小学数学六年级数学难题(含详细答案)

合集下载

小学六年级数学难题大全及答案

小学六年级数学难题大全及答案

小学六年级数学难题大全及答案小学六年级数学难题大全及答案1甲与乙分别从A.B两地同时出发,两者相向而行,在距B地160m处相遇;甲到B地后返回A地,乙到A地后返回B地,两者又在距A地80m处相遇。

假设速度不变,则AB全长——设:全长为S(S-160)/160=(2S-80)/(S+80)∴(S-160)(S+80)=160(2S-80)S^2-80S-12800=320S-12800S^2-80S-320S=0S-80-320=0S=400甲与乙分别从A.B两地同时出发,两者相向而行,甲从A到B地后停止前行,乙则往返于BA两地之间。

已知出发后160分钟两者第一次相遇,相遇后又过了20分钟乙第一次从后面追上甲。

假设速度不变,求甲在从A到B地的过程中,乙从后面追上甲——次设:甲速度为w,乙为v,全长为S160(w+v)=S180(w-v)=S①180(w-v)=160(w+v)180w-180v=160w+160v20w=340vw=17v②∵每过两个全长会追上一次∴a=17/2=8.5≈8甲乙两人骑摩托车同时从A地出发前往B地,且两人到达B地后各自按原速度返回,且往返于AB之间,甲速度为32km/h,乙速度为18km/h,当乙车由A 至B多次后,甲车两次追上乙车,且第二次追上乙车时是在乙车至B向A的行驶过程中,且此时距B地10km,则AB相距——km。

设:全长为S,第二次追上时,甲走了mS+10,乙走了nS+10mS+10-(nS+10)=4S(mS+10)/(nS+10)=32/18①18mS+180=32nS+32018mS-32nS=140∴9mS-16nS=70②∵mS+10-nS-10=4S∴m-n=4∴m=4+n9(4+n)S-16nS=7036S+9nS-16nS=7036S-7nS=70(36-7n)S=70③∵n为正奇数∴n=1,n=3,n=5......∵70/(36-7n)>10∴n=3,S=70一个人在环线上骑自行车,每3分钟就有一辆公交车从前向后驶过;每9分钟就有一辆公交车从后向前驶过。

数学题六年级难题试卷答案

数学题六年级难题试卷答案

一、选择题(每题5分,共20分)1. 已知正方形的周长为20厘米,则该正方形的面积是多少平方厘米?A. 50平方厘米B. 64平方厘米C. 100平方厘米D. 144平方厘米答案:C解析:正方形的周长等于4倍的边长,所以边长为20厘米÷ 4 = 5厘米。

正方形的面积等于边长的平方,即5厘米× 5厘米 = 25平方厘米。

因此,正确答案是C。

2. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,则该长方体的体积是多少立方厘米?A. 72立方厘米B. 96立方厘米C. 108立方厘米D. 120立方厘米答案:A解析:长方体的体积等于长、宽、高的乘积,即6厘米× 4厘米× 3厘米 = 72立方厘米。

因此,正确答案是A。

3. 小明骑自行车从A地到B地,先以每小时15千米的速度行驶了2小时,然后以每小时20千米的速度行驶了3小时。

问小明一共行驶了多少千米?A. 90千米B. 100千米C. 105千米D. 120千米答案:C解析:小明先以15千米/小时的速度行驶了2小时,行驶的距离为15千米/小时× 2小时 = 30千米。

然后以20千米/小时的速度行驶了3小时,行驶的距离为20千米/小时× 3小时 = 60千米。

所以小明一共行驶了30千米 + 60千米 = 90千米。

因此,正确答案是C。

4. 一个等腰三角形的底边长为10厘米,腰长为8厘米,则该三角形的面积是多少平方厘米?A. 32平方厘米B. 40平方厘米C. 48平方厘米D. 56平方厘米答案:B解析:等腰三角形的面积可以通过底边和高的乘积除以2来计算。

首先,作高线将等腰三角形分成两个相等的直角三角形,其中直角三角形的底边为5厘米(10厘米÷ 2),腰长为8厘米。

根据勾股定理,高为√(8^2 - 5^2) = √(64 - 25) = √39。

所以,等腰三角形的面积为10厘米× √39厘米÷ 2 ≈ 40平方厘米。

小学六年级下册数学难题:试题及详细答案6

小学六年级下册数学难题:试题及详细答案6

六年级数学培训一、典型例题分析例题1 某同学到集贸市场买苹果,买每公斤3元的苹果用去所带钱数的一半,而其余的钱都买了每公斤2元的苹果,则该同学所买的苹果的平均价格是每公斤多少元?A .2.6.B .2.5.C .2.4.D .2.3..设该同学买了3元一公斤的苹果x 公斤,2了x+y 公斤苹果,花去了3x+2y=6x 元.所以所买的例题2已知p 、q 均为质数,并且存在两个正整数m,n,使得p=m+n,q=mn,求p qnm p q m n ++的值。

∵q 是质数,q=m ×n ,所以m ,n 只能一个为1,另一个为q .此时p=m+n=1+q ,而p 又是质数,只能p=3,q=2.即m ,n 一个是1,另一个是2.例题3一个四位数能被9整除,去掉末位数字后所得的三位数恰是4的倍数,则这样的四位数中最大的一个的末位数字是什么?例题4在某浓度的盐水中加入一杯水后,得到新盐水,它的浓度为20%,又在新盐水中加入与前述一杯水的重量相等的纯盐合,盐水浓度变为3313%,那么原来盐水的浓度是多少? 设原盐水溶液为a 克,其中含纯盐m 克,后加入“一杯水”为x 克,依题意得由①a+x=5m ③由②a+2x=3m+3x 即a-x=3m ④③+④得2a=8m,∴a=4m.例题5从3点15分开始到时针与分针第一次成30°角,需要的时间是多少分钟?作为追及问题,由于3点15分时分钟与时针成角小于30°,所以分针必须追上时针并超出例题6甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇,已知每秒钟甲比乙多行0.1米,那么两人第三次相遇的地点与点A沿跑道上的最短距离是______米.解法1(方程法):设乙每秒行x米,则甲每秒行(x+0.1)米,依题意有8×60(x+x+0.1)=400×3,解得x=1.2则在8分钟内,乙共行1.2×60×8=576(米)去掉乙走过了一整圈400米,还余176米,由于不足200米,故是相遇地点沿跑道距A点的最短距离.解法2(算述法):在8分钟内,甲比乙共多行0.1×60×8=48米,这时一共有了三圈,每圈甲比乙多行16米,即相遇地是越过此出发地始终端的400米跑道的中点16÷2=8(米).三圈累计,越过8×3=24(米).所以第三次相遇点距A沿跑道的距离是176米或224米,较小值176米是所求的最短距离.例题717个连续整数的和是306,那么紧接在这17个数后面的那17个连续整数的和等于________.设17个连续整数为m,m+1,m+2,…,m+16 ①有m+(m+1)+…+(m+16)=306.它后面紧接的17个连续自然数应为m+17,m+18,m+19,…,m+33②②的每一项比①中对应项多17,所以②中17个数总和比①中17个数总和多17×17,所以②中17个数总和为306+17×17=595.例题8对于不小于3的自然数n,规定如下一种操作:<n>表示不是n的约数的最小自然数,如<7>=2,<12>=5等等,则<<19>×<98>>=_______.(式中的×表示乘法)根据定义,<n >表示不是n 的约数的最小自然数.我们可以求得:<19>=2,<98>=3∴ <19>×<98>=2×3=6<<19>×<98>>=<6>=4.例题9某校运动会在400米球形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分时甲加快速度,在第18分时甲追上乙并且开始超过乙,在第23分时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙匀速跑完全程所用的时间是________分.设出发时甲速度为a 米/分,乙速度为b 米/分.第15分甲提高的速度为x 米/分,所以第15分后甲的速度是(a +x )米/分.依题意,到第15分时,乙比甲多跑15(b -a )米,甲提速后3分钟(即第18分)追上乙,所以(a +x -b )×3=15(b -a ) ①接着甲又跑了5分(即第23分钟),已经超过乙一圈(400米)再次追上乙,所以(a +x -b )×5=400 ②到了第23分50秒时甲跑完10000米,这10000米解①,②得b -a =16米/分,x =96米/分.代入③a =384米/分,所以b =400米/分.乙是一直以400米/分的速度跑完10000米的,所以乙跑完全程所用的时间是25分.例题10 A 、B 两个港口相距300公里.若甲船顺水自A 驶向B,乙船同时自B 逆水驶向A,两船在C 处相遇.若乙船顺水自A 驶向B,甲船同时自B 逆水驶向A,则两船于D 处相遇,C 、D 相距30公里.已知甲船速度为27公里/小时,则乙船速度是______公里/ 小时..已知A 、B 两港相距300公里,甲船速为27公里/小时.设乙船速为v 公里/ 小时,小流速为x 公里/小时,则甲船顺水速为(27+x)公里/小时,逆水速为(27-x)公里/小时.乙船顺水速为(v+x)公里/小时,逆水速为(v-x)公里/小时.甲船自A 顺水,乙船自B 逆水同时相向而行,相遇在C 处时间为:300300(27)()27x v x v=++-+同理,乙船自A 顺水,甲船自B 逆水同时相向而行,相遇在D 处所需时间为: 300300(27)()27x v x v =-+++可见,两个时间相等.由图易见,30027v +小时中,乙船比甲船多走30公里,即:300300()(27)302727v x x v v +-+=++, []300()(27)3027v x x v +-+=+,2712710v v -=+,v=33.如果C 在D 的右边,由图15易见,30027v +小时中,甲船比乙船多走30公里,即:300300(27)()302727x v x v v +•-+•=++,v=22111.答:若C 在D 的左边,乙船速度是33公里/小时;若C 在D 的右边,乙船速度是11122公里/小时.。

小学六年级下册数学经典题难题专项练习含解析

小学六年级下册数学经典题难题专项练习含解析

小学六年级下册数学经典题难题专项练习含解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2. 3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

六年级数学试卷超难题答案

六年级数学试卷超难题答案

一、填空题(每空2分,共10分)1. 一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是_________立方厘米。

答案:60立方厘米2. 一个正方体的边长为6cm,它的表面积是_________平方厘米。

答案:216平方厘米3. 一个圆柱的底面半径为2cm,高为3cm,它的体积是_________立方厘米。

答案:37.68立方厘米4. 一个圆锥的底面半径为3cm,高为4cm,它的体积是_________立方厘米。

答案:37.68立方厘米5. 一个球体的半径为5cm,它的表面积是_________平方厘米。

答案:314平方厘米二、选择题(每题2分,共10分)1. 下列哪个图形的面积最大?A. 正方形B. 长方形C. 平行四边形D. 三角形答案:A2. 一个长方体的长、宽、高分别为4cm、5cm、6cm,它的体积是_________立方厘米。

A. 120B. 144C. 180D. 200答案:B3. 一个圆柱的底面半径为3cm,高为4cm,它的表面积是_________平方厘米。

A. 150B. 157C. 189D. 201答案:C4. 一个圆锥的底面半径为2cm,高为3cm,它的体积是_________立方厘米。

A. 6.28B. 9.42C. 12.56D. 18.84答案:C5. 一个球体的半径为5cm,它的体积是_________立方厘米。

A. 78.5B. 314C. 628D. 1256答案:B三、解答题(每题10分,共30分)1. 已知一个长方体的长、宽、高分别为2cm、3cm、4cm,求它的表面积和体积。

答案:表面积= 2×(2×3 + 3×4 + 2×4) = 52平方厘米,体积= 2×3×4 = 24立方厘米。

2. 已知一个圆柱的底面半径为3cm,高为4cm,求它的表面积和体积。

答案:表面积= 2×π×3×4 + π×3^2 = 75.36平方厘米,体积= π×3^2×4 = 113.04立方厘米。

小学六年级数学难题大全

小学六年级数学难题大全

小学六年级数学难题大全
小学六年级数学难题大全:
一、速算题
1. 二十七加六十九等于多少?式子:27+69=? 答案:96
2. 九十三乘以八等于多少?式子:93×8=? 答案:744
3. 三十九乘以二十三等于多少?式子:39×23=? 答案:897
二、几何题
1. 正五边形角的个数为多少?答案:5
2. 直角三角形的最大角的角度为多少?答案:90度
3. 正方形边长为3cm,面积为多少平方厘米?答案:9平方厘米
三、体积计算题
1. 圆柱体的底面半径为3cm,高为7cm,体积为多少立方厘米?答案:126立方厘米
2. 正方体的边长为4cm,体积为多少立方厘米?答案:64立方厘米
3. 圆锥体的底面半径为7cm,高为3cm,体积为多少立方厘米?答案:99.96立方厘米
四、代数题
1. 解3(x+2)-5(x+3)=-7的方程?式子:3(x+2)-5(x+3)=-7 答
案:x=-4
2. 解3(x+2)+5{2(x-3)-3]=14的方程?式子:3(x+2)+
5{2(x-3)-3}=14 答案:x=6
3. 解[3(x+1)+5]/[2(x+2)+1]=3的方程?式子:
[3(x+1)+5]/[2(x+2)+1]=3 答案:x=4
五、概率题
1. 从4张牌中抽取一张牌,求取到红桃牌(其中之一)的概率是多少?答案:25%,也就是1/4
2. 从2个盒子中各取一次,求抽到同一种颜色盒子的概率?答案:25%,也就是1/4
3. 从6个盒子中抽取两个,求抽到全是红色的概率?答案:6.25%,也
就是1/16。

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。

解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。

解得x = -24。

2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。

解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。

解得x = 60。

3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。

解:设长方形的长为x厘米,宽为y厘米。

根据题意可得方程组:x - y = 4;2x + 2y = 32。

解得x = 10,y = 6。

所以长方形的长为10厘米,宽为6厘米。

4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。

解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。

解得x = 12。

5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。

解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。

将已知的三边长代入公式即可求得三角形的面积。

6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。

解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。

解得x = 10。

7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。

解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。

解得x = 4。

所以原来正方形的边长为4厘米。

8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。

小学六年级下册数学经典题难题专项练习含解析

小学六年级下册数学经典题难题专项练习含解析

小学六年级下册数学经典题难题专项练习含解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2. 3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学数学六年级数学难题(含详细答案)

小学数学六年级数学难题(含详细答案)

小学数学六年级数学难题(含详细答案)一、分数与小数的转换1. 难题:将分数 5/8 转换为小数。

答案:将分数转换为小数的方法是将分子除以分母。

因此,5/8 转换为小数的过程是5 ÷ 8 = 0.625。

2. 难题:将小数 0.75 转换为分数。

答案:将小数转换为分数的方法是将小数部分作为分子,分母为10 的相应次幂。

因此,0.75 转换为分数的过程是 75/100,可以简化为 3/4。

二、百分数的计算1. 难题:计算 60% 的 150。

答案:计算百分数的方法是将百分数转换为分数,然后乘以相应的数值。

因此,60% 的 150 的计算过程是60/100 × 150 = 90。

2. 难题:一个数是另一个数的 120%,求这个数。

答案:计算一个数是另一个数的百分比的方法是将百分比转换为分数,然后乘以另一个数。

因此,假设另一个数是 x,那么这个数的计算过程是120/100 × x = 1.2x。

三、面积与体积的计算1. 难题:计算长方形的长为 10 厘米,宽为 5 厘米,面积是多少平方厘米?答案:计算长方形面积的方法是将长和宽相乘。

因此,长为 10 厘米,宽为 5 厘米的面积是10 × 5 = 50 平方厘米。

2. 难题:计算正方体的边长为 6 厘米,体积是多少立方厘米?答案:计算正方体体积的方法是将边长的立方。

因此,边长为 6 厘米的正方体的体积是6 × 6 × 6 = 216 立方厘米。

小学数学六年级数学难题(含详细答案)四、分数的加减法1. 难题:计算 3/4 + 2/3。

答案:分数的加法需要找到分母的公共倍数,然后将分子相加。

对于 3/4 + 2/3,我们可以将分母都转换为 12,然后相加。

计算过程如下:3/4 = 9/122/3 = 8/129/12 + 8/12 = 17/12因此,3/4 + 2/3 = 17/12,也可以表示为 1 5/12。

小学数学六年级易错题难题题库 - 易错题难题题库含详细答案

小学数学六年级易错题难题题库 - 易错题难题题库含详细答案

小学数学六年级易错题难题题库 - 易错题难题题库含详细答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.4.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。

数学六年级难题及答案

数学六年级难题及答案

8 5
21
=
3 2
26÷
13 25
÷
15 22
5
=
2
26×
25 13
×
22 15
13
=
220 3
5. 计算下面各题。
16÷ ( 1 +
1 3
)
= 16÷
4 3
4
= 16×
3 4
1
= 12
35÷ ( 1 -
2 7
)
= 35÷
5 7
7
= 35×
7 5
1
= 49
21 40
÷(
1 10
+
3 5
)
=
21 40
3
10 3÷ 10 3× 10 4
5
3÷3
3
8 8
3
10 8
=
3 10
×
8 3
= 54(g)
答:成年人一天大约需要
4 5
g钙质。
3. 神舟十号载人飞船在轨飞行约15天,相当于神舟十三号载人飞
船在轨飞行时间的 5 。神舟十三号载人飞船在轨飞行未约知多少天? 61
神舟十三号载人飞船在轨飞行时间 5 神舟十号载人飞船在轨飞行时间 61
5
5
(5500 + 4500)× 2 )
= 10000× 2
5
5
= 6000(元)
= 4000(元)
10000-4000=6000(元)
答:小亮家每月能结余6000元。
7. 小东读一本课外读物,已经读了35页,还剩下
2 7
没有读。这本课外读
物一共有多少页? 一本课外读物的总页数 2 小东已经读的页数 7

小学六年级数学测试卷难题及答案

小学六年级数学测试卷难题及答案

小学数学竞赛班六年级入学试题学校成绩(每题6分满分150分)1.找规律,在括号里填上适当的数:① 1,30,3,25,5,20,,;② 1,1,3,4,7,9,15,16,31,25,,;③ 2,8,26,80,242,728,,。

2.计算:1+2+3+4+…+9+10+9+…+4+3+2+1=。

3.计算:1-3+5-7+9-11+…+2005-2007+2009=。

4.计算:20062007×2006=。

5.对于任意整数a、b,如果a⊙b=a×b-1,那么:4⊙(5⊙3)= 。

6.如果123456789×9=1111111101,那么123456789×72= 。

7.甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人,那么,甲班和丁班共人。

8.设X和Y是选自前100个非零自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是。

9.用0~4五个数字组成的最大的五位数与最小的五位数相差。

10.用0、1、3、5这四个数字,可以组成个不同的四位数。

11.有一根木材长4米,要把它锯成8段,每锯一段要用3分钟.共锯了分钟。

12.甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

赵说:“甲是2号,乙是3号。

”钱说:“丙是4号,乙是2号。

”孙说:“丁是2号,丙是3号。

”李说:“丁是4号,甲是1号。

”又知道赵、钱、孙、李每人都说对了一半,那么丙的号码是号。

13.20072007的个位数字是。

14.红盒子里的糖果比蓝盒子里的糖果多10个,从蓝盒子里拿出1个糖果放进红盒子里后,红盒子里的糖果比蓝盒子里多个。

15.往一只篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加一倍,6分钟后篮子就满了。

那么第分钟时是半篮子鸡蛋。

16.小红和小亮住在同一个大楼,小红家住5楼,回家要上96个台阶,小亮回家要上144个台阶,那么,小亮家住楼。

17.三年级组同学参加“六一”节团体操表演,每横排人数同样多,每竖排人数也同样多。

小学六年级数学易错题难题专题训练含详细答案

小学六年级数学易错题难题专题训练含详细答案

小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。

(2)根据表中的数据,先求出每天收盘时的每股的价格,从而就可得出本周内最高价股价和最低股价。

六年级数学试卷难题含答案

六年级数学试卷难题含答案

一、选择题(每题5分,共20分)1. 下列哪个数不是平方数?A. 16B. 25C. 30D. 49答案:C解析:平方数是指一个数可以表示为另一个整数的平方。

选项A、B、D分别是4、5、7的平方,而30不是任何整数的平方。

2. 小明有若干个相同的正方体,他将它们排成一行,每行有10个,共排了5行。

那么小明一共有多少个正方体?A. 50B. 100C. 150D. 200答案:B解析:每行有10个正方体,共排了5行,所以总共有10 × 5 = 50个正方体。

3. 小华有一个长方形,长是宽的3倍,如果长方形的长是18厘米,那么它的宽是多少厘米?A. 6B. 9C. 12D. 18答案:A解析:长方形的长是宽的3倍,设宽为x厘米,则长为3x厘米。

已知长为18厘米,所以3x = 18,解得x = 6厘米。

4. 一个数的十分之一是2.4,这个数是:A. 24B. 240C. 24.0D. 240.0答案:B解析:一个数的十分之一是2.4,即这个数除以10等于2.4,所以这个数是2.4× 10 = 24。

5. 小明有一些苹果,他第一天吃了总数的1/5,第二天又吃了剩下的1/3,那么小明最后还剩下多少苹果?A. 1/15B. 2/15C. 4/15D. 8/15答案:C解析:第一天吃了总数的1/5,剩下4/5;第二天吃了剩下的1/3,即4/5的1/3,计算得4/5 × 1/3 = 4/15。

所以小明最后剩下4/15的苹果。

二、填空题(每题5分,共25分)6. 如果一个数的平方是64,那么这个数是______。

答案:±8解析:8的平方是64,同时-8的平方也是64,所以这个数是±8。

7. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,它的体积是______立方厘米。

答案:24解析:长方体的体积计算公式是长×宽×高,所以体积是4×3×2 = 24立方厘米。

六年级下册数学难题

六年级下册数学难题

六年级下册数学难题一、圆柱与圆锥相关难题。

1. 一个圆柱的底面半径是2厘米,高是5厘米。

把它的侧面沿高展开后得到一个长方形,这个长方形的长和宽分别是多少厘米?解析:圆柱侧面展开后长方形的长等于圆柱底面的周长,根据圆的周长公式C = 2π r(其中r为底面半径,π取3.14),可得底面周长C=2×3.14×2 = 12.56厘米,所以长方形的长是12.56厘米;长方形的宽等于圆柱的高,即宽为5厘米。

2. 一个圆锥的底面直径是6分米,高是3分米。

它的体积是多少立方分米?解析:首先求出底面半径r = 6÷2=3分米,根据圆锥体积公式V=(1)/(3)π r^2h (h为圆锥的高),可得V=(1)/(3)×3.14×3^2×3=(1)/(3)×3.14×9×3 = 28.26立方分米。

3. 把一个棱长为6分米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方分米?解析:要削成最大的圆柱,圆柱的底面直径和高都等于正方体的棱长。

所以圆柱底面半径r = 6÷2 = 3分米,高h=6分米。

根据圆柱体积公式V=π r^2h,可得V =3.14×3^2×6=3.14×9×6 = 169.56立方分米。

二、比例相关难题。

4. 一辆汽车从甲地到乙地,前2小时行驶了120千米,照这样的速度,再行驶3小时到达乙地。

甲乙两地相距多少千米?解析:因为速度一定,路程和时间成正比例。

设甲乙两地相距x千米,(120)/(2)=(x)/(2 + 3),即2x=120×(2 + 3),2x=120×5,x = 300千米。

5. 用比例解:一种农药,用药液和水按照1:1500配制而成。

如果现在只有3千克药液,能配制这种农药多少千克?解析:设能配制这种农药x千克,药液和农药的比例为1:(1 + 1500),则(1)/(1+1500)=(3)/(x),x=3×(1 + 1500)=3×1501 = 4503千克。

小学六年级数学题100道,要带答案,带解题思路

小学六年级数学题100道,要带答案,带解题思路

小学六年级数学题100道,要带答案,带解题思路姓名:__________班级:__________学号:__________1.小明有10颗糖,给了小红3颗,又给了小刚2颗,他还剩下几颗糖?解:10-3-2=5(颗),思路:用总数依次减去给出去的数量。

2.一个三角形的底是6厘米,高是4厘米,求它的面积。

解:三角形面积=底×高÷2,即6×4÷2=12(平方厘米),思路:运用三角形面积公式计算。

3.有24个苹果,平均分给6个小朋友,每个小朋友能分到几个苹果?解:24÷6=4(个),思路:根据除法的意义,用总数除以人数得到每份的数量。

4.小明从一楼走到二楼需要10秒,那么他从一楼走到五楼需要多少秒?解:从一楼到五楼需要走4层楼梯,每层10秒,所以4×10=40(秒),思路:先确定楼层间隔数,再乘以每段时间。

5.一个数的3倍是27,这个数是多少?解:27÷3=9,思路:已知一个数的几倍是多少,求这个数用除法。

6.商店里有15个文具盒,卖出了7个,又进货了8个,现在商店里有多少个文具盒?解:15-7+8=16(个),思路:先减去卖出的数量,再加上进货的数量。

7.一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?解:长方形周长=(长+宽)×2,即(8+5)×2=26(厘米),思路:运用长方形周长公式计算。

8.有3组同学在做游戏,每组有4人,一共有多少人在做游戏?解:3×4=12(人),思路:根据乘法的意义,用组数乘以每组的人数。

9.20以内的质数有哪些?解:2、3、5、7、11、13、17、19,思路:根据质数的定义,一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,依次找出20以内的质数。

10.小明有30元钱,买了一个8元的文具盒和一本6元的笔记本,还剩下多少钱?解:30-8-6=16(元),思路:用总钱数依次减去花掉的钱数。

六年级数学难题汇总

六年级数学难题汇总

六年级数学难题汇总六年级数学难题汇总(解析+答案)例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____.(安徽省1997年小学数学竞赛题)解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。

我们来分别考察能被25和9整除的情形。

由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75.再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9,7+0,4,5,25,25,2,27,25,7=32.故知,修改后的六位数是970425.7. 在三位数中,个位、十位、百位都是一个数的平方的共有个。

【答案】48【解】百位有1、4、9三种选择,十位、个位有0、1、4、9四种选择。

满足题意的三位数共有3×4×4,48(个)。

12. 已知三位数的各位数字之积等于10,则这样的三位数的个数是 _____ 个. 【答案】6【解】因为10,2×5,所以这些三位数只能由1、2、5组成,于是共有 ,6个(12. 下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7,25,A1,A2,A3,A4,74,A9,A3,A5,A10,76,那么A2与A5的和是多少,【答案】25【解】有A1+A2+A8,50,A9+A2+A3,50,A4+A3+A5,50,A10+A5+A6,50,A7+A8+A6,50,于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6,250,即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7,250. 有74+76+A2+A5+2(A6+A8) + A7,250,而三角形A6A7A8中有A6+A7+A8,50,其中A7,25,所以A6+A8,50,25,25.那么有A2+A5,250,74,76,50,25,25.【提示】上面的推导完全正确,但我们缺乏方向感和总体把握性。

六年级数学难题汇总附答案

六年级数学难题汇总附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

六年级数学难题汇总(解析+答案)例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____.(安徽省1997年小学数学竞赛题)解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。

我们来分别考察能被25和9整除的情形。

小学六年级数学难题测试卷及答案1

小学六年级数学难题测试卷及答案1

六年级奥数教学第一课时测试一、填空题。

(每题8分,共80分)1. -+++⨯++-++⨯+-+⨯-)4321()321(4)321()21(3)21(121… .______)1021()921(10=+++⨯+++- 答案:551.2. 把若干个自然数1、2、3…乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是_____.答案: 55.3. 在边长等于5的正方形内有一个平行四边形(如图),这个平行四边形的面积为_____(面积单位).答案: 14.4. 把63表示成n 个连续自然数的和,试写出各种可能的表示法:______. 答案:63= 31+ 32 = 20+21+22 = 8+9+10+11+12+13=6+7+8+9+10+11+12=3+4+5+6+7+8+9+10+11.5. 甲、乙、丙三数的和是188,甲数除以乙数,或丙数除以甲数,结果都是商6余2,乙数是______.答案: 4.6.用1~6六个数字任意写出一个真分数,已知参加写的人中总有4个人写出的真分数一样大.那么,至少有_____人参加写.答案:34.7.一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是______.答案:27.8.从1~13这13个数中挑出12个数填入图中的小方格中,使每一横行四数之和相等,使每一竖列三数之和相等.答案:本题有许多种填法,下面给出一种.1 13 4 109 6 5 811 2 12 39.有一个边数为1991的凸多边形,在其1991个内角中最多有____个锐角.答案:3.10.某商店由于进货价下降8%,而售价不变,使得它的利润(按进货价而定)由目前的x%增加到(x+10%),则x=_____.答案:15.二、解答题。

(每题10分,共20分)11.如图,已知边长为8的正方形EABCD,为AD的中点,P为CE的中点,BDP的面积________.答案:812. 某校活跃体育活动,购买同样的篮球7个,排球5个,足球3个,共花费用450元,后来又买同样的篮球3个,排球2个,足球1个共花费170元,问买同样的篮球1个,排球1个,足球1个,共需_____元.答案:110.第三课时【经典例题】13. 已知一个三位数能被45整除,它的各位上的数字都不相同.这样的三位数有_______个.答案: 18.因为这个三位数是5的倍数,故它的末位应该为5或0.若它的末位为0,因这个三位数又是9的倍数.故百位与十位有9种可能:18,27,…,90.即这样的三位数有9个.若它的末位为5,同样,因为这个三位数是9的倍数.故它的前两位数字之和为4或13.这时有如下9种可能:13,31,40,49,58,67,76,85,94.即这样三位数也有9个. 故这样的三位数一共有9+9=18(个)14. 设1,3,9,27,81,243是6个给定的数,从这6个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数,如果把它们从小到大依次排列起来是1,3,4,9,10,12…,那么第60个数是_____. 答案: 355.最大的一个是=a 1+3+9+27+81+243=364,第62个是1-a ,第61个是3-a ,第60个是3559=-a .15. 从0,1,2,3,4,5,6,7,8,9中取三个不同的数组成三位数xyz ,那么zy x xyz ++的最小值是_____.答案:10.5z y x y x z y x z y x z y x xyz ++++=++++=++999110100,要使上式最小,显然z 应该尽可能地大,于是9=z .从而原式=98190109819098199199991++-+=++-++++++=++++y x x y x x y x y x y x y x 要使此式最小,y 也应尽可能大,取8=y ,原式18)18(901018819010+++=+-+=x x x x 1881189010018811890++⨯-=++⨯-x x ,要使此式最小,x 应尽可能小,但0≠x ,故取 1=x . 故z y x xyz ++的最小值是5.10981189=++.【同步练习】16.用1,2,3,4这4个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的4个数字,可以组成许许多多的四位数,这些四位数中,至少有_____个相同. 答案:40.从这个一万位数中任意截取相邻的四位数,可以组成9997个四位数.另外,用1,2,3,4这4个数字写四位数,可以有4×4×4×4=256(种)不同四位数.故其中必有401]2569997[=+个相同的. 17. 1231,1005,1993这几个数有许多相同之处:它们都是四位数,最高位是1,都恰有两个相同的数字,一共有多少个这样的数?答案:将符合条件的数分成两类:(1)两个相同的数就是1的,先排末三位中的1,它有3个位置可选择;再排其他两位,有9×8种方法.共有3×9×8=216(种)方法.(2)两个相同的数不是1的,选一个数字使它重复,有9种方法.再选一个不同数字有8种方法,将这三个数排在末三位有3种方法,一共有9×8×3=216种方法.合计共有216+216=432(种)方法.18. 将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大的数及最小的数.那么剩下的数的总和是150,在原来的次序中,第二个数是多少?答案:设这14个整数由小到大依次为14321,,,,a a a a .依题意有:1701421=+++a a a1501332=+++a a a显然,最大数与最小数之和为170-150=20,最大数1914≤a ,最小数11≥a .若1914<a ,则1332a a a +++ <7+8+…+18=150,与已知矛盾,故1914=a ,且1332,,,a a a 依次为7,8,…,18.(否则其和小于150).故第二个数72=a .第四课时【经典例题】19. 从A 地到B 地,甲以每小时5千米的速度走完全程的一半,又以每小时4千米的速度走完剩下的一半路程;乙用一半的时间每小时走5千米,另一半时间每小时走4千米.试经过计算断定,甲乙两人哪个用的时间少?答案:甲的平均速度为 944)421521(1=÷+÷÷(千米/小时); 乙的平均速度为 (4+5)÷2=214(千米/小时). 故乙用的时间少.20. 下图是从一个立体图形的正上面与正侧面看到的图形,试回答下列问题:(1)以每秒1毫升的速度,往容器内注水时,水面到离台面10cm 的地方为止,需要多少秒?(2)求这个立体图形的体积.(3)求这个立体图形的表面积.(3=π)答案:(1)2×2×3×(10-5)=603cm ,60÷1=60(秒).(2)8×8×(10+5)- 2×2×3×10=8403cm .(3)底面积8×8×2=1282cm ;外侧面的面积为8×(10+5)×4=4802cm ;内侧面积为4×3×10=1202cm ;表面积为128+480+120=7282cm .21. 如下图,l 与m 是两条平行直线,在直线l 上有且只有4个不同的点,请你在m 上取若干个不同的点,将直线l 与m 上的点连成线段,这些线段在l 与m 之间的交点最少有60个时,那么在直线m 上至少要取____个点.l · · · ·m · ·答案:5.设直线m 上有x 个点,l 与m 之间交点的个数由l 上的两点与m 上的两点唯一确定.在l 上的四个点中选两点,有6234=⨯(种)方法,在m 的x 个点中选两点,有2)1(-x x 种方法.故其在l 与m 的交点个数为602)1(6≥-⨯x x ,即20)1(≥-x x ,从而5≥x .【同步练习】22. 苹果、梨子、桔子三种水果都有许多,混在一起成了一大堆,最少要分成____堆(每堆内都有三种水果).才能保证找得到这样的两堆,将这两堆合在一起,三种水果的个数都是偶数.答案: 9.当两堆中三种水果每种奇偶性均相同时,把它们合在一起,三种水果的个数都是偶数.而三种水果在每一堆中的奇偶性有2×2×2=8(种),由抽屉原理知,至少要分成8+1=9(堆),才能保证一定有两堆合在一起,三种水果的个数都是偶数.23. 一条河水流速度恒为每小时3公里,一只汽船用恒定的速度顺流4公里再返回原地,恰好用1小时(不计船掉头时间),则汽船顺流速度与逆流速度的比是______. 答案:2:1.设汽船在静水中的速度为每小时x 公里,则13434=-++x x ,解得9=x .故顺流速度与逆流速度之比为1:2)3(:)3(=-+x x .24. 有20×20的小方格组成一个大正方形.用1~9这9个数字中的任意一个填在每个小方格中,把形如“田”的田字格图形中的4个数相加,得到一个和数.那么,图中许许多多的和数中,至少有____个相同.答案:11.在“田”字格中,最大的为9+9+9+9=36,最小的为1+1+1+1=4.故四数之和有36-4+1=33(种).而在20×20的网格中,应有19×19=361个不同的“田”字形.故由抽屉原理,总有111]33361[=+(个)相同.【家庭作业】25. 有一列数,第一个数是1;第二个数是3,从第三个数起,每个数都等于它前面两个数中较大的一个减去较小的一个数的差,则这列数中前100个数之和等于______. 答案: 103.这列数依次为1,3,2,1,1,0,1,1,0,…1,1,0,1.它们之和为1+3+2+32×(1+1+0)+1=103.26. 把1993分成若干个自然数的和,且使这些自然数的乘积最大,该乘积是______. 答案: 266323⨯.因1993=3×663+2×2,故将它分成个663333++++2+2时,这些加数之积最大.27. 将三个连续自然数和记作A ,将紧接它们之后的三个连续自然数的和记作B .试问,乘积A ×B 能否等于111111111(共9个1)?答案:不能,理由如下:若n n n n A 3)1()1(=+++-=,)3(3)4()3()2(+=+++++=n n n n B 。

六年级数学难题100题荟萃(最具实用价值难度名题)

六年级数学难题100题荟萃(最具实用价值难度名题)

六年级数学超常班最有价值100题及详细解答1. 计算:123456+234567+345678+456789+567901+679012+790123+901234=______.【解】 4098760.123456+234567+345678+456789+567901+679012+790123+901234 =(123456+901234)+(234567+790123)+(345678+679012)+(456789+567901) =1024690+1024690+1024690+1024690=1024690×4=40987602、把5粒石子每间隔5米放在地面一直线上,一只篮子放在石子所在线段的延长线上,距第一粒石子10米,一运动员从放篮子处起跑,每次拾一粒石子放回篮内,要把5粒石子全放入篮内,必须跑_____米.【解】 200.应跑2×(10+15+20+25+30)=200(米).3、四个房间,每个房间不少于2人,任何三个房间里的人数不少于8人,这四个房间至少有_____人.【解】 11.人数最多的房间至少有3人,其余三个房间至少有8人,总共至少有11人.4、A,B两地间的距离是950米.甲,乙两人同时由A地出发往返锻炼.甲步行每分钟走40米,乙跑步每分钟行150米,40分后停止运动.甲,乙二人第_____次迎面相遇时距B地最近,距离是_____米.【解】二;150.两人共行一个来回,即2×950=1900(米)迎面相遇一次.1900÷(40+150)=10(分钟),所以,两人每10分钟相遇一次,即甲每走40×10=400(米)相遇一次; 第二次相遇时甲走了800米,距B地950-800=150(米); 第三次相遇时甲走了1200(米),距B地1200-950=250(米).所以,第二次相遇时距B地最近,距离150米.5、一天,师、徒二人接到一项加工零件的任务,先由师傅单独做6小时,剩下的任务由徒乖弟单独做,4小时做完.第二天,他们又接到一项加工任务,工作量是第一天接受任务的2倍.这项任务先由师、徒二人合做10小时,剩下的全部由徒弟做完.已知徒弟的工作效率是师傅的54,师傅第二天比徒弟多做32个零件.问:✶第二天徒弟一共做了多少小时; ✷师徒二人两天共加工零件多少个.【解】 徒弟的工作效率是师傅的54,说明师傅四小时所加工的工作量等于徙弟五小时所加工的工作量.这样,第一天加工零件总数,由师傅单独加工需要6+4×54=951(小时)完成;由徙弟单独加工需要6×141+4=1121(小时)完成.假设第一天加工零件总数为单位“1”,根据工程问题数量关系,可知第二天徙弟加工时间为[2-(211115191+)×10]÷21111+10=[2-12322]÷232+10 =1021(小时).师徒二人两天共加工零件 32÷(211021111105191⨯-⨯)×(1+2)=32÷234×3 =552(个).6、甲、乙两辆汽车,甲在西地,乙在东地,同时向东开行.甲每小时行60千米,乙每小时行48千米,行了5小时后,甲在乙后面24千米处.那么东西两地相隔_____千米.【解】 84.行了5小时,追了5×(60-48)=60(千米),还相隔24千米,因此,原来两人相距60+24=84(千米),即两地相隔84千米.7、直角三角形的两直角边的长都是整厘米数,面积为59.5平方厘米.每次取四个同样的三角形围成(不重叠,不剪裁)含有两个正方形图案的图形(如图),在围成的所有正方形图案中,最小的正方形的面积是_____平方厘米,最大的正方形的面积是_____平方厘米.【解】 100,14162.直角三角形的两条直角边相乘等于59.5×2=119,因为119=1×119=7×17,所以,满足题意的直角三角形只有下图所示的两种.7 117 119用上图所示的相同的四个三角形围成的含有两个正方形图案的图形,有下图所示的两种,其中左图阴影正方形面积最小,为(17-7)2=100(2cm),右图大正方形面积最大,为1192+12=14162(2cm).8、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米.甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,求A、B两地的距离. 【解】当丙和乙相遇时,乙和甲相距:(70+50)×2=240(米).那么乙从出发到和丙相遇的时间为:240÷(50-40)=24(分).所以全程为:60×24+70×24=3120(米).9、如图所示,在正方形ABCD中,红色、绿色正方形的面积分别是27和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.求黄色正方形的面积.【解】 设红色正方形的边长为a ,绿色正方形边长为b ,正方形ABCD 分成四块后,除红色和绿色正方形外,另外两个长方形的边长分别为b a ,.依题意,2a =27,2b =12.长方形的面积ab S .则,2S =2a 2b =27×12=33×22×3=22×43=218,S =18.所以,正方形ABCD 面积为27+12+2×18=75.易知黄色正方形分别占红色正方形,绿色正方形和两个长方形的41,即黄色正方形的面积为正方形ABCD 面积的41,为75×41=18.75.10、计算:53.3÷0.23÷0.91×16.1÷0.82=______500011、有三个自然数,它们相加或相乘都得到相同的结果,这三个自然数中最大的是_____【解】 3.显然,这3个自然数分别为1,2,3.12、两个同样大小的正方体形状的积木.每个正方体上相对的两个面上写的数之和都等于9.现将两个正方体并列放置.看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于_____.【解】39.由于正方体上相对两个面上写的数之和都等于9,所以每个正方体六个面上写的数之和等于3×9=27.两个正方体共十二个面上写的数之总和等于2×27=54.而五个看得见的面上的数之和是1+2+3+4+5=15.因此,看不见的七个面上所写数的和等于54-15=39.13、一个箱子里放着几顶帽子,除两顶以外都是红的,除两顶以外都是蓝的,除两顶以外都是黄的,箱子中一共有_____顶帽子.【解】 3.设箱子中共有n顶帽子,则红帽子n-2顶,蓝帽子n-2顶,黄帽子n-2顶.依题意,有(n-2)+(n-2)+(n-2)=n,解得n=3.14、一辆汽车以每小时30千米的速度从甲地开往乙地,开出4小时后,一列火车也从甲地开往乙地,这列火车的速度是汽车的3倍,在甲地到乙地距离二分之一的地方追上了汽车.甲乙两地相距_____千米.【解】 360.汽车开出30×4=120(千米)后,火车开始追,需120÷(3×30-30)=2(小时)才能追上,因此甲乙两地相距2×(3×30)×2=360(千米).15、某小学四、五、六年级学生是星期六下午参加劳动,其中一个班学生留下来打扫环境卫生,一部分学生到建筑工地搬砖,其余的学生到校办工厂劳动,到建筑工地搬砖是到校办工厂劳动人数的2倍.各个班级参加劳动人数如下表.留下来【解】五(4).根据“到建筑工地搬砖是到校办工厂劳动的人数的2倍” ,可得到这两个地方去的10个班的学生数之和应是3的倍数.11个班的学生总数是584人,而584除以3余2,因此留下来打扫卫生的这个班的学生人数应除以3余2,而各班人数中只有53除以3余2,故留下来打扫卫生的是五(4)班.16、陈敏要购物三次,为了使每次都不产生10元以下的找赎,5元,2元,1元的硬币最少总共要带_____个.(硬币只有5元,2元,1元三种.)【解】 11.购物3次,必须备有3个5元,3个2元,3个1元.为了应付3次都是4元,至少还要2个硬币,例如2元和1元各一个,因此,总数11个是不能少的.准备5元3个,2元5个,1元3个,或者5元3个,2元4个,1元4个就能三次支付1元至9元任何钱数.17、小明从家到学校上课,开始时每分钟走50米的速度,走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,将要迟到2分钟,于是他立即加快速度,每分钟多走10米,结果小明早到5分钟,小明家到学校的路程有多远?【解】 设小明出发2分钟后到上课的时间为x 分钟,依题意,得 50(x +2)=(50+10)(x -5),解得 x =40.因此,小明家到学校的路程为50×2+50×(40+2)=2200(米).18、在长方形ABCD 中,AB =30cm ,=BC 40cm ,如图P 为BC 上一点,AC PQ ⊥,BD PR ⊥,求PR PQ +的值.【解】 连结AP ,DP .则DPC APC S S ∆∆=, 所以,DBC DPB DPC DPB APC S S S S S ∆∆∆∆∆=+=+, 即CD BC PR BD PQ AC ⨯=⨯+⨯212121. 所以 CD BC PR PQ AC ⨯=+)(.又 AB =30cm , BC =40cm , 所以,AC =50cm .故 cm AC CD BC PR PQ 24503040=⨯=⨯=+.19、赵、钱、孙、李、周、吴、陈、王8位同学,参加一次数字竞赛,8个人的平均得分是64分.每人得分如下:赵 钱 孙 李 周 吴 陈 王 74 48 90 33 60 78其中吴与孙两位同学的得分尚未填上,吴的得分最高,并且吴的得分是其他一位同学得分的2倍.问孙和吴各得多少分?【解】 吴的得分最高,要多于90分,但他不能是赵、李、陈、王四人中任何一人得分的2倍.周的得分2倍是66分,也不能是吴的得分.其余六人得分之和是74+48+90+33+60+78=383(分).因此,吴与孙的得分之和是64×8-383=129(分).如果吴是孙的得分2倍,129÷(2+1)=43,吴得86分未超过90,吴只能是钱的得分2倍,即96分,从而孙的得分为129-96=33(分).20、添上适当的运算符号与括号,使下列等式成立?1 13 11 6 = 24【答案】(1+13×11)÷6=24.21、铁路旁每隔50米有一棵树,晶晶在火车上从第一棵树数起,数到第55棵为止,恰好过了3分钟,火车每小时的速度是_____54千米【解】火车共行了50×(55-1)=2700(米),即2.7千米,故火车的速度为2.7÷(3÷60)=54(千米/时).22、有一列数,第一个数是100,第二个数是90,从第三个数开始,每个数都是它前面两个数的平均数.第三十个数的整数部分是_____93【解】从第5个数起,每个数的整数部分总是93.23、有10箱桔子,最少的一箱装了50个,如果每两箱中放的桔子都不一样多,那么这10只箱子一共至少装了____545个桔子【解】由于每两箱中放的桔子都不一样多,因此,这10只箱子一共至少装了50+51+52+…+59=545(个)桔子.24、由数字0,1,2,3,4,5,6可以组成____660个各位数字互不相同的能被5整除的五位数.【解】当个位数是0时,符合条件的五位数有6×5×4×3=360个;当个位数是5时,符合条件的五位数有5×5×4×3=300个.所以,符合条件的五位数有:360+300=660个.25、一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站.已知前6个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有____20人【解】设第1站到第7站上车的乘客依次为7654321,,,,,,a a a a a a a .第2站到第8站下车的乘客依次为8765432,,,,,,b b b b b b b .显然应有7654321a a a a a a a ++++++=8765432b b b b b b b ++++++.已知654321a a a a a a +++++=100, 765432b b b b b b +++++=80. 所以,100+7a =80+8b ,即8b -7a =100-80=20,这表明从前6站上车而在终点站下车的乘客共20人.26、有六个自然数排成一列,它们的平均数是4.5,前4个数的平均数是4,后三个数的平均数是319,这六个数的连乘积最小是_____480 【解】六个数的和为6×4.5=27,前4个数的和为4×4=16,后三个数的和为3×319=19.第4个数为16+19-27=8,前三个数的和为16-8=8,这三个自然数的连乘积最小为1×1×6=6;后两个数的和为19-8=11,其乘积的最小值为1×10=10,因此,这六个数的连乘积的最小值为6×8×10=480.27、某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队?【解答】开门后,20分钟来的人数为4×20×10-400=400.因此,每分钟有400÷20=20(人)来.相当于有20÷10=2(个)入口专门用于新来的人进入游乐场,因此,开放6个入口,开门后400÷(6-2)÷10=10(分钟)就没有人排队了.28、如图,ABCD 是直角梯形.其中AD =12厘米,AB =8厘米,BC =15厘米,且ADE ∆、四边形DEBF 、CDF ∆的面积相等.EDF ∆(阴影部分)的面积是多少平方厘米?【解】梯形ABCD 的面积为10828)1512(=⨯+(平方厘米),ADE ∆、四边形DEBF 、CDF ∆的面积均为108÷3=36(平方厘米).又2÷⨯=∆AB CF S CDF ,所以,98362=÷⨯=CF (厘米), BF =15-9=6(厘米).同理,AE =2×36÷12=6(厘米), BE =8-6=2(厘米).所以,BEF S ∆=6×2÷2=6(平方厘米). 故, DEF S ∆=36-6=30(平方厘米).29、甲、乙、丙三个同学中有一人在同学们都不在时把教室扫净,事后教师问他们是谁做的好事,甲说:“是乙干的”;乙说:“不是我干的”;丙说:“不是我干的”.如果他们中有两人说了假话,一人说的是真话,你能断定是谁干的吗?【解】假设甲说的是真话,那么是乙干的,这时丙说的话是真话,与只有一人说真话产生矛盾.因此甲说的是假话,即不是乙干的,所以,乙说的是真话,从而丙说的是假话,故是丙干的30、一条绳子,折成相等的3段后,再折成相等的两折,然后从中间剪开,一共可以剪成____段. 【解】 7.将绳折成3段再对折,相当于折成6段,一刀与这6段有6个交叉点,将绳分成7段.31、一长方体长、宽、高分别为3、2、1厘米,一只小虫从一顶点出发,沿棱爬行,如果要求不走重复路线,小虫回到出发顶点所走最长路径是____厘米.第[5]道题答案:18.如图,长方形的顶点都是奇点,要将它们都变成偶点才能从一个顶点出发,回到原顶点且路线不重复,这就需要去掉4条棱.但显然不可能都去掉长度为1的或去掉3条长度为1的.故去掉1DD ,1AA ,BC ,11C B ,后,可沿A D C C D A B B A 1111走.共长3+1+3+2+3+1+3+2=18(厘米).32、 如图,四边形ABFE 和四边形CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是_____平方厘米.【解】 6.上面4个三角形面积之和等于长方形ABFE 面积的一半,下面3个三角形面积之和等于长方形EFCD 面积的一半.故阴影部分面积是长方形ABCD 的一半,为4×3÷2=6(平方厘米).33、太郎和次郎各有钱若干元.先是太郎把他的钱的一半给次郎,然后次郎把他当时所有钱的31给太郎.以后太郎又把他当时所有钱的41给了次郎,这时太郎就有675元,次郎就有1325元.问最初两人各有多少钱?【解】 用逆推法,列表如下:太 郎 次 郎 太郎送41给次郎后 675元 1235元 次郎送31给太郎后900元 1100元 太郎送21给次郎后350元 1650元 最 初700元1300元34、 在ABC ∆中,EC BE :=3:1,D 是AE 的中点,且DF BD :=7:1.求FC AF :等于多少?【解】 设AFD ∆的面积为a 6,因ADB ∆的面积:AFD ∆的面积=7:1.故ADB ∆的面积为a 42.连结CD ,ADF ∆的面积:ADB ∆的面积=3:1:=BE EC .故ADC ∆的面积为a 14,从而DFC ∆面积为8a .所以,ADF FC AF ∆=:的面积:DFC ∆的面积=3:4.35、甲、乙两人沿铁路边相对而行,速度一样.一列火车开来,整个列车从甲身边驶过用8秒钟.再过5分钟后又用7钞钟从乙身边驶过.问还要经过多少时间,甲、乙两人才相遇?【解】设车速为每秒x米,人速为每秒y米,车长a米,则有:-==.a+x15=,故yx(7))(8yyx火车5分钟(300秒)的路程为x300,故甲乙相遇时间为:+=÷yyx(秒).yy⨯÷2225015300()300=36、计算: 3-5+7-9+11-13+…+1995-1997+1999=_____.【解】 1001.3-5+7-9+11-13+…+1995-1997+1999=3+(7-5)+(11-9)+…+(1995-1993)+(1999-1997) =3+2+2+…+2+2 =3+2×499 =100137、一辆货车从甲城到乙城需8小时,一辆客车从乙城到甲城需6小时,货车开了两小时后,客车出发,客车出发后____小时两车相遇.【解】 274.设两城相距1个单位,则货车的速度为81,客车的速度为61.客车出发后需(1-2×81)÷(81+61)=274(小时)两车相遇.38、某笔奖金原计划8人均分,现退出一人,其余每人多得2元,则这笔奖金共_____元.【解】 112.退出的一人,应得奖金2×7=14(元).因此,这笔奖金共14×8=112(元).39、16÷(0.40+0.41+0.42+…+0.59)的商的整数部分是_____.【解】1. 因为0.40+0.41+0.42+…+0.59=(0.40+0.59)×20÷2=9.9,所以16÷(0.40+0.41+0.42+…+0.59)=16÷9.9=19961,商的整数部分为1.40、游泳池里,一些学生在学游泳,男同学一律戴蓝色游泳帽,女同学一律戴红色游泳帽.有趣的是,在每个男同学看来,蓝色游泳帽与红色游泳帽一样多;而在每个女同学看来,蓝色游泳帽多一倍.那么游泳池里有____个学生在学游泳.【解】 7.注意到,每位同学都看不到自己戴的游泳帽的颜色.由“男同学看来,蓝色游泳帽与红色游泳帽一样多”知,男同学比女同学多一人,设共有x名女同学,则男同学有(x+1)名,由“女同学看来,蓝色游泳帽比红色游泳帽多一倍”,知x+1=2(x -1),解得x=3, 故共有学生(x+1)+x=7(人).41、有黑白小球各三个,平均分装在、甲、乙、丙三只小盒里,并在盒子外面贴上“白、白”(甲),“黑、黑”(乙),“黑、白”(丙)的小纸片,但是没有一只小盒里装的小球的颜色与纸片上的相符合,现已知丙盒子里装一个白色小球,那么这三个盒子里装的两只小球颜色分别为_____.【解】“黑、黑”(甲);“黑、白”(乙)“白、白”(丙).丙盒不可能是一黑一白,只可能装两黑或两白,又已知丙盒里有白色小球,因此丙盒里装两白;这时乙盒里装的不能是两黑,也不能是两白,只能是一黑一白;从而甲盒的两黑.42、七名学生在一次数学竞赛中共得110分,各人得分互不相同,其中得分最高的是19分,那么最低得分至少是_____分.【解】 11.要使最低得分尽可能小,则另外6名学生得分尽可能大,依次为19,18,17,16,15,14,故最低得分至少是110-(19+18+17+16+15+14)=11(分).43、如图,在一个长为60厘米,宽为30厘米的长方形黑板上涂满白色,现有一块长为10厘米的长方形黑板擦,用它在黑板内紧紧沿着黑板的边擦黑板一周(黑板擦只作平移,不旋转).如果黑板上没有擦到部分的面积恰好是黑板面积的一半,那么这个黑板擦的宽是_____厘米.【解】 3.75黑板上没有擦到部分的面积为60×30÷2=900(平方厘米),该部分的长为60-2×10=40(厘米),宽为900÷40=22.5(厘米).因此,黑板擦的宽为(30-22.5)÷2=3.75(厘米).44、如图,三角形中一共有____个梯形.【解】 28.首先考虑上,下底水平的梯形的个数.(1)高为1的梯形有6+3+1=10个;(2)高为2的梯形有2+1=3个;(3)高为3的梯形有1个.因此,上、下底水平的梯形共有10+3+1=14个;同理,上、下底竖直的梯形也有14个,故图中共有梯形2×14=28个.45、用1,9,9,8四个数字可以组成若干个不同的四位数,所有这些四位数的平均值是多少?【解】所有这些四位数中,数字1和8分别在千位、百位、十位、个位上出现3次,数字9分别在千位、百位、十位、个位上出现6次.因此,这些四位数的总和为3×(1000+100+10+1)+3×(8000+800+80+8)+6×(9000+900+90+9)=3×1111+3×8888+6×9999=3×1111×(1+8+2×9)=3×1111×27这些四位数共有4×3=12(个),平均值为3×1111×27÷12=7499.2546、如图,在梯形ABCD 中,对角线AC 、BD 相交于O 点,OE 平行于AB 交腰BC 于E 点,如果三角形OBC 的面积是115平方厘米,求三角形ADE 的面积?【解】 因为AB ∥CD , 所以BCD ACD S S ∆∆=, 故BOC AODS S ∆∆==115(2cm ).又OE ∥AB ,同理可得BOE AOE S S ∆∆=, COE DOE S S ∆∆=. 因此,AOD ADE S S ∆∆=DOE AOE S S ∆∆++ =AOD S ∆BOE S ∆+COE S ∆+=AOD S ∆+BOC S ∆ =115+115=230(2cm ).47、某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成.现在甲先单独做42天,然后再由乙来单独完成.那么乙还要做多少天?【解】甲做48天,乙做28天后,完成剩下的工程甲还需63-48=15(天),乙还需48-28=20(天),所以甲的工作效率是乙的20÷15=34. 48甲+48乙=42甲+6甲+48乙=42甲+6×34乙+48乙=42甲+56乙.即甲干42天后,乙还需56天.48、两支蜡烛一样长,第一支能点4小时,第二支能点3小时,同时点燃这两支蜡烛,_____小时后第一支的长度是第二支的两倍.【解】 252.设x 小时后,第一支的长度是第二支的两倍.依题意,得1-41×x =2(1-31×x ).解得, x = 252.49、一辆汽车从甲地开到乙地,又返回到甲地,一共用了15小时,去时所用时间是返回的1.5倍,去比回来时每小时慢12千米,甲乙两地相距_____千米.【解】 216.返回时间为15÷(1.5+1)=6(小时),去的时间为6×1.5=9(小时).设回来的速度为每小时x 千米.则去的速度为每小时(x -12)千米.依题意,得9(x -12)=6x .解得x =36,甲乙两地相距6×36=216(千米).50、从100到200的自然数中,既是5的倍数,又是能被7除余3的数为_____.【解】 115,150,185.能被7除余3的数为3,10,17,…,其中能被5整除的最小数是10.故所求数具有35k +10的形式.因此,在100到200的自然数中有115,150,185.51、一个人从县城骑车去乡办厂,他从县城骑车出发,用30分钟行完了一半路程.这时,他加快了速度,每分钟比原来多行50米,又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂.那么县城到乡办厂之间的总路程是______.【解】 18000米.设骑车速度为每分钟x 米,依题意,得30x =20(x +50)+2000,解得x =300. 因此县城到乡办厂之间的总路程是30×300×2=18000(米).52、有一个长方形棋盘,每个小方格的边长都是1,长有200格,宽有120格(如图).纵横线交叉的点称为格点,连结A ,B 两点的线段共经过_____个格点(包括A ,B 两点).【解】 41.如图,把长方形棋盘按比例缩小为长有5格,宽有3格的小长方形,画一条对角线,我们可以发现,这条对角形只经过2个格点,由此可以想到,把长方形扩大,对角形延长,那么它所经过的格点从上往下数在第3,第6,第9,…条横线上,从左往右数在第5,第10,第15,…条纵线上,相对应的两线交点即为对角线经过的格点.所以长有200格,每隔5格有一个格点;宽有120格,每隔3格有一个格点,相对应的两点重合.包括B A ,两点在内,应有120÷3+1=41个格点.53、某仓库内有一批货物,如果用3辆大卡车,4天可以运完;如果用4辆小卡车,5天可以运完;如果用20辆板车,6天可以运完.现在先用2辆大卡车,3辆小卡车和7辆板车共同运2天后,全部改用板车运,必须在两天内运完,那么后两天每天至少需要_____辆板车.【解】 15.一辆大卡车,每天可以运121431=⨯;一辆小卡车,每天可以运201541=⨯;一辆板车,每天可以运12016201=⨯. 全部改用板车后,剩工作量1-(2×120172013121⨯+⨯+)×2=41. 要想两天运完,需板车41÷2÷1201=15(辆).54、如图,是某个公园ABCDEF ,M 为AB 的中点,N 为CD 的中点,P 为DE 的中点,Q 为FA 的中点,其中浏览区APEQ 与BNDM 的面积和是900平方米,中间的湖水面积为361平方米,其余的部分是草地,求草地的总面积.【解】 连接DB AE AD ,,.根据一个三角形的中线平分这个三角形的面积,可知:EQA ∆面积=EQF ∆面积 AEP ∆面积=ADP ∆面积DBM ∆面积=DAM ∆面积 BND ∆面积=BNC ∆面积上述四个等式相加,可知:浏览区APEQ 与BNDM 的面积之和恰等于EQF ∆,BNC ∆,四边形APDM 的面积之和.因此,草地和湖水的面积之和恰为900平方米,其中湖水面积为361平方米,所以草地面积是900-361=539平方米.55、 一桶农药,第一次倒出2/7然后倒回桶内120克,第二次倒出桶中剩下农药的3/8,第三次倒出320克,桶中还剩下80克,原来桶中有农药____728克.【解】用递推法可知,原来桶中有农药[(320+80)÷(1-83)-120]÷(1-72)=728(克).56、在边长等于5的正方形内有一个平行四边形(如图),这个平行四边形的面积为_____(面积单位).【解】 14.平行四边形的面积等于正方形面积与四个直角三角形面积之差:5×5-(2×21×2×4+2×21×1×3)=14.57、两个粮仓,甲粮仓存粮的1/5相当于乙粮仓存粮的3/10,甲粮仓比乙粮仓多存粮160万吨.那么,乙粮仓存粮_____320万吨.【解】甲粮仓是乙粮仓的2351103=⨯,甲粮仓比乙粮仓多的是乙粮仓的21123=-,故乙粮仓存粮160÷21=320(万吨).58、有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分追上丙.那么甲出发后需用____分钟才能追上乙.【解】 500.由已知,乙40分钟的路程与丙50分钟路程相等.故乙速:丙速=50:40=25:20;又甲100分钟路程与丙130分钟路程相等.故甲速:丙速=130:100=26:20.从而甲速:乙速:丙速=26:25:20.设甲乙丙的速度每分钟行26,25,20个长度单位.则乙先出发20分钟,即乙在甲前20×25=500个长度单位.从而甲追上乙要500÷(26-25)=500(分钟).59、会场里有两个座位和四个座位的长椅若干把.某年级学生(不足70人)来开会,一部分学生一人坐一把两座长椅,其余的人三人坐一把四座长椅,结果平均每个学生坐1.35个座位.问有多少学生参加开会?【解】 设有x 人每人坐一把两坐长椅.有y 人每三人坐一把四座长椅,则开会学生有)(y x +人,另用座位共)342(y x +个.依题意有 35.1342=+y x )(y x +,即x y 39=. 因y x +不能超过70,故只能有1=x ,39=y 共有学生1+39=40(人).60、某蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有1/6池水,如果按甲、乙、丙、丁的顺序,循环开各水管,每次每管1小时.问多少时间后水开始溢出水池?【解】 据已知条件,四管按甲乙丙丁顺序各开1小时,共开4小时,池内灌进的水是全池的60761514131=-+-;加上池内原来的水,池内有水601760761=+. 再过四个4小时,即20小时后,池内有水43604560746017==⨯+,还需灌水41431=-.此时可由甲管开433141=÷(小时). 所以在43204320=+(小时)后,水开始溢出水池.61、 ______20186421917531=++++++++++ . 【解】1110. 原式=111010)202(10)191(=⨯+⨯+.62、从某天起,池塘水面上的浮草,每天增加一倍,50天后整个池塘长满了浮草,第_____48天时,浮草所占面积是池塘的1/4.【解】逆推:第49天,浮草所占面积是池塘的21; 第48天,浮草所占面积是池塘的41.63、一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是______.【解】27.这个数与3的和是5的倍数,故它除以5余2,将除以5余2的数由小到大排列得:2,7,12,17,22,27,…其中与3的差是6的倍数的最小的数是27.64、1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到减去余下的五百分之一,最后剩下______.【解】11.要使所选的数的个数尽可能小,就要尽量选用大数.故只需按次取就可以了. 因928.210131211≈++++ ,01.311131211≈++++ ,故至少要选11个数.65、把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.这个和数是_____.【解】136.按这种记分方法,最高可得40分,最低是倒扣10分,共有40+10+1=51(种)不同分数.但其中有39,38,37,34,33,29这六个分数是得不到的.故实际有51-6=45(种)不同分数.为了保证至少有4人得分相同,那么参加考试的学生至少有45×3+1=136 (人).66、某个家庭有4个成员,他们的年龄各不相同,4人年龄的和是129岁,其中有3人的年龄是平方数.如果倒退15年,这4人中仍有3人的年龄是平方数.请问,他们4人现在的年龄分别是______.【解】 121.设原数为b a +10,新数为a b +10,其和为)(11b a +,因其为完全平方数. 故11=+b a ,这个完全平方数为11×11=121.67、有一次,若干文艺工作者和若干运动员开联欢会.已知其中女同志有26人,女文艺工作者是联欢会总数的1/6,文艺工作者比运动员多2人,男文艺工作者比女运动员多5人.求:(1)文艺工作者的人数;(2)男运动员的人数.【解】设女文艺工作者有x 人,则联欢会总人数为x 6,从而女运动员有)26(x -人,男文艺工作者有x x -=+-315)26((人).故文艺工作者共有31)31(=-+x x(人).运动员共有31-2=29(人),于是有31+29=x 6,x =10.男运动员有133)26(29=+=--x x (人).68、某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【解】设公共汽车每隔x 分钟发车一次.因人15分钟的路程与车行)15(x -分钟路程相等;人10分钟的路程与车行 )10(-x 分钟路程相等.故有15:)15(x -=10:)10(-x .解这个方程得12=x ,即公共汽车每12分钟发一次.69、把200本书分给某班学生,已知其中总有人分到6本.那么,这个班最多有_____人.【解】39.当这个班人数有40人时,可能每人分5本,而无人分到6本.当人数不超过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八届华罗庚金杯少年数学邀请赛(中年级)试卷分析与详解一、选择题1.45与40的积的数字和是().(A)9 (B)11 (C)13 (D)15【答案】A【解析】45×40=1800,1+8=9【难度】☆【知识点】两位数乘法计算2.在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.(A)(B)(C)(D)【答案】B【解析】由观察可得:A、C、D都可通过旋转得到,而B是通过原图翻转得到。

【难度】☆☆【知识点】图形的旋转、平移3.小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是().(A)小东(B)小西(C)小南(D)小北【答案】C【解析】小东:不是小西。

小西:是小南。

小南:小东说的不对。

小北:小南说的也不对。

从对话中可看出小南与小北说的话是相互矛盾的,所以两人中一定有一个人说的是正确的,那么小东必然说的不对,既然小东说的不对,也就是小南说对了。

【难度】☆☆【知识点】逻辑推理4.2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份。

已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是()岁。

(A)16 (B)18 (C)20 (D)22【答案】B【解析】2013÷19=105…18,因为小明哥哥出生的年份是19的倍数,所以小明的哥哥出生年份=2013-18-19n。

当n=0时,小明哥哥出生年份=1995;当n=1时,小明哥哥出生年份=1976,但是显然小明哥哥如果1976年出生,2013绝对不会是他有生以来遇到的第一个没有重复数字的年份,比如1978就是没有重复数字的年份。

所以小明哥哥出生年份只能是1995,那么小明哥哥2013的年龄=2013-1995=18。

其实如果从另一个角度考虑,在(A)、(B)、(C)、(D)四个选项中,只有B选项能保证小明哥哥出生的年份是19的倍数。

【难度】☆☆【知识点】带余除法5.如右图, 一张长方形的纸片, 长20厘米, 宽16厘米. 如果从这张纸上剪下一个长10厘米, 宽5厘米的小长方形, 而且至少有一条边在原长方形的边上, 那么剩下纸片的周长最大是()厘米.(A)72 (B)82 (C)92 (D)102【答案】C【解析】常规想法,因为不可能从中间扣一个洞,那么只能在边上剪或者在顶点处剪。

可以发现在顶点剪周长不会发生变化,在边上剪周长会增加小长方形的两个长或者两个宽,所以周长最大时是增加两个长,如图所示。

【难度】☆☆☆【知识点】不规则图形周长6.张老师每周的周一、周六和周日都跑步锻炼20分钟, 而其余日期每日都跳绳20分钟.某月他总共跑步5小时, 那么这个月的第10天是().(A)周日(B)周六(C)周二(D)周一【答案】D【解析】这月共跑5×60=300(分钟),而每周跑步20×3=60(分钟),因为300÷60=5,这个月有5个周一、周六和周日,而常规的一个月最多4周零3天,从而可判断这个月有31天,并且这个月的第一天应该是周六,根据周期性,可判断这个月第10天是周一。

【难度】☆☆☆【知识点】周期问题二、填空题7.如右图, 一个正方形被分成了4个相同的长方形, 每个长方形的周长都是20厘米. 则这个正方形的面积是平方厘米。

【答案】64【解析】设正方形的边长是a,四个小长方形周长=20×4=80,而中间的三条横线是被计算了2次的,所以4a+3a×2=10a=80,所以a=8,进而可算出正方形面积=8×8=64。

【难度】☆☆☆【知识点】长方形的周长和面积8.九个同样的直角三角形卡片, 拼成了如右图所示的平面图形. 这种三角形卡片中的两个锐角较大的一个是度.【答案】54【解析】假设两个锐角较小的角是a,较大的角是b。

需要注意图中中间周角的组成,观察可知7a+2b=360°,又因为a+b=90°,7a+2b=5a+2a+2b=360°,5a=180,所以a=36°,所以b=90°-36°=54°> 36°。

【难度】☆☆☆☆【知识点】等量代换9.幼儿园的老师给班里的小朋友送来55个苹果, 114块饼干, 83块巧克力. 每样都平均分发完毕后, 还剩3个苹果, 10块饼干, 5块巧克力. 这个班最多有位小朋友. 【答案】26【解析】苹果共分了55-3=52(个),饼干共分了114-10=104(个),巧克力共分了83-5=78(个)。

因为这三样都是平均分给每位同学的,所以每样分的总数除以学生数不能有余数。

也就是学生数需要是这三样已分物品的公共的因数,52、104、78最大的公共因数是26,所以这个班最多有26位小朋友。

【难度】☆☆☆☆【知识点】约倍问题10.如下图, 将长度为9的线段AB九等分, 那么图中所有线段的长度的总和是.【答案】165【解析】所有线段包括:有1段单位长度的9段,总长:9×1=9有2段单位长度的8段,总成:8×2=16有3段单位长度的7段,总成:7×3=21…有9段单位长度的1段,总成:9×1=9所以所有线段的长度的总和是:9×1+8×2+7×3+6×4+5×5+4×6+3×7+2×8+1×9=165 【难度】☆☆☆☆☆【知识点】几何计数第二十届华罗庚金杯少年数学邀请赛决赛试题A 组试卷解析(小学中年级组A 卷)一、填空题(每小题 10分, 共80分)1. 计算: 3752(392)5030(3910)÷⨯+÷⨯=________.【考点】整数计算 【难度】☆☆ 【答案】61【分析】原式3752(392)1006(392)=÷⨯+÷⨯(37521006)7847587861=+÷=÷=2. 右图中, G F D C B A ∠+∠+∠+∠+∠+∠ 等于________度.【考点】几何、角度计算 【难度】☆☆ 【答案】360【分析】连接CD ,有G F EDC ECD ∠+∠=∠+∠,这样就转化成四边形的内角和了,四边形的内角和是360度.3. 商店以每张2角1分的价格进了一批贺年卡, 共卖14.57元. 若每张的售价相同, 且不超过买入价格的两倍, 则商店赚了________元.【考点】数论、分解质因数 【难度】☆☆ 【答案】4.7元【分析】14.57元=1457分,14573147=⨯每张的售价不超过买入价格的两倍,47是张数,31分是售价; 商店赚了(3121)47470-⨯=(分)=4.7元.4. 两个班植树, 一班每人植3棵, 二班每人植5棵, 共植树115棵. 两班人数之和最多为________.【考点】组合、最值问题 【难度】☆☆ 【答案】37人.【分析】设一班a 人,二班b 人,则有35115a b +=, 求两班人数最多,算式转化成: 3()2115a b b ++=,a b +最大,b 尽可能的小,2b =时,37a b +=。

两班人数之和最多的是37人.5. 某商店第一天卖出一些笔, 第二天每支笔降价1元后多卖出100支, 第三天每支笔比前一天涨价3元后比前一天少卖出200支. 如果这三天每天卖得的钱相同, 那么第一天每支笔售价是________元.【考点】应用题 【难度】☆☆☆ 【答案】4元【分析】设第一天每支笔售价x 元,卖出n 支,有(1)(100)(1)(100)nx x n nx x n =-+⎧⎨=+-⎩可得到1001001002200x n x n =+⎧⎨=-⎩,解得3004n x =⎧⎨=⎩6. 一条河上有A, B 两个码头, A 在上游, B 在下游. 甲、乙两人分别从A, B 同时出发, 划船相向而行, 4小时后相遇. 如果甲、乙两人分别从A, B 同时出发, 划船同向而行, 乙16小时后追上甲. 已知甲在静水中划船的速度为每小时6千米, 则乙在静水中划船每小时行驶________千米.【考点】行程、流水行船 【难度】☆☆☆ 【答案】10【分析】在流水行船问题中,两船相遇的速度和即两船船速和,两船追及速度差即两船船速差。

设乙船的速度是x 千米/小时;4(6)16(6)x x +=-解得10x =7. 某个两位数是2的倍数, 加1是3的倍数, 加2是4的倍数, 加3是5的倍数, 那么这个两位数是________.【考点】数论、余数问题 【难度】☆☆☆ 【答案】62【分析】由题可知,此数是一个2的倍数,并且除以3、4、5都余2的数,这样的数最小是2,因为这个数是两位数, 2+[345]=62、、.8. 在三个词语“尽心尽力”、“力可拔山”和“山穷水尽”中, 每个汉字代表1至8之间的数字, 相同的汉字代表相同的数字, 不同的汉字代表不同的数字. 如果每个词语的汉字所代表的数字之和都是19, 且“尽”>“山”>“力”, 则“水”最大等于________.【考点】数字谜、最值 【难度】☆☆☆☆☆ 【答案】7【分析】由题意得:⎧⎪⎨⎪⎩尽+心+尽+力=19 (1) 力+可+拔+山=19 (2)山+穷+水+尽=19 (3)可得357⨯=3尽+心+2力+可+拔+2山+穷+水=19 而1~8的和是36,则有573621=-=2尽+1力+1山,与(1)比较得2-=山心. “尽”>“山”>“力”,“力”尽可能大,“尽”才最小,假定“力”、“山”、“尽”是连续自然数,有(+2)+1=212力+力+力,“力”为4,此时山=5,心=3,尽=6; (1)式满足:6+3+6+4=19;(3)式:5+++6=19穷水,水此时最大为7,穷为1,来推倒2式:(2)式:4+++5=19可拔,而现在只剩下2和8了,满足条件。

此时水最大为7.若水最大取8时,有6()2()6()5()5()3()7()4()4()1()8()6()⎧⎪⎨⎪⎩尽+心+尽+力=19 力+可+拔+山=19山+穷+水+尽=19,但此时6()尽、4()山、5()力不满足“尽”>“山”>“力”,所以不符合要求。

故水最大为7.二、简答题(每小题15分, 共60分, 要求写出简要过程)9. 有一批作业, 王老师原计划每小时批改6本. 批改了2小时后, 他决定每小时批改8本, 结果提前3小时批改完. 那么这批作业有多少本?【考点】应用题 【难度】☆☆☆ 【答案】84本【分析】先考虑2小时后剩下的作业本。

相关文档
最新文档