,(=++=X E 、)()()(5-31
3-312-31)2,(x x x x F X εεε++= 2.3 )()(1-2121)21,(x x x F X εε+=、)()(2-2
1
121)1,(x x x F X εε++=;
)()()()(2-,14
1
1,1412-,411,41)1,21,,(21x x x x x x x x x x F X -++-+++=εεεε
2.4 略
2.5 )
()(1-1.09.0)5,(x x x F X εε+=;)()(y x y x y x F ,11.0,9.0)0025.0,0,,(-+=εε;0因为其概率为0.9;1的概率为1(样本函数),它是可预测的,就是样本函数。
2.6 略 2.7 略 2.8 )()(12
1121),(-++=
x x n x f X δδ、
012
1
)1(21)(=⨯+-⨯=
n X E 、
{})()]()([)]()()][()([),(2121221121n n n X n X E n m n X n m n X E n n Cov X X -==--=δ;不可预测
2.9 (2.19)10103523)()(),(2111=⨯==
t t t t Cov σσρ、所以(X,Y )满足⎪⎪⎭
⎫ ⎝⎛10103;5,2;2,2的高斯分布。
其概率密度函数为:⎭⎬⎫
⎩
⎨⎧⎥⎦⎤⎢⎣⎡-+--⨯--⨯-=⎪⎭⎪
⎬
⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+--⨯----=5)2(5)2)(2(32)2(5exp 215)2(10)2)(2(1010322)2()10/91(21exp 21),(2
2
22y y x x y y x x y x f XY ππ;特征函数为:
⎭
⎬⎫⎩
⎨⎧
++-+=)6)(5)(2(2
1)22(exp ),(21222121v v v v v v j y x XY φ
3 平稳性与功率谱密度
3.1 k
k k u t t u u f ⎪⎪⎭
⎫
⎝⎛-=)4exp(2*21),,;,,(211π ;
因为k 阶概率密度函数与绝对时间无关,所以为严格平稳过程。
3.2 略
3.3 略
3.4 Y
X t
independen m m t Y E t X E t Y t X E t Z E ==
=))(())(())
()(())((、
)()())
()()()(()(τττττY X t
independen Z R R t Y t X t Y t X E R =
++=
3.5 50
))(2cos 5050())sin(10)sin(10())((000=Θ+-=Θ+Θ+=t E t t E t Y E ωωω、
τ
ωτωτωωωτωτωτωωτωτ0000000002022cos 12502500)2cos 2
1
)424cos(211(2500))(2cos ))((2cos ))((2cos ))((2cos 1(2500))
(sin 100))((sin 100()(+=+Θ+++=Θ+Θ+++Θ++-Θ++-=Θ+Θ++=t E t t t t E t t E R Z 由于其均值为常量,而相关函数与绝对时间无关,所以是广义平稳的随机信号。
3.6 略 3.7 略
3.8 0
)sin ()cos ()sin cos ())((=-=-=t B E t A E t B t A E t X E 、
τ
τττττττττττcos 5)sin )sin(cos )(cos(5sin )sin()(cos )cos()())cos )sin(sin )(cos(sin )sin(cos )cos(())
sin cos ))(sin()cos((()(2
2
22=+++=+++=+++-+++=-+-+=t t t t t t B E t t A E t t t t AB t t B t t A E t B t A t B t A E R AB X 独立
、
)sin ()cos ()sin cos ())((=+=+=t A E t B E t A t B E t Y E 、
τ
τττττττττττcos 5)sin )sin(cos )(cos(5sin )sin()(cos )cos()())cos )sin(sin )(cos(sin )sin(cos )cos(())
sin cos ))(sin()cos((()(2
2
22=+++=+++=+++-+++=++++=t t t t t t A E t t B E t t t t AB t t A t t B E t A t B t A t B E R AB Y 独立
、
τ
τττττττττττsin 5)cos )sin(sin )(cos(5cos )sin()(sin )cos()()cos )sin(sin )cos(sin )sin(cos )cos(())
sin cos ))(sin()cos((()(2
2
22-=+-+=+-+=+-+++-+=++-+=t t t t t t B E t t A E t t B t t A t t AB t t AB E t A t B t B t A E R AB XY 独立
3.9
πτ
ττττττ
2cos )()())()())(()((()(+=+=++++=-e
R R t Y t X t Y t X E R Y X Z 、
πτ
ττττττ
2cos )()())()())(()((()(+=+=-+-+=-e
R R t Y t X t Y t X E R Y X W 、
πτ
ττττττ
2cos )()())()())(()((()(-=-=-+++=-e
R R t Y t X t Y t X E R Y X ZW
3.10 略 3.11 略
3.12 矩阵对称 3.13 略 3.14 略 3.15 可将这个相关函数认为是两个平稳随机信号的相关函数,其中第一部分为非周期分量不分,而后一部分则认为是
周期分量(具有随机相位的正弦信号)部分,其均值为0。
所以整个信号的均值为:
00cos 4))((lim =+=-∞
→πττ
τe
t X E 、5)3cos cos 4(lim 0
2=+=-→πτπτστ
τe
、5))((2
22=+=X
m t X E σ 3.16 略
3.17 略 3.18 0))((2lim ==
-∞→ττσa X e t X E 、2
20
lim ))((X
a X e t X VAR σσττ==-→、
τ
τττρa e R R C C -===
)
0()()0()()(、
a e
a 05.0ln 05.0)(000
-=⇒==-ττρτ、a
d e
a C 1
0==⎰∞-τττ 3.19 τ
τ
τωωωωωω---=−→←+-+=++=e e R S X
FT
X 2
12
1)(112223)(222242、
0)2
1(
))((2=-=--
∞
→τ
τ
τe
e Lim t X E 、2
12)2
1(
20
2
-=
-=--
→τ
τ
τσe
e Lim X 、212))((2
-=t X E
3.20
)3()3(()1
)(2
1)(2(21*4)(3cos cos 4)(2
2πωδπωδππωπωωπτπτττ
++--+-+++=−→
←+=-S e
R FT
3.21 ωωεττ
j S t e R XY FT
XY +=
−→←=-39)()(9)(3、ω
ωωj S S XY YX -==*
39)()(。