第4章 平面机构的力分析
孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】
![孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】](https://img.taocdn.com/s3/m/fcefbaa7eff9aef8951e067c.png)
第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。
(1)驱动力①定义驱动机械运动的力称为驱动力。
②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。
(2)阻抗力①定义阻止机械运动的力称为阻抗力。
②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。
③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。
克服这类阻力所完成的功称为有效功或输出功。
b.有害阻抗力机械在运转过程中所受到的非生产阻力。
克服这类阻力所作的功称为损失功。
2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。
(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。
3.机构力分析的方法对于不同的研究对象,适用的方法不同。
(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。
(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。
②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。
二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。
1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。
(1)作平面复合运动的构件惯性力系有两种简化方式。
①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。
西工大教材-机械原理各章习题及答案
![西工大教材-机械原理各章习题及答案](https://img.taocdn.com/s3/m/03d111d933d4b14e85246860.png)
电动机所需的功率为
p = ρ • v /η = 5500 ×1.2 ×10−3 / 0.822 = 8.029(KW )
5-8 在图示斜面机构中,设已知摩擦面间的摩擦系数 f=0.2。求在 G 力作用下(反行程),此斜面 机构的临界自锁条件和在此条件下正行程(在 F 力作用下)的效率。 解 1)反行程的自锁条件 在外行程(图 a),根据滑块的平衡条件:
解 1 ) 取 比 例 尺 μ 1 = 1mm/mm 绘 制 机 构 运 动 简 图 ( 图 b )
(a)
2 )计算该机构的自由度
n=7
pι=9
ph=2(算齿轮副,因为凸轮与齿轮为一体) p’=
F’= F=3n-2pe-ph
=3x7-2x8-2 =1
G7
D 64 C
EF
3
9
B
2
8
A
ω1
b)
2-6 试计算如图所示各机构的自由度。图 a、d 为齿轮一连杆组合机构;图 b 为凸轮一连杆组合 机构(图中在 D 处为铰连在一起的两个滑块);图 c 为一精压机机构。并问在图 d 所示机构中, 齿轮 3 与 5 和齿条 7 与齿轮 5 的啮合高副所提供的约束数目是否相同?为什么?
C3 重合点继续求解。
解 1)速度分析(图 b)取重合点 B2 与 B3,有
方向 大小 ?
v vv vB3 = vB2 + vB3B2 ⊥ BD ⊥ AB // CD ω1lAB ?
D
C
3 d3
ω3
4
ω3 90°
2
B(B1、B2、B3)
ω1
A1 ϕ = 90°
平面机构的力分析
![平面机构的力分析](https://img.taocdn.com/s3/m/b83db648b42acfc789eb172ded630b1c58ee9b13.png)
平面机构的力分析平面机构被广泛应用于机械工程中,其主要功能是将输入力或运动转化为需要的输出力或运动。
在进行力学设计时,了解和分析平面机构的力分布是非常重要的,本文将对平面机构的力分析进行详细介绍。
首先,平面机构可以通过静力学方法进行力分析。
静力学是研究物体静止或平衡的力学学科,可以用来分析静态平面机构中各个零件的力。
在进行平面机构的力分析时,一般需要考虑以下几个方面:1.合力和力矩:平面机构中各个零件受到的力可以相互作用,产生合力和合力矩。
合力是所有力的矢量和,而合力矩是所有力矩的矢量和。
通过计算合力和合力矩,可以判断机构是否平衡,以及零件上的受力情况。
2.内力:内力是作用在零件内部的力,由于平均剪应力和平均正应力引起。
在平面机构中,内力可以通过应力分析和静力平衡方程求解。
通过分析内力,可以判断零件的强度和稳定性。
3.杆件受力:平面机构中的杆件是承受力的主要部分,因此对于杆件的受力进行分析是非常重要的。
通常,可以通过静力平衡方程和力矩平衡方程来计算杆件上的受力。
根据受力情况,可以选择合适的杆件材料和尺寸。
4.关节受力:平面机构中的关节是连接零件的部分,受到的力会传递到相邻的零件上。
通过分析关节受力,可以确定关节的强度和稳定性,并进行合理的设计。
在进行平面机构的力分析时,可以使用手动计算方法或计算机辅助设计软件。
手动计算方法需要进行力学方程的推导和计算,需要较高的数学和力学知识。
计算机辅助设计软件可以通过输入机构的几何参数和力参数,自动进行力分析和力矩分析,快速得到各个零件的受力情况。
总之,平面机构的力分析是机械设计中的重要内容,可以通过静力学方法进行。
在进行力分析时,需要考虑合力和力矩、内力、杆件受力和关节受力等因素。
通过合理的力分析,可以为机构的设计提供有用的参考和指导。
机械原理复习题(第3、4、5、8章)
![机械原理复习题(第3、4、5、8章)](https://img.taocdn.com/s3/m/6e6c7786336c1eb91a375de6.png)
第3章平面机构的运动分析第4章平面机构的力分析第5章机械的效率和自锁第8章平面连杆机构及其设计一、填空题:α=,则传动角γ=___________度,传动角越大,1、铰链四杆机构的压力角040传动效率越___________。
2、下图为一对心曲柄滑块机构,若以滑块3为机架,则该机构转化为机构;若以构件2为机架,则该机构转化为机构。
3、移动副的自锁条件是;转动副的自锁条件是。
4、曲柄摇杆机构中,当和共线时出现死点位置。
:5、曲柄摇杆机构中,只有取为主动件时,才有可能出现死点位置。
处于死点位置时,机构的传动角γ=__________度。
6、平行四边形机构的极位夹角θ=,它的行程速比系数K=。
7、曲柄滑块机构中,若增大曲柄长度,则滑块行程将。
8、如下图所示铰链四杆机构,70mm,150mm,110mm,90mm====。
若以a b c da杆为机架可获得机构,若以b杆为机架可获得机构。
9、如图所示铰链四杆机构中,若机构以AB杆为机架时,为机构;以CD 杆为机架时,为机构;以AD杆为机架时,为机构。
~10、在平面四杆机构中,和为反映机构传力性能的重要指标。
11、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作运动,即得到双曲柄机构。
12、在摆动导杆机构中,若以曲柄为原动件,该机构的压力角为,其传动角为。
13、相对瞬心与绝对瞬心的相同点是,不同点是;在由N个构件组成的机构中,有个相对瞬心,有个绝对瞬心。
/二、判断题:1、对于铰链四杆机构,当机构运动时,传动角是不变的。
()2、在四杆机构中,若有曲柄存在,则曲柄必为最短杆。
()3、平面四杆机构的行程速度变化系数K 1,且K值越大,从动件急回越明显。
()4、曲柄摇杆机构中,若以摇杆为原动件,则当摇杆与连杆共线时,机构处于死点位置。
()5、曲柄的极位夹角θ越大,机构的急回特性也越显著。
()6、在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。
机械原理第四章 力分析
![机械原理第四章 力分析](https://img.taocdn.com/s3/m/1260b0bb4028915f804dc2d1.png)
FN21/2
G
FN21/2
式中, fv为 当量摩擦系数 fv = f / sinθ
若为半圆柱面接触: FN21= k G,(k = 1~π/2)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数, 其取值为:
G
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 摩擦力的计算和比较大为简化。因而这也是工程中简化处理问题
的一种重要方法。
(2)总反力方向的确定
运动副中的法向反力与摩擦力 的合力FR21 称为运动副中的总反力, 总反力与法向力之间的夹角φ, 称 为摩擦角,即
φ = arctan f
FR21
FN21
机械原理
第四章 平面机构的力分析
§4-1 概述 §4-2 运动副中总反力的确定 §4-3 不考虑摩擦时平面机构的动态静力分析 §4-4 机械的效率和自锁 §4-5 考虑摩擦时机构的受力分析
§4-1 概述
一、作用在机械上的力
有重力、摩擦力、惯性力等,根据对机械运动的影响,分为两类: (1)驱动力 驱动机械运动的力。 与其作用点的速度方向相同或者成锐角; 其功为正功, 称为驱动功 或输入功。
放松:M′=Gd2tan(α φv)/2
三、转动副中摩擦力的确定
G
1 径向轴颈中的摩擦 1)摩擦力矩的确定
转动副中摩擦力Ff21对轴颈的摩
擦力矩为 Mf = Ff21r = fv G r
轴颈2 对轴颈1 的作用力也用
ω12
Md O
平面机构的力分析重点(zl)
![平面机构的力分析重点(zl)](https://img.taocdn.com/s3/m/39d2e02024c52cc58bd63186bceb19e8b8f6eca8.png)
牛顿-欧拉法
基于牛顿第二定律和刚体 动力学原理,分析机构中 各构件的运动和受力情况。
虚功原理法
利用虚功原理,通过分析 机构中各构件的虚位移和 作用力,计算出机构的动 态性能。
拉格朗日方程法
基于拉格朗日方程,建立 机构的运动学和动力学方 程,用于分析机构的运动 和受力情况。
动力学分析的应用实例
机械手动力学分析
应用于各种机 械系统中,如传动系统、控 制系统、输送系统等。
02
在传动系统中,平面机 构可以用于实现动力的 传递和变速。
03
在控制系统中,平面机 构可以用于实现精确的 位置控制和速度控制。
04
在输送系统中,平面机 构可以用于实现物料的 输送和分拣。
02 力分析的基本原理
在分析机构受力情况时,应注意机构的运动状态,如静止、匀速运 动或加速运动等,以便更准确地计算受力情况。
04 平面机构的运动学分析
运动学分析的基本方法
01
02
03
解析法
通过建立机构的运动学方 程,利用代数和解析几何 的方法求解机构的位置、 速度和加速度。
图解法
利用机构运动学图解,通 过几何关系求解机构的位 置、速度和加速度。
约束条件的考虑
01
在运动学分析中要充分考虑机构的约束条件,避免出现不合理
的运动情况。
误差分析和精度要求
02
根据实际应用需求,对运动学分析的误差进行分析,以满足精
度要求。
动态特性的考虑
03
在运动学分析中要考虑机构的动态特性,如惯性、阻尼等,以
更准确地描述机构运动。
05 平面机构的动力学分析
动力学分析的基本方法
通过力分析,可以确定机构在运 动过程中各构件的受力情况,从 而评估机构的运动性能和稳定性。
机械原理作业答案1-8-A4
![机械原理作业答案1-8-A4](https://img.taocdn.com/s3/m/c7e33a8271fe910ef12df889.png)
ϕ ϕ
FR 32 v23 FR 21
Q
B
ω 21 2
C
Q
FR 32
Md
FR12 ω1 A
3
1
4
FR12
FR 31
三力汇交
Q + FR 12 + FR 32 = 0 构件 2: 大小� ? ? 方向� � � 构件 1: FR 21 + FR 31 = 0
大小� 方向� ? ?
班 姓 学
- 24 -
级 名 号
F
2
ω 23
ϕ ϕ
FR 21
ω 21
v34
FR 43 ϕ
3
FR 41
ω14 4
ω 23 1
F
FR 32
M
FR 21
ω 21
2
FR 23
FR12
班 姓 学
- 22 -
级 名 号
成
绩
任课教师 批改日期
机械原理作业集 4—4 图示为一摆动从动件盘形凸轮机构,凸轮 1 沿逆时针方向回转,Q 为作用在摆杆 2 上的外载 荷,试确定各运动副中的总反力(F R31、FR12、F R32)的方位。图中虚线圆为摩擦圆,摩擦角为φ。 解:
Q
FR 24 n
n FR 34
FR 12 Q = sin( 90 − ( α − ϕ)) sin 2(α − ϕ) cos( α − ϕ) FR 12 = Q sin 2(α − ϕ)
�
FR 12 = FR 21 F = Qc tan( α − ϕ) F0 = Qc tan α
α−ϕ η=
令
FR 31
FR 32
α + β − 90 � − ϕ
平面机构的力分析
![平面机构的力分析](https://img.taocdn.com/s3/m/9e366b5891c69ec3d5bbfd0a79563c1ec5dad7b8.png)
G
1)FR21偏斜于法向反力一摩擦角φ ;
2) FR21偏斜旳方向应与相对速度v12旳方向相反。
(2)槽面接触旳移动副
G FN 21 FN 21 0 22
FN 21 2
G
sin(90 ) sin 2
FN 21
G
sin
F
F 2 N 21 f
G
f G
f
f 21
2
sin
sin
θ
FN21 2
举例: 例4-1 斜面机构
正行程:F= G tan(α +φ) 反行程:F ′ = G tan(α - φ)
例4-2 螺旋机构 拧紧:M = Gd2tan(α +φv)/2 放松:M′=Gd2tan(α -φv)/2
2. 转动副中摩擦力旳拟定
(1)摩擦力矩旳拟定
转动副中摩擦力Ff21对轴颈旳摩 擦力矩为
t Mf
其总反力方向旳拟定为: 1)总反力FR21旳方向与 法向反力偏斜一摩擦角;
2)偏斜方向应与构件1相对
构件2旳相对速度v12旳方向相反。
n
Ff21
2
FR21
φn FN21
ω12
1
V12 t
§4-5 考虑摩擦时机构旳受力分析
例 铰链四杆机构考虑摩擦时旳受力分析 例 曲柄滑块机构考虑摩擦时旳受力分析 小结 在考虑摩擦时进行机构力旳分析,关键是拟定运动副 中总反力旳方向, 而且一般都先从二力构件作kf
fV 当量摩擦系数
k 1~ 2
摩擦力计算旳通式:
Ff21 = f FN21 = fvG
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
第四章平面机构的力分析习题及答案
![第四章平面机构的力分析习题及答案](https://img.taocdn.com/s3/m/1749376e1611cc7931b765ce0508763231127427.png)
第三章平面结构力分析一、填空题1、力对机械运动影响的不同分为、;2、构件惯性力的确定有、;3、为时构件在质量代换前后,构件的惯性力和惯性力偶矩保持不变,应满足三个条件;4、作用在机械系统上的内力和外力各有:。
二、判断题(答A表示说法正确.答B表示说法不正确)1、质量代换法主要应用于绕非质心轴转动的构件和作平面复杂运动的构件。
2、惯性力是一种加在有不变速运动的构件上的虚拟力。
3、平面机构中的运动副计有:移动副,转动副和平面低副三种。
三、简答题1、机构力分析的方法?2、构件组的静定条件是什么? 为什么说基本杆组都是静定的?3、考虑摩擦时机构的受力分析的具体方法及步骤?四、分析计算题1、图a所示导轨副为由拖板 1 与导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b所示为由转动轴1与轴承2组成的复合转动副,轴1绕其轴线转动。
现已知各运动副的尺寸如图所示,并设G 为外加总载荷,各接触面间的摩察系数均为f。
试分别求导轨副的当量摩察系数f v 和转动副的摩察圆半径ρ。
2、机械效益△是衡量机构力放大程度的一个重要指标。
其定义为在不考虑摩擦的条件下机构的输出力(力矩)与输入力(力矩)之比值,即△=│M r / M d│=│F r / F d│。
试求图示机构的机械效益。
(图示为一小型压力机)第三章平面结构力分析习题解答一、填空题1、驱动力;2、一般力学方法、质量代换法3、代换前后构件重力,惯性力、驱动力,阻力,运动副反力;4、的质量不变、代换前后构件的质心位置不变、代换前后构件对质心轴的转动惯量不变;二、判断题(答A表示说法正确.答B表示说法不正确)1、( A );2、(B);3、(B)三、简答题1、机械力分析的方法有如下两类:(1)作静力分析即不计构件惯性力的机构力分析对于低速机械,因其惯性力小,故常略去不计。
此时只需对机械作静力分析。
(2)作动态静力分析即将惯性力视为一般外力加于相应构件上,再按静力分析的方法进行分析。
机械原理-平面机构的力分析
![机械原理-平面机构的力分析](https://img.taocdn.com/s3/m/5cf7bab47d1cfad6195f312b3169a4517723e530.png)
传动条件
曲柄摇杆机构、齿轮传动机构
存储条件
转动机构、滑动机构
力的基本概念
1 力的作用点
力作用的位置或接触点。
2 力的方向
力作用的方向或施力线。
3 力的大小
力作用的大小或强弱。
平面机构的受力分析
1
受力分析
2
根据力的分解结果,分析各构件的受力情况。
3
力的分解
将力分解为平行于连接构件的分力和垂直于 连接构件的分力。
交叉槽的弯曲影响
交叉槽是指曲柄和滑块之间存在的交叉形状,它会导致机构的弯曲失效和运 动不稳定。
非正交曲柄机构的分析
1 自由度分析
根据曲柄滑块机构的结构,确定其自由度以及运动学约束。
2 力分析
通过力的平衡分析,确定机构各处的力大小和方向。
3 运动模拟
使用模拟软件或物理实验,验证机构设计的正确性和稳定性。
摆线和椭圆曲柄机构的分析
摆线曲柄机构
利用摆线曲线的特性,实现更平稳的运动传动。
椭圆曲柄机构
利用椭圆曲线的特性,实现更精确的运动传动。
内嵌框架的应用
机构设计
通过内嵌框架的布局,实现机构零 件的紧凑排列和高效传动。
机器人技术
内嵌框架在机器人领域的应用,提 高了机器人的稳定性和工作效率。
汽车工程
通过内嵌框架的结构布局,实现汽 车发动机和悬挂系统的高性能和节 能效果。
力的平衡
通过分析和计算,判断平面机构是否处于力 的平衡状态。
计算机构的自由度
自由度是指机构中独立变量的个数,它决定了机构的运动和约束情况。
平面机构的结构形式
齿轮传动
通过齿轮的啮合来实现转动传动功 能。
机械原理 第四章 平面机构的力分析
![机械原理 第四章 平面机构的力分析](https://img.taocdn.com/s3/m/4f40b98c763231126fdb1117.png)
FN 21 FN 21dq
1
0
设: FN 21 g(G)
FN 21 FN 21dq g(G) dq kG
0
0
(k ≈1~1.57)
Ff 21 fFN 21 kfG
q
2
FN21
G
令kf fv Ff 21 fvG
4)标准式
不论两运动副元素的几何形状如何,两元素间产生的滑动摩 擦力均可用通式:
❖拧紧——螺母在力矩M作用下逆着G力等速向上运动,相当于在滑块2上加
一水平力F,使滑块2沿着斜面等速向上滑动。
F G tg( ) M F d2 d2 G tg( )
22
❖ 放 松 —— 螺 母
G/2
G/2
顺着G力的方向等
1
速向下运动,相 当于滑块 2 沿着
2
G
F G
斜面等速向下滑。
i 1
2)代换前后构件的质心位置不变;
静
❖以原构件的质心为坐标原点时,应满足: 代
n
mi xi
i 1 n
0
mi
i 1
yi
0
3)代换前后构件对质心的转动惯量不变。
换
动 代 换
n
mi
x
2 i
y i2
Js
i 1
动代换:
用集中在通过构件质心S B
的直线上的B、K 两点的代换
S
b
c
C
质量mB 和 mK 来代换作平面
F G tg( )
M F d2 d2 G tg( ) 22
时,M ' 0 阻力矩(与运动方向相 反)
当 时,M ' 0
时,M ' 0 驱动力(与运动方向相 同)
第4章不考虑摩擦时平面机构的力分析
![第4章不考虑摩擦时平面机构的力分析](https://img.taocdn.com/s3/m/030536c748649b6648d7c1c708a1284ac85005c9.png)
第4章不考虑摩擦时平面机构的力分析题4-2在图示的凸轮机构中,已知各构件的尺寸、生产阻力F r的大小及方向以及凸轮和推杆上的总惯性力F I1′和F I2′,试以图解法求各个运动副中的反力和需要施加在凸轮轴上的平衡力偶矩M b。
(注:已知各力的大小自己确定,要求列出力的矢量方程,并作图求解未F´题4-2图知力)解:题4-4在图示的四杆机构中,已知ω1=20s-1,l AB=140mm,l BC=400mm,l CD=400mm,l AD=600mm,构件2和3的重量分别为G2=47N,G3=56N,对其形心的转动惯量为J S2=0.286kg.m2,J S3=0.505kg.m2,构件1的质量略去不计,试求需要加在构件1上的平衡力以及各个运动副中的反力。
解:4D题4-4图第5章 摩擦与效率题5-1图a)所示的导轨副为由拖板1和导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b)所示为由转轴1和轴承2组成的复合转动副,绕轴线OO 转动。
现已知各个运动副的尺寸,并设G 为外加总载荷,各接触面之间的摩擦系数均为f 。
试分别求导轨副的当量摩擦系数f V 和转动副的摩擦圆半径ρ。
解:1)求图a)所示的导轨副的当量摩擦系数f Va)Ob)题5-1图故f V =F/G =2)求图b)所示的导轨副的摩擦圆半径ρ故ρ=M f /G =题5-2图示为一锥面径向推力轴承,已知其几何尺寸如图所示,设轴1上承受有铅直总载荷G ,轴承中的滑动摩擦系数为f ,试求轴1上所受的摩擦力矩M f (分别以新轴端和跑合轴端来加以分析)。
提示:可以利用当量摩擦系数的概念直接引用平轴端轴承的公式求得。
解:若为新轴端轴承,则若为跑合轴端轴承,则题5-3图示为一曲柄滑块机构的三个位置,F 为作用在活塞上的力,转动副A 及B 上所画的虚线小圆为摩擦圆,试决定在此三个位置时作用在连杆AB 上的作用力的真实方向(各构件的重量及惯性力略去不计)。
掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt
![掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt](https://img.taocdn.com/s3/m/9691c8c5770bf78a652954f6.png)
F21 = fN 21 = kfQ 令kf = fv F21 = fvQ
不论两运动副元素的几何形状如何,两元素间产生的 滑动摩擦力均可用通式:F21 = fN 21 = fvQ 来计算。
ƒv ------当量摩擦系数
..
14
一、移动副中的摩擦(续)
5)槽面接触效应 当运动副两元素为槽面或圆柱面接触时,均有ƒv>ƒ
i =1
2)代换前后构件的质心位置不变;
以原构件的质心为坐标原点时,应满足:
n
mi xi
i =1 n
=
0
mi yi
i =1
= 0
3)代换前后构件对质心的转动惯量不变。
( ) n
mi
x
2 i
+
y
2 i
= Js
i =1
..
8
二、质量代换法(续)
4. 两个代换质量的代换法
用集中在通过构件质心S 的直线上的B、K 两点的代 换质量mB 和 mK 来代换作平面运动的构件的质量的代换 法。
=
d2 2
Qtg (a
..
-v)
21
三、转动副中的摩擦
1. 轴颈摩擦
..
22
三、转动副中的摩擦(续)
1)摩擦力矩和摩擦圆
摩擦力F21对轴颈形成的摩擦
力矩 M f = F21r = f vQr
①
用总反力R21来表示N21及F21
由力平衡条件
R21 = -Q ②
Md = -R21×= -M f
..
10
§4–3 运动副中的摩擦力的确定
1. 移动副中摩擦力的确定
F21=f N21 当外载一定时,运动副两元素间法向反力 的大小与运动副两元素的几何形状有关:
精品课件!《机械原理》_第四章 平面机构的力分析
![精品课件!《机械原理》_第四章 平面机构的力分析](https://img.taocdn.com/s3/m/f0dab079168884868762d6c1.png)
G 1 M Mf
ω
dρ
ω
r
2
2r 2R
轴端接触面
R
ρ
运动副中摩檫力的确定
上的压强p为常数 为常数, 设 ds 上的压强 为常数, 则其正压力dF 则其正压力 N = pds , 摩擦力dF 摩擦力 f = fdFN = f pds, , 故其摩擦力矩 dMf为 : dMf = ρdFf = ρf pds 总摩擦力矩M 总摩擦力矩 f为 Mf =∫ρ f pds = 2π f ∫pρ2dρ
构件惯性力的确定
3)质量静代换 ) 只满足前两个条件的质量代换称为静代换。 只满足前两个条件的质量代换称为静代换。 如连杆BC的分布质量可用 如连杆 的分布质量可用 B、C两点集中质量 、 两点集中质量 两点集中质量mB、mC代换,则 代换, 、 代换 mB=m2c/(b+c) mC=m2b/(b+c) 优缺点: 优缺点:构件的惯性力偶 会产生一定的误差, 会产生一定的误差,但计 算简便, 算简便,一般工程是可接 A 受的。 受的。
运动副中摩檫力的确定
3.平面高副中摩擦力的确定 . 平面高副两元素之间的相对运动通常是滚动兼滑动, 平面高副两元素之间的相对运动通常是滚动兼滑动,故有滚动 摩擦力和滑动摩擦力;因滚动摩擦力一般较小, 摩擦力和滑动摩擦力;因滚动摩擦力一般较小,机构力分析时 通常只考虑滑动摩擦力。 通常只考虑滑动摩擦力。 平面高副中摩擦力的确定, 平面高副中摩擦力的确定,通常是将摩擦力和法向反力合成一 总反力来研究。 总反力来研究。 1)其总反力方向的确定为: )其总反力方向的确定为: 总反力FR21的方向与法向反力 的方向与法向反力 总反力 偏斜一摩擦角; 偏斜一摩擦角; 2)偏斜方向应与构件1相对构件 的 )偏斜方向应与构件 相对构件 相对构件2的 相对速度v12的方向相反 的方向相反 相对速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
θ θ
FN21
FN21
G/2 f Ff 2= FN 21 f 2 = f G fvG = = sin θ sin θ
第三节 考虑摩擦的机构力分析
楔形增压, 导致产生较大摩擦力
半圆柱面接触: FN21= k G,(k = 1~π/2) 摩擦力计算的通式: Ff = f FN21 =f k G =fvG 其中, fv 称为当量摩擦系数, 其取值为: 平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。 说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 的摩擦力计算和大小比较大为简化。 因而这也是工程中简化处 理问题的一种重要方法。
第四节 自锁机构的分析与设计
e sin( α − φ) ≤ r1 sin φ + ρ
本章总结
本章重点: 运动副中的摩擦与自锁 自锁机构与机构自锁的判定
机械的效率
1.机械效率的概念及意义 (1)机械效率 机械的输出功(Wr)与输入功(Wd)的比值, 以η表示。 机械损失系数或损失率 机械的损失功(Wf)与输入功(Wd) 的比值。 η=Wr/Wd =1-Wf/Wd (2)机械效率的意义 机械效率反映了输入功在机械中的有效利用的程度。 它是 机械中的一个主要性能指标。 因摩擦损失是不可避免的,故必 有η <1。
第三节 考虑摩擦的机构力分析
四、考虑摩擦的力分析
例1
图示的曲柄滑块机构中,已知各构件尺寸和原动
件曲柄的位置,作用在滑块4上的水平阻力 Fr 以及各运 动副中的摩擦系数f,忽略各构件质量和惯性力,求各 运动副的反力及加在曲柄的平衡力矩。 ω21
2 3
4 Fr
1 第三节 考虑摩擦的机构力分析
四、考虑摩擦的力分析
二、转动副中的摩擦
G 2 Md FR21 O2 O1 FN21 1 2
G’
ω12
ρ
O2 F21 B O1 1 B FR21
ρ
ω12
r
运动状态的判别: 1、外力合力G’作用于摩擦圆之内 2、外力合力G’作用于摩擦圆之外
第三节 考虑摩擦的机构力分析
二、转动副中的摩擦
2、止推轴承 G 1 p
整个圆环接触面积上的摩擦力矩为 2r1 ρ dρ
FN21
Fx F FN 21 tan α = = y tan α
α
Fy Fd
Ff 21 = FN 21 tan ϕ
1 2
φ
1
V12
α > ϕ, 加速运动 α < ϕ, 减速运动或自锁 α = ϕ, 匀速运动或自锁
Ff21
自锁: 无论多么大的驱动力,都不能使机构运动的现象.
第三节 考虑摩擦的机构力分析
V12
ϕ
重力G为驱动力, Ff21 有效驱动力为: 摩擦力为:
α
G sin α
1
α
G
2
fFN 21 = G cos α tan ϕ
滑块沿斜面下滑的条件为:
G sin α ≥ G cos α tan ϕ
tan α ≥ tan ϕ
第三节 考虑摩擦的机构力分析
α <ϕ
为自锁条件
一、移动副中的摩擦 3. 槽面移动副的摩擦
2.机械效率的确定 (1)机械效率的计算确定 1)以功表示的计算公式 η=Wr/Wd=1-Wf/Wd 2)以功率表示的计算公式 η=Pr/Pd=1-Pf/Pd 3)以力或力矩表示的计算公式 η=F0/F=M0/M 即 理想驱动力 理想驱动力矩 η= = 实际驱动力 实际驱动力矩
理论机械装置 实际机械装置 η0
一、移动副中的摩擦 1.平面移动副中的摩擦 FR21 φ 1 2 总反力方向的确定方法: G 1)FR21偏斜于法向反力一摩擦角φ ; 2) FR21偏斜的方向应与相对速度v12的方向相反。
第三节 考虑摩擦的机构力分析
FN21
v12 F
Ff21
一、移动副中的摩擦
FR21 FN21
Fx
tan ϕ =
ω12
r
B
Ff21
= Ff 21 f= ρ fv r vG
第三节 考虑摩擦的机构力分析
二、转动副中的摩擦 ρ为摩擦圆的半径
G 2
ω12
ρ
O2 O1 1 B FR21
总反力FR21的方向判别: 轴承2给轴径1总反力 FR21对轴心之矩恒与轴径1相对于 轴承2的角速度ω12相反并相切于摩擦圆.
第三节 考虑摩擦的机构力分析
对移动副而言,当外力合力作用在摩擦锥之内,则移动 副发生自锁; 对于斜面移动副,用斜面倾角与摩擦角的关系判断自锁。 滑块沿斜面上升中的自锁条件为 α > 900 − φ 滑块沿斜面下降中的自锁条件为
α<φ
对转动副而言,当外力合力作用在摩擦圆之内,则转动 副发生自锁。
第四节 自锁机构的分析与设计
二、自锁机构
第三节 考虑摩擦的机构力分析
三、 螺旋副中的摩擦 1.矩形牙螺旋副中的摩擦
Fቤተ መጻሕፍቲ ባይዱ21 Fd
拧紧螺母: 相当于滑块沿斜面上升 放松螺母: 相当于滑块沿斜面下降 自锁条件同斜面摩擦
α 2πr
G
自锁条件:α ≤ ϕ
第三节 考虑摩擦的机构力分析
三、 螺旋副中的摩擦 2. 三角牙螺旋副中的摩擦 相当槽面摩擦
一、移动副中的摩擦 1.平面移动副中的摩擦
FR21 FN21 Fd
φ
1 Ff21 2
V12
滑块1在总驱动力Fd力的作用下,相对平面2以速度V12等速移动。
平面2给滑块1的作用力有法向反力 FN21和摩擦力Ff21, 二者的合力FR21为平面2给滑块1的总反力,与法线方向的夹角为ϕ。
第三节 考虑摩擦的机构力分析
1
α
V23 2
FR32
α
FR12
n ϕ n V21 n
α −ϕ ≤ ϕ α ≤ 2ϕ
第四节 自锁机构的分析与设计
三、自锁机构的分析与设计 自锁夹具的设计
FR21 ϕ
去掉手柄力F 后,工件2不 会松脱,确定 销轴O位置
o
e ϕ α
1
F
r1
V12 2 3
e sin( α − φ) − r1 sin φ ≤ ρ
Fd
F f 21 FN 21
φ
1 1
Fy
V12
F f 21 = fFN 21
tan ϕ = f
Ff21
2
ϕ = arctan f
2给1的总反力FR21恒与1相对2的相对速度V12成90+ϕ角 FR21以FN21为轴线旋转后的圆锥,称摩擦锥。
第三节 考虑摩擦的机构力分析
一、移动副中的摩擦
FR21 Fx
一、移动副中的摩擦 2. 斜面移动副中的摩擦(上升)
FN21 FR21
ϕ
α
V12
1 FR21 Fd G
Fd
α +ϕ
G
Ff21
Fd = G tan(α + ϕ )
2
α
= FR 21 G cos(α + ϕ )
α > 90 − ϕ
0
α < 900 − ϕ
不会发生自锁
发生自锁现象
第三节 考虑摩擦的机构力分析
机构的工作行程: 1. 机构的正行程:当驱动力作用在机械的原动 件A上,从动件B克服生产阻力作功,称该行程为正 行程。 2. 机构的反行程:当正行程的生产阻力为驱动 力,作用在机械的从动件B上,原动件A则为从动件, 该过程称为机构的反行程。
第四节 自锁机构的分析与设计
二、自锁机构
Fr
4
1
1
3
2
F
1
机械原理
第四章 平面机构的力分析
第一节 第二节 第三节 第四节 平面机构的力分析概述 机构的动态静力分析 考虑摩擦的机构力分析 自锁机构的分析与设计
第四章 平面机构的力分析
第四章 平面机构的力分析
第一节 平面机构的力分析概述
一、作用在机构中的力 二、机构力分析的目的 三、机构力分析的方法
一、作用在机构中的力
四、考虑摩擦的力分析
例2 求各运动副处的反作用力及作用在凸轮上的平衡力矩
FR12
ω23
2
3 C
v12 FR31 ω1
A 3 B
利用二力共线, 三力汇交等力学规 则,作力图。
E
FR21
1
FR32 Fr FR32 Fr FR12
第三节 考虑摩擦的机构力分析
作业P17 4-15
第四章 平面机构的力分析
θ 2β α
f f fv = = sin θ cos β
自锁条件 α ≤ ϕ v
第三节 考虑摩擦的机构力分析
四、考虑摩擦的力分析
当考虑到运动副中的摩擦时,移动副中的总反力与相对 运动方向成 90 0 + ϕ 角。 转动副中的总反力要切于摩擦圆。其方向判别原则是 对轴心之矩与相对角速度方向相反。 明确总反力的方向后,可按理论力学方法求解。
第一节 平面机构的力分析概述
三、机构力分析的方法 机构力分析的分类 1、静力分析: 机械低速运转,忽略惯性力,可进行静力分析。 2、动态静力分析: 把惯性力看作外力,加在产生惯性力的构件上,该构件处 于力平衡状态,称之为动态静力分析 力分析时,考虑惯性力的作用,不计摩擦力的影响。 在考虑 摩擦的力分析时则不计惯性力的影响。
G
二、转动副中的摩擦
径向轴承
止推轴承
第三节 考虑摩擦的机构力分析
二、转动副中的摩擦
1、径向轴承
G 2
静止时
2
G Md FR21 O2 O1 FN21 1