三相异步电机功率的计算

合集下载

异步电机功率计算公式

异步电机功率计算公式

异步电机功率计算公式异步电机是一种广泛应用于工业和商业领域的电机类型,由于其结构简单、可靠性高、使用寿命长、维护简便等优点,越来越受到人们的青睐。

在工业生产中,如何计算异步电机的功率是不可避免的问题。

下面,我们就来介绍一下异步电机功率计算公式。

异步电机的功率计算公式为:P = (3 × V × I × cosθ ×η)/1000,其中P表示电机的输出功率,单位为千瓦(kW),V代表电机的额定电压,单位为伏特(V),I代表电机的额定电流,单位为安培(A),cosθ代表功率因数,η代表效率。

这个公式非常简单,但其中涉及的内容却很多。

首先,我们需要对电机的额定电压和额定电流有一个大致的了解。

电动机的额定电压是指该电机在正常运行时所需的电压,一般情况下,电机的额定电压应该和电源的电压相同,如220V、380V等。

电动机的额定电流是指在额定电压下,电动机运行时需要的最大电流。

在选择电机时,我们需要根据实际需求选择合适的额定电压和额定电流。

其次,功率因数是衡量电机效率的一个重要指标,它是指电机实际输出功率与电机的视在功率之比。

在电能消耗和节能方面,功率因数很重要。

我们应该尽可能地选择功率因数高的电机,以便在输送同样的电功率时,损耗更少。

最后,电机的效率也是我们考虑的重要因素之一。

效率是电机将输入的电能转化为输出的机械能或电能的比值,是衡量电机节能性能的重要指标。

一般来说,电机的效率越高,相同工作效果下,电能的消耗就越少,所以选择高效率的电机可以节约能源、降低成本。

总之,异步电机功率计算公式虽然简单,但需要我们对电机的额定电压、额定电流、功率因数、效率等指标有所了解才能正确应用。

我们应该结合实际需求,选择合适的电机,以达到更好的节能效果和降低生产成本的目的。

三相异步电动机耗电量计算公式

三相异步电动机耗电量计算公式

三相异步电动机耗电量计算公式题目:深度探讨三相异步电动机耗电量计算公式一、引言在工业生产中,三相异步电动机是一种常见的电动机类型,其在各种机械设备中广泛应用。

对于工厂和企业来说,了解三相异步电动机的耗电量计算公式至关重要,可以帮助他们有效控制能源成本,提高生产效率。

二、什么是三相异步电动机三相异步电动机又称为感应电动机,是一种通过感应电磁力产生转矩的电动机。

其结构简单、运行可靠,因此被广泛应用于工业生产中。

三、三相异步电动机的耗电量计算方式1. 计算方法三相异步电动机的耗电量计算公式主要取决于其额定功率和运行时间,可以通过以下公式来计算:耗电量 = 三相异步电动机的额定功率× 使用时间× 电力因数其中,三相异步电动机的额定功率以千瓦(kW)为单位,使用时间以小时为单位,电力因数一般为0.8到0.9之间。

2. 实例分析比如一台额定功率为10kW的三相异步电动机,在工作8小时,电力因数为0.8的情况下,其耗电量计算公式为:耗电量= 10kW × 8h × 0.8 = 80kWh四、关于电力因数的说明1. 什么是电力因数电力因数是指实际有用功与视在功的比值,是电动机运行时的一个重要参数。

电力因数越接近1,表示三相异步电动机的效率越高。

2. 如何提高电力因数为了降低三相异步电动机的耗电量,可以通过提高电力因数来提高效率。

具体方法包括优化电动机的设计、选择高效的电动机等。

五、个人观点三相异步电动机的耗电量计算公式对于企业的能源管理至关重要,它直接关系到企业的生产成本和环保形象。

企业在选型和使用三相异步电动机时,应该注重其电力因数,选择合适的型号和规格,以降低耗电量,提高生产效率。

六、总结通过本文的介绍,我们了解了三相异步电动机的耗电量计算公式,以及电力因数的重要性。

企业在实际使用中,应该根据实际情况,选择合适的三相异步电动机,从而降低耗电量,提高生产效率。

结语三相异步电动机的选型和使用对于企业的能源管理至关重要,希望本文的介绍可以帮助读者更好地了解和应用三相异步电动机的耗电量计算公式。

三相电机功率计算公式

三相电机功率计算公式

三相电机功率计算公式P = √3 * U * I * cos(θ)其中,P代表三相电机的功率,√3是3的平方根,U代表电机的相电压,I代表电机的相电流,cos(θ)代表功率因数。

1.功率公式:P = U * I * cos(θ)根据功率公式,功率等于电压乘以电流再乘以功率因数。

2.对称三相电路的电压和电流关系:假设三相电路的电压和电流的关系如下:Ua = U * cos(ωt + α)Ub = U * cos(ωt + α - 120°)Uc = U * cos(ωt + α - 240°)Ia = I * cos(ωt + β)Ib = I * cos(ωt + β - 120°)Ic = I * cos(ωt + β - 240°)其中,Ua、Ub、Uc分别代表三相电压的幅值,Ia、Ib、Ic分别代表三相电流的幅值,ω代表角频率,t代表时间,α代表电压相角,β代表电流相角。

3.三相电机功率计算公式推导:根据对称三相电路的电压和电流关系,我们可以得出各个相的功率表达式:Pa = Ua * Ia * cos(ωt + α) = U * cos(ωt + α) * I *cos(ωt + β) * cos(ωt + α)Pb = Ub * Ib * cos(ωt + α - 120°) = U * cos(ωt + α - 120°) * I * cos(ωt + β - 120°) * cos(ωt + α - 120°) Pc = Uc * Ic * cos(ωt + α - 240°) = U * cos(ωt + α - 240°) * I * cos(ωt + β - 240°) * cos(ωt + α - 240°)在三相电路中,电压和电流的相角相差120°,因此三个相的功率之和为0,即Pa+Pb+Pc=0。

三相异步电动机的的额定电流算法

三相异步电动机的的额定电流算法

三相异步电动机的的额定电流算法
1.确定额定功率(P)和额定电压(V):首先需要确定异步电动机的
额定功率和额定电压。

额定功率是指电动机能持续运行的功率,通常以千
瓦(kW)为单位。

额定电压是指电动机设计的工作电压,通常以伏特(V)为单位。

2. 计算额定功率因素(Power Factor):功率因素是电动机额定功
率的cosθ值,其中θ是电流与电压之间的相角。

功率因素是衡量电动
机效能的重要参数,通常需要根据实际情况进行估算。

在实际应用中,通
常采用0.8到0.9之间的功率因素。

3.计算额定电流(I):额定电流可以通过以下公式计算:
I = P / (sqrt(3) * V * PF)
其中,sqrt(3)是三相电压的倍数,即1.732
4.举例计算:假设一个三相异步电动机的额定功率为10kW,额定电
压为380V,功率因素为0.85、那么,计算过程如下:
-计算额定电流:
I=10/(1.732*380*0.85)
≈17A
因此,这个三相异步电动机的额定电流为大约17安培。

请注意,这
只是一个示例,实际计算中需要根据具体的电机参数和要求进行计算。

总结起来,三相异步电动机的额定电流可以通过确定额定功率和额定
电压,计算功率因素,然后利用公式进行计算。

这个算法可以帮助工程师
和技术人员确定电动机的额定电流,从而为电动机的设计和应用提供指导。

三相异步电动机功率计算

三相异步电动机功率计算

三相异步电动机功率计算1.输入功率计算:输入功率实际上就是电动机的电功率,由电压、电流和功率因数决定。

对于三相异步电动机,输入功率的计算公式为:P = √3 × U × I × cosφ其中,P为输入功率(单位为瓦特),U为线电压(单位为伏特),I为电流(单位为安培),cosφ为功率因数。

2.输出功率计算:输出功率是指电动机转换的机械功率,也就是电动机输出的轴功率。

输出功率的计算公式为:P_out = T × n / 1000其中,P_out为输出功率(单位为千瓦),T为扭矩(单位为牛·米),n为转速(单位为转/分)。

计算输出功率之前,我们需要先计算电机的输出扭矩。

输出扭矩可以通过电机的滑差来求得,滑差的计算公式为:S=(Ns-N)/Ns其中,S为滑差,Ns为电机的同步速度,N为电机的实际速度。

电机的同步速度可以通过输入频率和电机的极数来计算Ns=120×f/P其中,Ns为同步速度(单位为转/分),f为电源频率(单位为赫兹),P为电机极数。

至此,我们可以根据电机的输出扭矩和转速来计算输出功率。

三相异步电动机的功率计算非常简单,只需要根据上述公式进行一系列计算即可。

需要注意的是,电机的输入功率和输出功率之间存在一定的损耗,称为电机的损耗或损耗功率。

损耗功率可以通过输入功率减去输出功率来计算,损耗功率的计算公式为:P_loss = P - P_out通过对三相异步电动机的功率计算,我们可以根据实际需求合理选择电动机,并确定电动机的运行条件,以提高电机的工作效率和使用寿命。

三相异步电机电流与功率的换算

三相异步电机电流与功率的换算

三相异步电机电流与功率的换算英文回答:Asynchronous motors, also known as induction motors, are widely used in various industrial applications. The current and power of a three-phase asynchronous motor can be converted using mathematical formulas and electrical principles.To convert the current of a three-phase asynchronous motor, we need to know the line current and the phase current. The line current is the current flowing through each phase of the motor, while the phase current is the current flowing through each winding of the motor. The relationship between the line current (IL) and the phase current (IP) is given by the formula:IL = √3 IP.Here, √3 is the square root of 3, which isapproximately 1.732. So, to convert the phase current to line current, we simply multipl y the phase current by √3.For example, if the phase current of a three-phase asynchronous motor is 10 A, then the line current can be calculated as:IL = √3 10 A = 17.32 A.Now let's move on to the conversion of power. The power of a three-phase asynchronous motor can be calculated using the formula:P = √3 VL IL cos(θ)。

电机功率因数计算公式表

电机功率因数计算公式表

电机功率因数计算公式表
1. 功率因数的定义。

- 功率因数(cosφ)是交流电路中有用功率与视在功率之比。

在电机电路中,视在功率S = UI(U为电压,I为电流),有用功率P = UIcosφ,所以cosφ=(P)/(S)。

2. 三相异步电机功率因数的计算相关公式。

- 对于三相异步电机,其输入功率P_1=√(3)U_LI_Lcosφ(U_L为线电压,I_L 为线电流),则功率因数cosφ=(P_1)/(√(3)U_L)I_{L}。

- 如果已知电机的输出功率P_2、效率eta和视在功率S,因为P_1 =
(P_2)/(eta),且S=√(3)U_LI_L,那么功率因数cosφ=(P_2)/(eta S)。

3. 直流电机功率因数计算(对于有换向器的直流电机,功率因数为1,但这里给出从功率关系角度的理解)
- 直流电机的输入功率P = UI(这里U为电枢电压,I为电枢电流),由于没有无功功率的概念(在理想情况下,忽略电枢反应等引起的磁场畸变等小影响),有用功率等于输入功率,视在功率也等于输入功率,所以功率因数cosφ = 1=(P)/(S)。

第22讲 三相异步电动机的功率和电磁转矩

第22讲 三相异步电动机的功率和电磁转矩
,这时 I 2 0
。定
I1 I 0 子电流特性曲线如图。
三相异步电动机的工作特性
三、功率因数特性 cos1 f (P2 )
异步电动机运行时需要从电网吸收 无功电流进行励磁,所以I1电流总是滞后 电源电压U1,功率因数 cos1 1 。空载时 ,定子电流为I0,基本为励磁电流,此时 功率因数为 cos1 0.1--0.2 左右。当负载 P2增大时,励磁电流I0保持不变,有功 电流随着P2的增大而增大,使 cos1 增大,接近额定负载时,功 cos1 0.76 0.9 左右。如超过额定功率后负载进一步 率因数最高, 增大,转速下降速度加快,s上升较快,使 R/s 下降较快,转 子电流有功分量所占比例下降,使定子电流有功分量比例也下 降,从而使 cos1反而减小,曲线如图。
T f (P2 ) 也为一直线。电磁转矩特性曲线如图。
R/s2
三相异步电动机的工作特性
五、效率特性 f (P2 )
根据效率公式,有
p P2 P1 p 1 P1 P1 P2 p
当P2变化时,效率η的变化取决于损耗 p的变化。而 损耗:
p p
Cu1
pCu1 pFe pCu2
pm+ps P2
P1
PM
Pm
异步电动机功率平衡流程图
二、三相异步电动机的转矩关系
异步电动机传输给转轴的总机械功率Pm就是电磁转矩T与 转轴机械角速度Ω的乘积,即
Pm T T
同时还可以表示为: T Pm Pm
Pm

2 n 60
Pm PM 2 n1 1 (1 s ) 60
2 ) P1k 3 I1k ( R1 R2
从而可求得:短路阻抗:

7.5kW 2极高效三相异步电机计算程序

7.5kW 2极高效三相异步电机计算程序

7.5kW 2极高效三相异步电机计算程序
设计高效三相感应电动机,型号是HMS132S2-2 7.5kW。

给定数据:输出额定功率P N=7.5kW,额定电压U N=400V(∆接法),额定频率为50HZ,极数P是2,相数m1=3.
表4-1三相异步电动机HMS132S2-2 7.5kW手算步骤与结果
4.2电磁方案的调整
判断电磁方案是否可行的话得看它的电磁性能能否满足设计任务书的要求,还要看它是否能够节约材料,节约加工时间和效率等因素,既要符合技术要求又要经济性能。

因此,设计异步电机时,1、好的优化设计并不够。

2、研究一下先进的技术和工艺,采用更加优良的材料。

经过这些处理,才能够设计并且造就出性能好的异步电机。

前面几章,重点介绍了电磁设计的原理与计算,参数计算以及启动性能的各方面计算,并且确定了三相异步电动机的转子、定子、铁心、端环等各种尺寸和数据。

如果经过核算得到设计的三相异步电动机的一些性能,这些性能并不能使得电机能够高效率的运行,那就得找出原因并且对电磁方案进行调整。

因为三相异步电机的各参数和性能是分不开的,所以采取某些措施来提高三相异步电机的各方面性能,必然会使其他的性能参数发生一些改变。

调整方案的过程中要系统
的分析与安排,并且有步骤的进行调整。

该过程可能比较复杂,所以得细心,要多次调整直到达到满意的结果。

对于提高电磁方案有许多方面。

我们可以调高效率η、提高功率因数cos α或者降低启动电流st I 以及提高启动转矩st T 都可以优化电机的电磁性能并使得电机能够高效的运行。

三相异步电动机运行功率估算方法

三相异步电动机运行功率估算方法
09 8 .5
C S OQ
089 .4
利用试验特性求c s , 电动机功率估算的 o@对
07 5
10 .0
09 5 5
09 7 4
084 .8
088 .8
6 22 9 5
9 3O 2 .0
7 4 8 4 34 2 .7 7 2
9 46 7 .6 6 36 3 9
o n c i n M o o s d o ng e c p Co p t r fI du t o t r Ba e n Si l - hi m u e
D i gLe n i
Au o o i a a e e t n t u eo A t m b l M n g m n si t fPL e I t
由此得 :

4 ・2 1 年第 4 《 4 01 期 电机 技 术》
研究与交流
基于单片机的异步 电动机转矩转速检测
丁 磊 中国人民解放军汽车管理学院 ( 3 0 1 23 1 )
Sp e nd T qu o t rng a d M e urng e d a or e M nio i n as i

要: 异步电机转速和电磁转矩的高精度估算是
l w o t i g e c i o u e ,2-i s ra n l g・ ・ i i l o c s n l ・ h p c mp t r - t e il a o - - g t s - 1 b a t d o a c n e t r g n r l u p s o t g d c r e ts n o swe e o v re , e e a r o ev l ea u r n e s r r p a n u e t o t e s e il e p e d t r u e s r e s d wi u p ca i d s e d a q e s n o si t h h t z n o n h h r wa e d sg ft e m o i r n d m e s i g s se . ad r ein o nt ig a au n y tm h o n r

三相异步电动机额定电流计算公式

三相异步电动机额定电流计算公式

三相异步电动机额定电流计算公式
1.计算公式:
额定电流(A)=额定功率(kW)/(3x额定电压(V)x功率因数)
2.解析:
额定电流是指电动机在额定条件下所需的电流,它是电动机的设计参
数之一、额定电流与电压、功率因数以及额定功率相关。

首先,额定功率是电动机能够持续输出的功率,通常以千瓦(kW)为
单位。

额定功率由电动机的制造商根据设计要求确定。

其次,额定电压是电动机在额定条件下所工作的电压。

通常,在不同
的国家或地区,电网的额定电压可能有所不同。

例如,在中国,电网的额
定电压通常为380V。

最后,功率因数是表示电动机输入功率与输出功率之间的比例关系。

它通常以小数形式表示,在0到1之间。

功率因数越接近1,表示电动机
的效率越高。

综上所述,通过以上计算公式,我们可以根据电动机的额定功率、额
定电压和功率因数来计算其额定电流。

需要注意的是,在实际工程中,还需要考虑电流的过载和起动冲击等
因素,以确保电动机的正常运行和安全性。

因此,除了额定电流计算公式外,还需要根据具体的应用场景进行调整和补充。

此外,三相异步电动机的额定电流还取决于电动机的类型和工作方式,例如全压起动、降压起动或变频起动等。

因此,在实际使用中,还需要根
据具体的电动机参数和工作方式来确定额定电流。

综上所述,三相异步电动机的额定电流计算公式可以根据额定功率、额定电压和功率因数来计算。

但是在实际工程中,还需要考虑其他因素,如电流过载和起动冲击等。

因此,需要根据具体的应用场景和电动机参数来确定额定电流。

三相电机的功率计算

三相电机的功率计算

三相电机的功率计算首先,三相电机的功率可以通过以下公式进行计算:功率(P)= 平方根(3)× 电流(I)× 电压(U)× 功率因数(cosθ)。

其中,平方根(3)是一个常数,表示三相电流与单相电流之间的倍数关系。

电流(I)是指三相电机的电流值,单位为安培(A)。

电压(U)表示三相电机的相间电压值,单位为伏特(V)。

功率因数(cosθ)是指三相电机的功率因数,无单位,其取值范围在-1到1之间。

然而,要计算三相电机的功率,我们还需要具体的数据,例如电流值、电压值以及功率因数的取值。

下面是计算三相电机功率的具体步骤:1.确定电流值:测量或查找三相电机的电流值。

通常情况下,电机的电流值会在电机铭牌上标明,也可以通过使用电流表测量电路中的电流来获取。

2.确定电压值:测量或查找三相电机的相间电压值。

和电流一样,电机的相间电压值通常会在电机铭牌上标明,也可以通过使用电压表测量电路中的电压来获取。

3.确定功率因数:功率因数可以通过查阅电机资料或者使用功率因数仪来获取。

功率因数是一个无单位的值,通常取值在-1到1之间。

功率因数表示了电机的有功功率和视在功率之间的比例关系。

如果功率因数为1,表示电机仅消耗有功功率;如果功率因数为0,表示电机的有功功率为0;如果功率因数为-1,表示电机仅消耗无功功率。

4.进行计算:将得到的电流值、电压值和功率因数代入功率计算公式中,进行计算。

需要注意的是,以上的计算方法适用于三相直流电机和三相交流电机,但是对于异步电机和同步电机来说,功率因数需要额外考虑到压强绕组的电抗功率和励磁绕组的有功功率。

对于异步电机,功率因数一般较低,通常在0.8-0.9左右;对于同步电机,功率因数一般接近于1此外,还需要了解功率计算的背景和应用场景。

在实际应用中,功率计算是对电机或电器的电气性能进行评估和控制的重要参考。

通过对功率的准确计算,可以确定电机的运行状况,调整电机运行的电流和电压,从而提高电机的效率和稳定性。

三相电机功率频率计算公式

三相电机功率频率计算公式

三相电机功率频率计算公式在工业生产中,三相电机是一种常见的电动机类型,它通常用于驱动各种设备和机械。

三相电机的功率和频率是其运行稳定性和效率的重要参数,因此了解如何计算三相电机的功率和频率是非常重要的。

本文将介绍三相电机功率和频率的计算公式及其应用。

首先,我们来看一下三相电机的功率计算公式。

三相电机的功率可以通过以下公式进行计算:P = √3 × V × I × cos(θ)。

其中,P代表功率,V代表电压,I代表电流,cos(θ)代表功率因数。

在这个公式中,√3是一个常数,代表三相系统中的平方根3。

功率因数是指电流和电压之间的相位差,通常情况下为0.8到0.9之间。

通过这个公式,我们可以计算出三相电机的功率,从而了解其在工作时所需的电能。

另外,三相电机的频率也是一个重要的参数。

在大多数国家和地区,电网的标准频率为50Hz或60Hz,因此三相电机通常需要在这个频率下运行。

三相电机的频率可以通过以下公式进行计算:f = P × 60 / (P × Pn)。

其中,f代表频率,P代表极对数,Pn代表同步转速。

在这个公式中,极对数是指电机的极数,通常情况下为2、4、6等偶数值。

同步转速是指电机在理想情况下的转速,通常情况下为3000转/分钟或3600转/分钟。

通过这个公式,我们可以计算出三相电机所需的频率,从而确保其在工作时能够正常运行。

除了功率和频率的计算公式,还有一些其他因素需要考虑。

例如,三相电机的效率也是一个重要的参数,它可以通过以下公式进行计算:η = Pout / Pin。

其中,η代表效率,Pout代表输出功率,Pin代表输入功率。

通过这个公式,我们可以了解三相电机的能量利用效率,从而优化其运行和维护。

另外,三相电机的负载特性也需要考虑。

在实际工作中,三相电机通常需要承担不同的负载,因此了解其负载特性对于合理选择电机和优化工作效率非常重要。

总之,三相电机的功率和频率是其运行稳定性和效率的重要参数,通过合理计算和分析这些参数,可以确保三相电机在工作时能够正常运行并达到最佳效果。

电机学第6章 三相异步电机的功率、转矩和运行性能

电机学第6章 三相异步电机的功率、转矩和运行性能
用 化不大时,可以认为是常数。pFe+pad0可 使 以近似认为与磁密的平方成正比,因而 习 可近似认为与电压的平方成正比。故p'0 学 与U12的关系曲线近似为一直线。 供 其延长线与纵轴交点即为机械损耗pmec。空载附加损耗相对较小,可 仅 以用其它试验将之与铁耗分离,也可根据统计值估计pad0,从而得到铁
习 TN为额定负载转矩
TN=PN/ΩN
供学 ③ 起动点:s=1 ,n=0,转子 仅 静止,Tem= Tst 。
sm
R2
R12 X1σ X 2σ 2
Tmax
4f1 R1
m1 pU12
R12
X1σ
X
2 σ
2
2014/11/11
10
起动转矩的几个重要结论
用 Tst
2πf1[(R1
pm1U 12 R2' R2' )2 ( X1σ
很低;

使 • 随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升
高;
习 • 在额定功率附近,功率因数达到
最大值。

供 • 如果负载继续增大,则导致转子
漏电抗增大(漏电抗与频率成正比
仅 ),从而引起功率因数下降。
2014/11/11
16
五、效率特性
P2
用 P2 pcu1 pcu 2 pFe p pad
供学习使 Tem
Pem 1
m1 pU12
R2 s
2f1
R1
R2 s
2
X1σ
X
2 σ
2
仅 1. Tem与U12成正比。
2. f1↑→ Tem ↓。
3. 漏电抗Xk↑→ Tem↓。

(完整版)三相异步电动机电磁计算

(完整版)三相异步电动机电磁计算

(完整版)三相异步电动机电磁计算三相电机额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW, p=4极1.型号:Y132M2.输出功率:P N=8KW3.相数:m1=34.接法:5.相电压:Uφ=380V6.功电流:I w=P2×103m1UΦ=8×1033×380=7.018A7.极对数:p=28.定⼦槽数:Z1=369.转⼦槽数:Z2=3210.定⼦每极每相槽数:Qp1=Z12pm1=362×2×3=311.定⼦外径:D1=21cm定⼦内径:D i1=13.6cm⽓隙长度:δ=0.4mm转⼦外径:D2=13.52cm 13.6-0.04*2=13.52cm转⼦内径:D i2=4.8cm定⼦槽型:半闭⼝圆底槽定⼦槽尺⼨:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm转⼦槽形:梯形槽转⼦槽尺⼨:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm12.极距:τ=πD i12p =3.1415×13.64=10.681cm13.定⼦齿距:t1=πD i1Z1=3.1415×13.636=1.187cm14.转⼦齿距:t2=πD2Z2=3.1415×13.5232=1.327cm15.⽓隙长度:δ=0.04cm16.转⼦斜槽距:b sk=t1=1.187cm17.铁芯长度:l=16cm18.铁芯有效长度:⽆径向通风道:l ef=l+2δ=16.08cm19.净铁芯长:⽆径向通风道:l Fe=K Fe l=0.95*16=15.2cmK Fe=0.95(不涂漆)20.绕组型式:单层交叉式21.并联⽀路数:a1=122.节距:1-9,2-10,11-1823.每槽导线数:由后⾯计算的数据根据公式计算为:每极磁通φ1=0.00784wb波幅系数:K A=1.46绕组系数:K dp1=0.96每相串联有效导线数:Nφ1K dp1=K z′U1×10?2K Aφ1×50f1=1.21×380×10?2 1.46×0.00784×5050=401.70 K’z取1.21每相串联导线数:Nφ1=Nφ1K dp1K dp1=401.700.96=418每槽导线数:N1‘=41812=34.83取整数:N1=3524.线规:导线并饶根数与截⾯积之积(式中的值由其后的公式算得):N1’A1′=I1a1J1=9.16271×5.19=1.7655mm2由此可通过查表知线规为:2-1.06(N-φ)25.每根导线截⾯积:A cl=0.00882cm226.槽有效⾯积:A e=A s-A i=1.1444cm2A s=2R+b s12×(h s′?h)+πR22A i=C i(2h s12+πR)C i-绝缘厚度 h-槽楔厚度 C i=0.08mm27.槽满率:k s=N s1N cl d2A e ×100%=2×35×0.0131.1444=79.5%d-绝缘导线外径 d=1.14mm28. 每相串联导线数:N φ1=Z 1N s1ma 1=35×363=42029. 绕组分布系数:K d1=sin (α2q 1)q 1sin (α2)=0.96q 1=Z 12pm=364×3=3α=2pπZ 1=2×2×180°36=20°30. 绕组短距系数:K p1=sin (β×90°)=1 β=y mq 131. 绕组系数:K dp1=K d1K p1=0.96⼆.磁路计算32. 每极磁通:?1=K E U ?2.22fN ?1K dp1=0.00784Wb =380×0.9232.22×50×420×0.96K E =0.923 K E 范围0.85-0.95 33. 定⼦齿截⾯积:A t1= b t1l Fe Z 12p =76.05cm 2 34. 转⼦齿截⾯积:A t2=b t2l Fe Z 22p=75.95cm 2b t1,b t2-定,转⼦齿宽35. 定⼦轭部截⾯积:A j1=h j ′l Fe =1.877×15.2=28.53cm 2 h j ′=D 1D i12h s +13R =3.7?(0.08+1.45+0.44)+0.443=1.87736. 转⼦轭部截⾯积:A j2=h j2′l Fe =30.65cm 2 h j2′=D 2?D i22h R 23d k =2.016因⽆通风孔d k =037. 空⽓隙⾯积:A δ=τl ef =10.681×16.08=171.8cm 2 38. 波幅系数:K A =1.46 K S =1.276 K A 由饱和系数K S 查得,开始计算时先假定K S39. 定⼦齿磁密:B t1=K A1A t1×104=1.46×0.0078476.05×104=1.505T40. 转⼦齿磁密:B t2=K A1A t2×104=1.46×0.0078475.95×104=1.507T41. 定⼦轭磁密:B j1=12×?1A j1×104=12×0.0078428.53×104=1.37T 42. 转⼦轭磁密:B j2=12×?1A j2×104=12×0.0078430.65×104=1.28T43. ⽓隙磁密:B δ=K A1A δ×104=1.46×0.00784171.8×104=0.666T44. 定⼦齿磁场强度:H T1=20.58A/cm (查表硅钢⽚磁化曲线) 45. 转⼦齿磁场强度:H t2=20.79A/cm (查表硅钢⽚磁化曲线) 46. 定⼦轭磁场强度:H j1=11.44A/cm (查表硅钢⽚磁化曲线) 47. 转⼦轭磁场强度:H j2=8.43A/cm (查表硅钢⽚磁化曲线) 48. 定⼦齿磁路计算长度:h T1′=h s1+h s2+R3=1.597cm49. 转⼦齿磁路计算长度:h T2′=h R1+h R2=2.3cm 50. 定⼦轭磁路计算长度:l j1′=π(D i1?h j1′)4p=7.51cm 51.转⼦轭部磁路计算长度:l j2′=π(D i2+h j2′)4p=2.67cm52. ⽓隙磁路计算长度:δe =δK c1K c2=0.4×1.308×1.031÷10=0.05393cm K c1=t1t1?r1δK c2=t2t2?r2δt-齿距 b0-槽⼝宽53.定⼦齿磁位降:F t1=H t1×h t1′=32.86A54.转⼦齿磁位降:F t2=H t2×h t2′=47.81A55.定⼦轭部磁位降:F j1=C1H j1l j1′=43.31AC1=0.504 定⼦轭部磁路校正系数56.转⼦轭部磁位降:F j2=C2H j2l j2′=9.23AC2=0.41 转⼦轭部磁路校正系数57.⽓隙磁位降:Fδ=0.8Bδδe×104=0.8×0.666×0.05393×104=287.34A58.饱和系数:K s=F t1+F t2+FδFδ=32.86+47.81+287.34287.34=1.28与38项⽐对59.总磁位降:F=F t1+F t2+F j1+F j2+Fδ=32.86+47.81+43.31+9.23+287.34=420.55A60.励磁电流:I m=4.44pFmN?1K dp1=4.44×2×420.553×420×0.96=3.087A61.励磁电流标⼳值:I m?=I mI w =3.0877.018=0.439962.励磁电抗标⼳值:X m?=1I m?=10.4399=2.2732三.参数计算63.线圈平均半匝长度:l c1=l e+2(d+l E′)=31.22cmd=1.5cm(直线部分伸出长) l E′=kτck对2,4极取0.58 τc-平均节距τc=10.54cm64. 线圈端部平均长度:l E =2(l E ′+d )=15.22cm 65. 线圈端部轴向投影长度:f d =l E ′sin α=3.77cm 66. 阻抗折算系数:K z =m 1(N ?1K dp1)2m 2(N ?2K dp2)2=15241式中:对笼型转⼦m 2=Z 2,N ?2=1,K dp2=1 67. 定⼦相电阻:R 1=ρ1N ?1lc1a 1N c1A c1=1.61Ωρ1-导线电阻率标⼳值:R 1?=R 1I w U ?=0.029768. 转⼦导条电阻:R B =K zK B ρB l B A B=1.1407Ω式中:K B =1.04(对铸铝转⼦) ρB -导条电阻率 l B =16cm(转⼦导条长度) A B =0.965cm 2(每根导条截⾯积) 标⼳值:R B ?=R B ×I 2U ?=1.1407×7.018380=0.021169. 转⼦端环电阻:R R =K zρR Z z D R2πp 2A R =0.3467ΩρR-端环电阻系数 D R-端环平均直径(10.7cm) A R-端环截⾯积(2.6cm2)标⼳值:R R?=R R I wU?=0.3467×7.018380=0.00670.转⼦电阻标⼳值:R2?=R B?+R R?=0.0211+0.006=0.027171.漏抗系数:C x=0.4π2fl ef(N?12pq1)(I wU?)×10?5=0.4×3.14152×50×16.08×(42022×3)(7.018380)×10?8=0.0172372.定⼦槽漏磁导:λs1=K U1λU1+K c1λc1=1.2431K U1=1 K c1=1 λU1=0.4097 λc1=0.833473.定⼦槽漏抗:X s1?=(lσ1l ef )λc1C x=(1616.08)×0.8334×0.01723=0.01429lσ1=l1(对⽆径向通风道)74.定⼦谐波漏磁导:λd1=0.0129对60°相带整数槽绕组,且23≤β≤1λd1=π218×[(5q12+1)?(14cq1+23c2?14c3q1)3q12]?K dp12式中:c-短距槽数,c=8q1(1-p)75.定⼦谐波漏抗:x d1?=m1q1τπ2δef K sλd1C x=1.8243×0.01723=0.0314376.定⼦端部漏磁导:λE1=0.67(l E-0.64τc)=5.677877.定⼦端部漏抗:X E1?=(q1l ef )λE1C x=(316.08)×5.6778×0.01723=0.0182578. 定⼦漏抗标⼳值:X 1?=X s1?+X d1?+X E1? =0.01429+0.03142+0.01825=0.0639779. 转⼦槽漏磁导:λs2=λU2+λc2=2.1754 λU2=h R0b 02=0.5(槽上部漏磁导)λL2=1.6754(槽下部漏磁导)80. 转⼦槽漏抗:X s2?=(lσ2l ef)K dp12(Z1Z 2)λs2C x =0.03862=2.2413×0.01723 l σ2=l 281. 转⼦谐波漏磁导:对笼型转⼦:λd2=∑1(k Z 2p ±1)2=0.013K=1,2,3 82.转⼦谐波漏抗:X d2=m 1q 1τK dp12πδef K sλd2C x =1.6757×0.01723=0.0288783. 转⼦端部漏磁导:λE2=0.757(l Bl 21.13+D R 2p)=2.025(对笼型转⼦)84. 转⼦端部漏抗:X E2?=q 1l efK dp12λE2C x =0.3478×0.01723=0.00599 85.转⼦斜槽漏抗:X sk=0.5(b sk t 2)2X d2=0.5×(1.1871.327)2×0.02887=0.0115586. 转⼦漏抗标⼳值:X 2?=X s2?+X d2?+X E2?+X sk ?=0.08503 87. 运⾏总漏抗:X ?=X 1?+X 2?=0.06397+0.08503=0.149四.运⾏性能计算88.满载电流有功分量:I p?=1η=10.88=1.136设η=0.88 η?效率89.满载电抗电流:I x?=σ1X?I p?2[1+(σ1X?I p?)2]=1.0281×0.149×1.1362×[1+(1.0281×0.149×1.136)2]=0.2037式中:σ1=1+I m?X1?=1+0.4399×0.06397=1.0281 90.满载电流⽆功分量:I Q?=I m?+I x?=0.4399+0.2037= 0.643691.满载电动势⽐值:K E=1?(I p?R1?+I Q?X1?)=1?(1.136×0.0297+0.6436×0.06397)=0.925与32项进⾏⽐对92.定⼦电流:I1?=√I p?2+I Q?2=√1.1362+0.64362=1.3056I1=I1?I w=1.3056×7.018=9.1627A93.转⼦导条电流:I2?=√I p?2+I x?2=√1.1362+0.20372=1.154I2=I2?I w K1=1.154×7.018×37.8=306.13AK1-电流折算系数K1=m1N?1K dp1Z2=3×420×0.9632=37.894.转⼦端环电流:I R=Z22πp I2=322×3.1415×2×306.13=779.58A95.定⼦电密:J1=I1a1N c1A c1×102=9.16271×1.76423=5.19A/mm296.线负荷:A1=m1Z?1I1πD i1=3×420×9.16273.1415×13.6=270.22Acm97.热负荷:AJ1=A1J1=1402.4498.转⼦导条电密:J B=I2A B×102=306.130.965×102=3.17A/mm299.转⼦端环电密:J R=I RA R×102=779.582.6×100=2.998A/mm2100.空载电动势⽐值:K E0=1?I m?X1?=1?0.4399×0.06397=0.9719101.空载定⼦齿磁密:B t10=K E0K E B t1=0.97190.925×1.505=1.5813T102.空载定⼦轭磁密:B j10=K E0K E B j1=0.97190.925×1.37=1.4395T103.定⼦齿单位铁损耗:p t1由B t10查表得44.02×10?3W/cm3 104.定⼦轭单位铁损耗:p j1由B j10查表的36.7×10?3W/cm3 105.定⼦齿体积:V t1=2pA t1h t1′=485.68cm3106.定⼦轭体积:V j1=4pA j1l j1′=1713.73cm3107.铁损耗:P Fe=k1pt1V t1+k2pj1V j1对半闭⼝槽:k1=2.5,k2=2P Fe=(2.5×44.02×485.68+2×36.7×1713.73)×10?3= 179.24W标⼳值:P Fe?=P FeP N×103=0.0224108.基本铁耗:P Fe1?=pt1V t1+pj1V j1 P N×10=44.02×10?3×485.68+36.7×10?3×1713.738000=0.01053109.定⼦电阻损耗:P cu1?=I1?2R1?=1.30562×0.0297=0.0506P cu1=P cu1?P N ×103=0.0506×8000=404.8W110. 转⼦电阻损耗:P cu2?=I 2?2R 2=1.1542×0.0271=0.0361 P cu2=P cu2P N ×103=288.8W 111. 风摩损耗:P fv *参考试验值确定为0.01 P fv =P fv ?P N ×103=0.01×8000=80W 112. 杂散损耗:P s *对铸铝转⼦可取0.02P s =P s ?P N ×103=0.02×8000=160W113. 总损耗:∑P ?=P cu1?+P cu2?+P Fe ?+P fv ?+P s ?=0.0506+0.0361+0.0224+0.01+0.02=0.1391 114. 输⼊功率:P 1 =1+∑P =1.1391 115. 满载效率:η=1?∑P ?P 1=10.13911.1391=0.878η?η′η=0.878?0.880.878=?0.0023>?0.005与88项假定值⽐对116. 功率因数:cos φ=1I 1?η=11.3056×0.878=0.872117. 满载转差率:S N =P cu2?P em=0.03611.07797=0.0335P em *-⽓隙电磁功率P em ?=P 1??P cu1??P Fe1?=1.07797118. 额定转速:n N =60f (1?S N )p=60×50×(1?0.0335)2=1449.75r/min119. 最⼤转矩倍数: T max ?=N2×(R 1+√R 1+X ?2)=2×(0.0297+√0.02972+0.1492)=2.66五.起动性能计算I st =(2.5~3.5)T max ?×I w =61.8A120. 起动时槽磁动势: F st =0.707I stN ?1a 1×(K V1+K dp1K d1Z1Z2)√K E0=3071.09A121. 虚拟磁密:B L =F st ×10?41.6δβc=5.0241TβL =0.64+2.5√δt 1+t 2=0.955122. 起动漏磁饱和系数:K as =0.418123. 定⼦槽⼝宽增⼤:?b 01=(t 1?b 01)(1?k as )=0.4874 124. 转⼦槽⼝宽增⼤:?b 02=(t 2?b 02)(1?k as )=0.7141 125. 定⼦槽上部漏磁导减少:?λU1=h r0?0.58h r1b 01(b 01b 01+1.5b 01)=0.1836126. 转⼦槽上部漏磁导减少:?λU2=h R0b 02(b 02b 02+b 02)=0.4397127. 起动定⼦槽漏磁导:λs1st =K U1(λU1??λU1)+K c1λc1=1.0596 128. 起动定⼦槽漏抗标⼳值:X s1st ?=λs1st λs1X s1?=1.05961.2431×0.01429=0.01218129. 起动定⼦谐波漏抗标⼳值:X d1st ?=k as X d1?=0.01218 130. 定⼦起动漏抗标⼳值:X 1st ?=X s1st ?+X d1st ?+X E1? =0.01218+0.01313+0.01825=0.04356131. 挤流转⼦导条相对⾼度:ε=2πh B √b Bb s fρB ×109=1.551h B -转⼦导条⾼度(cm ) b Rb S-转⼦导条宽与槽宽之⽐,对铸铝转⼦为1ρB -转⼦导条电阻率 h B =2.35cm 132. 导条电阻等效⾼度:h ρR =h B φ(ε)k a=2.351.45×1=1.621133. 槽漏抗等效⾼度:h ρx =h B ψ(ε)k a =2.35×0.78×1=1.833 134. 挤流电阻增⼤系数:K R =(1+a )φ2(ε)1+a [2φ(ε)?1]=1.308a =b 1b 2135. 挤流漏抗减少系数:K x =b 2(1+a )2ψ(ε)b px(1+a ′)2(K r1′K r1)=0.888a ′=b 1b pxb px =b 1+(b 2??b 1)ψ(ε)136. 起动转⼦槽下部漏磁导:λL2st =K x λL2=K X ×2h 1b 0+b 1+λL =1.4875 λL =4β(1+α)k τ1137. 起动转⼦槽漏磁导:λs2(st )=(λU2??λU2)+λL2st =1.5478 138. 起动转⼦槽漏抗标⼳值:X s2st ?=λs2st λs2×X s2?=0.0275139. 起动转⼦谐波漏抗标⼳值:X d2st ?=k as X d2?=0.01207 140. 起动转⼦斜槽漏抗标⼳值:X skst ?=k as X sk ?=0.0048 141. 转⼦起动漏抗标⼳值:X 2st ?=X s2st ?+X d2st ?+X E2?+X skst ?=0.05036 142. 起动总漏抗标⼳值:X st ?=X 1st ?+X 2st ?=0.04356+0.05036=0.09392143. R Bst ?=[k R(l efN V2b 02l B)+l B ?(l f ?N V2b 02)l B]×R B ?=0.0276144. 转⼦起动电阻标⼳值:R 2st ?=R Bst ?+R R ?=0.0276+0.006=0.0336 145. 起动总电阻标⼳值:R st ?=R 1?+R 2st ?=0.0297+0.0336=0.0633 146. 起动总阻抗:Z st ?=√R st ?2+X st ?2=0.1133147. 起动电流:I st =I KwZ st=7.0180.1133=61.94A61.94?61.861.94=0.0023<0.005148. 起动电流倍数:I st ?=61.949.1627=6.76 149. 起动转矩倍数:T st ?=R 2(st )Z st ?2(1?S N )=0.03360.11332×(1?0.0335)=2.53。

三相异步电动机输出功率公式

三相异步电动机输出功率公式

三相异步电动机输出功率公式说到三相异步电动机,大家可能会想:“这玩意儿跟我有什么关系?”其实啊,别小看这个机器,它可是咱们生活中无处不在的小帮手。

无论是在工厂里轰鸣的机械,还是家里那个咕噜咕噜转的洗衣机,没它可真不行。

哎呀,你瞧,电动机的输出功率可不是随便说说的,它可是个讲究,咱们今天就来聊聊它的输出功率公式,保证让你听得明明白白的。

说起输出功率,这里头可有个大学问。

你想啊,电动机工作的时候可不能只靠电,就像咱们吃饭得有米,电动机要想“活”得好,它得有功率。

功率,简单说就是它能干多少活儿。

就像咱们上班,如果工资不高,工作积极性肯定低嘛。

电动机也是,功率高了,干的活儿就多,运转得也顺畅。

这输出功率的公式可真不是随便来的,它有个精妙的计算法,听着就让人觉得科学感满满。

这里有个公式,咱们可以简单聊聊,电动机的输出功率等于电流乘以电压,再乘以一个效率系数。

哎,听起来是不是有点复杂?别担心,我来给你拆开说。

电流就像是河里的水,流得越多,动力越足;电压则像是水的高度,水位高,冲劲儿更猛。

你看,这两者结合起来,就像是把力量和速度都调动起来了。

然后,这个效率系数呢,基本上就是告诉你,电动机能把多少电能转化为机械能。

就好比咱们做事,得用对劲儿,效率才高嘛。

再说了,三相异步电动机最有趣的地方在于它的运行原理。

它的运转就像是一个旋转的舞蹈,三相电源供电,电动机的转子在电磁场的作用下不断旋转,发出那种嗡嗡的声音,听着就让人觉得有点儿科技感。

哎,真的是“运转如飞”,跟过山车似的,刺激又让人心跳加速。

可别小看这声音,里面可蕴藏着不少知识呢,像是输出功率的提升,跟电动机的设计、材料都有关系,真是“天时地利人和”齐全了。

提到输出功率,咱也不能忽视电动机的负载情况。

负载就像你背的书包,重了就得用更多力气,电动机也是一样。

负载重,功率自然得上去;负载轻,功率也得适当调低。

你说这不是因势利导嘛,电动机就跟咱们一样,得看情况而定。

不过,别忘了,电动机还得保持一定的运行效率,才能不被“拖累”。

电机功率计算公式

电机功率计算公式

电机电流计算公式:单相电动机电流计算公式I=P/(U*cosfi)例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p三相电动机电流计算公式I=P/(1.732*U*cosfi)例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a电机功率计算公式:(常用三相电机功率计算)P1=1.732*U*I*cosφ其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8计算公式为:P2=3*P1这是三相电源Y线功率的三倍。

[导读]电动机的功率应根据生产机械所需功率选择,使电动机尽可能在额定负荷下运行。

选择时要注意以下两点:电动机的功率应根据生产机械所需功率选择,使电动机尽可能在额定负荷下运行。

选择时要注意以下两点:①如果电机功率过小,会出现“小马拉车”现象,导致电机长时间过载,其绝缘层会因受热而损坏,甚至导致电机烧毁。

②如果电机功率过大,机械输出功率不能充分利用,功率因数和效率不高,不仅会给用户和电网带来损失,还会浪费电能。

最重要的是,所有的传动元件都会对传动功率过大,造成传动元件的过度选用和设备投资的严重浪费。

电机电流计算公式:单相电动机电流计算公式I=P/(U*cosfi)例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p三相电动机电流计算公式I=P/(1.732*U*cosfi)例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a电机功率计算公式:(常用三相电机功率计算)P1=1.732*U*I*cosφ其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8计算公式为:P2=3*P1这是三相电源Y线功率的三倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机功率的计算
一、问题的由来
前两天国家抽验XA5032,我被临时调到现场帮忙,偶然被问到测量电机功率的问题,才发现基础知识已忘记太多了,现总结在此。

这些知识虽与数控机床关系不大,与嵌入式系统距离更远,不过作为基础知识了解一下还是很有必要的。

二、问题的起因
※现场找不到功率表,要求以钳式电流表代替。

即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。

※工人师傅的经验公式为:P=0.5*I其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。

然则问题是,何以证明此经验公式?
三、问题的研究
电机是普通三相异步电动机,Y型接法。

额定电压380V,额定功率7.5KW,额定电流15.2A。

通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中:
p为三相电机总功率,单位瓦
u为相电压,单位伏
i为相电流,单位安注:暂用字母大小写区分相电压与线电压
又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中:
p为三相电机总功率,单位瓦
U为线电压,即380伏
I为线电流,即钳式电流表实测电流,单位安
故:得到公式p=1.732*U*I
四、问题的解决
综上,P=1.732*U*I*cosφ/1000,其中:
P为三相电机有功功率,单位千瓦
U为线电压,即380伏
I为线电流,即钳式电流表实测电流,单位安
cosφ为功率因数,针对电机通常取0.8
故:P=0.52*I≈0.5*I(KW),公式得证。

五、问题的补充
1三相四线制
三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。

故三根相线、一根中性线。

三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。

故三根相线、一根工作零线、一根保护零线。

单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。

故相线、零线、接地线。

三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。

2Y型接法
采用三相三线制的三角形接法,为三组线圈头尾相接,适用于4.5KW以下电动机
采用三相四线制的Y形接法又称星形接法,为三组线圈的三个尾相接,形成一个Y形,适用于4.5KW以上电动机
3线电压,线电流
相电压是指一相负载对地的电压,在三相四线制中,也就是相线与中性线之间的电压。

线电压是相与相的电压,在三相四线制中,也就是各相线之间的电压。

故在采用三相四线制的Y形接法中,线电压等于1.732倍相电压,线电流等于相电流。

另外,在采用三相三线制的三角形接法中,线电压等于相电压,线电流等于1.732倍相电流。

4功率因数
电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ表示,而功率因数就是cosφ。

空载时,定子电流基本上用来产生主磁通,有功功率很小,功率因数也很低;
随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升高;
在额定功率附近,功率因数达到最大值。

针对三相电机取0.8。

如果负载继续增大,则导致转子漏电抗增大(漏电抗与频率正比),从而引起功率因数下降。

5满功率
计算切宽*切深*进给,单位立方厘米/分钟
通过查看《考核金属切削量》可知,针对7.5KW三相异步电动机,切削45号钢,当上述数值在90-120范围内时,可认为机床满负荷切削,电机满功率工作,即功率因数达到0.8。

相关文档
最新文档