九年级数学切线的概念判定性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑴判定定理:经过半径的 是圆的切线. 的直线
⑵性质定理:
①经过圆心垂直于切线的直线必经过 ②圆的切线垂直于 的半径;
;
③经过切点垂直于切线的直线必经过
.
检测练习:
1.设⊙O的半径为R,圆心到直线L的 距离为d,已知R=2,d=3,则直线与圆的 位置关系是 ; 若R=√5,则当 时, 直线与圆相交. 2.如图,以O为圆心,OA为 半径的⊙O交OB于C.若 O C OA=3,AB=4,BC=2,则AB A B 与⊙O的位置关系是 .
3.已知⊙O的半径r=7cm,直线a//b, 且a与⊙O相切,圆心O到b的距离为 9cm,则a与b的距离为 . 4.如图,直角梯形ABCD 中,AD//BC ∠A=900,以 A D CD为直径的圆切AB于E. E O 已知AD=3,BC=4,则⊙O B C 的直径为 .
5.如图,D是△ABC的AC边上一点, 0, A 且AD:DC=2:1.已知∠C=45 D 0.求AB是 ∠ADB=60 C B △BCD的外接圆的切线. O 6.如图,在△ABC B 0,⊙O切 中,∠C=90 AB于D,切BC于E, D E O 切AC于F,求∠EDF A C F 的度数.
复习(一)
切线的概 念· 判定· 性质
复习目标:
1.了解切线的概念,直线和圆的位置关系; 2.掌握切线的判定定理和性质定理; 3.会用切线的判定,性质进行证明或计算.
复习wenku.baidu.com导:
回忆下列知识点,会的直接写,不会的可 翻书查找,边填边记,5分钟后,比谁能正 确填写,并能运用它们解题.
知识要点: 1.直线和圆的位置关系:
7.如图,AB是⊙O的直径,BC切⊙O 于B,⊙O的弦AD//OC.
⑴求证:DC是⊙O的切线;
⑵如果设⊙O的半径 为r.①求AD· OC的值; ②若有AD+OC=9r/2, 求CD的长.
D A O
C
B
课堂作业:
1.⊙O的圆心O到直线L的距离为d,⊙O 的半径为R.若d,R是方程x2-8x+15=0的 两个根时,则直线L与圆的位置关系 是 ;当d,R是方程x2-2x+m=0的两根, 若直线L与圆相切时,m= .
⑴直线和圆有 公共点时,叫做直线和 圆相切.其中的直线叫做圆的 ,唯一的 公共点叫做 .直线和圆 公共点时,叫 做直线和圆相离.直线和圆有 公共点 时,叫做直线和圆相交. ⑵⊙O的半径为r,O到直线L的距离为d. ① d>r ; ② . 直线L和⊙O相切; ③ . 直线L和⊙O相交;
2.切线的判定和性质
2.如图,OA,OB是⊙O的半 径,OA⊥OB.延长OB到C, 使BC=OB,CD切⊙O于D, 则∠OAD= 度.
O
B C
A D
3.正△ABC的边长为a,以A为圆心画半 径为r的圆,要使这个圆与三角形的三边 都有公共点,则r的取值范围是 . 4.如图,AB是⊙O的直径,BC切⊙O于 B,OC交⊙O于D,连AD并延长交BC于E. ⑴若BC=√3,CD=1,求⊙O的半径; A ⑵若取BE的中点F,连DF. O D 求证:DF是⊙O的切线. M ⑶过点D作DG⊥BC于 EGF B G,OE与DG交于M,试 C 判断DM与GM是否相等,并说明理由.
相关文档
最新文档