时间序列的平稳性及其检验

合集下载

时间序列的平稳性和单位根检验解读

时间序列的平稳性和单位根检验解读

0.05 -1.95 -1.95 -1.95 -1.95 -1.95 -1.95 -3.00 -2.93 -2.89 -2.88 -2.87 -2.86 2.61 2.56 2.54 2.53 2.52 2.52
0.10 -1.60 -1.61 -1.61 -1.61 -1.61 -1.61 -2.62 -2.60 -2.58 -2.57 -2.57 -2.57 2.20 2.18 2.17 2.16 2.16 2.16
只要其中有一个模型的检验结果拒绝了零假设,就可 以认为时间序列是平稳的;
当三个模型的检验结果都不能拒绝零假设时,则认为 时间序列是非平稳的。
20
整理课件
3、例:检验1978-2000年间中国支出法 GDP时间序列的平稳性
例8.1.6检验1978~2006年间中国实际支出法国 内生产总值GDPC时间序列的平稳性。
ADF检验在Eviews中的实现—检验 GDPP
29
整理课件
ADF检验在Eviews中的实现—检验 GDPP
30
整理课件
•从GDPP(-1) 的参数值看, 其t统计量的值 大于临界值, 不能拒绝存在 单位根的零假 设。同时,由 于常数项的t统 计量也小于 ADF分布表中 的临界值,因 此不能拒绝不 存在趋势项的 零假设。需进 一步检验模型 1。
均值E(Xt)=是与时间t 无关的常数; 方差Var(Xt)=2是与时间t 无关的常数;
协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时 间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而
该随机过程是一平稳随机过程(stationary
stochastic process)。

时间序列平稳性检验

时间序列平稳性检验

时间序列平稳性检验分析姓名xxx学院xx学院专业xxxx学号xxxxxxxxxx时间序列平稳性分析检验时间序列是一个计量经济学中的概念,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。

一、时间序列平稳性的定义假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,•)•的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=u是与时间t无关的常数;2)方差Var(Xt)=o2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k尸条是只与时期间隔k有关,与时间t无关的常数。

则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochasticprocess)。

eg:一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=Mt,Mt~N(0,o2)该序列常被称为是一个白噪声。

由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。

eg:另一个简单的随机时间列序被称为随机游走,该序列由如下随机过程生成:Xt=Xt-1+」t这里,出是一个白噪声。

容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+」1X2=X1+」2=X0+J1+J2xt=X0+出+也++M由于X0为常数,%是一个白噪声,因此Var(Xt)=to2即Xt的方差与时间t有关而非常数,它是一非平稳序列二、时间序列平稳性检验的方法对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。

但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。

时间序列的平稳性及其检验

时间序列的平稳性及其检验
或Yt e 0 1t ut
19
伪回归spurious regression

如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化

时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式

确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明


自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点


⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。

时间序列平稳性和单位根检验教材

时间序列平稳性和单位根检验教材

时间序列平稳性和单位根检验教材时间序列平稳性是时间序列分析中的重要概念。

在时间序列中,平稳性意味着序列的统计性质在时间上是不变的,不受时间趋势、周期性和季节性等因素的影响。

单位根检验是一种用于检验时间序列是否平稳的方法。

它的原理是通过检验序列中的单位根是否存在来判断序列的平稳性。

在时间序列分析中,平稳性是进行预测和建模的基础。

如果序列是平稳的,我们可以使用很多传统的统计方法进行分析,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

而如果序列不是平稳的,那么我们需要对其进行差分或其他预处理方法,以使其变为平稳序列。

单位根检验的方法有很多种,常用的有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

这些方法都是基于对序列中单位根的存在与否进行统计检验的。

ADF检验是单位根检验中最常用的方法之一。

它的原理是对序列的自回归系数进行估计,并检验这些系数是否在单位根周围波动。

如果系数波动在单位根周围,则说明序列存在单位根,即不是平稳序列。

反之,如果系数波动在一个常数附近,则说明序列不存在单位根,即是平稳序列。

KPSS检验则是另一种常用的单位根检验方法。

它的原理是对序列进行单位根的最小二乘估计,并检验估计值与实际值之间的差异。

如果估计值与实际值之间存在显著的差异,则说明序列存在单位根,即不是平稳序列。

反之,如果差异不显著,则说明序列不存在单位根,即是平稳序列。

总结起来,时间序列平稳性和单位根检验是时间序列分析的重要概念和方法。

平稳性是进行预测和建模的前提,而单位根检验是判断序列是否平稳的重要工具。

通过对序列平稳性和单位根的检验,可以帮助我们选择合适的建模方法,提高时间序列分析的准确性和可靠性。

时间序列分析是一种用于研究时间变化规律的统计方法,广泛应用于经济学、金融学、气象学、社会学等领域。

时间序列的预处理(平稳性检验和纯随机性检验)

时间序列的预处理(平稳性检验和纯随机性检验)
自相关图、白噪声检验等。
1、时序图的绘制
在SAS系统中,使用GPLOT程序可以绘 制多种精美的时序图。
可以设置坐标轴、图形颜色、观察值点 的形状及点之间的连线方式等
例2-1
data example2_1;
input price1 price2;
time=intnx('month','01jul2004'd,_n_-1);
format time date.;
cards;
12.85 15.21
13.29 14.23
12.41 14.69
15.21 13.27
14.23 16.75
13.56 15.33
;
proc gplot data= example2_1; \\绘图过程开始
plot price1*time=1 price2*time=2/overlay; //确定纵横轴,按两种
时间序列分析之
试验二
时间序列的预处理 (平稳性检验和纯随机性检验)
一、平稳性检验
时序图检验
根据平稳时间序列的均值、方差
及周期特征。
自相关图检验
根据平稳时间序列的短期相关性, 其自相关图中随着延迟期数 的增加,自相关系数会很快 地衰减向零。
cards;
97 154 137.7 149 164 157 188 204 179 210 202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
平稳时间序列的时序图与自相关图

时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验时间序列平稳性是时间序列分析中的重要概念,对时间序列模型和预测有着重要的影响。

时间序列平稳性指的是时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化的性质。

本文将介绍时间序列平稳性检验的相关理论与方法。

一、时间序列平稳性检验的基本理论在进行时间序列分析前,需要先确定该时间序列是否具有平稳性。

时间序列平稳性则是指时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化,比如说均值、方差、自相关系数等都不应该与时间有关。

若时间序列不具有平稳性,则其分析结果会受到时间变量的影响,预测结果也不够准确。

对于时间序列平稳性的检验,主要考虑3个方面,即序列的均值、序列的方差、序列的自相关。

时间序列平稳性检验的基本理论是根据大数定理和中心极限定理进行的。

在此基础上,常用的做法是,检验序列均值是否随时间变化而变化、检验方差是否随时间变化而变化、检验自相关系数是否与时间有关。

二、时间序列平稳性检验的方法1.图示法:通过绘制时间序列图、自相关图、偏自相关图可以直观地了解时间序列的平稳性。

时间序列图是反映序列随时间变化时的整体变化趋势的图形;自相关图表达的是序列在不同时滞下的线性相关程度,若相关系数呈现规律性或趋势性,则序列不平稳;偏自相关图是用来判断序列是否具有趋势或季节性,若序列的偏自相关系数在超过置信度时突破界限,则序列不具有平稳性。

2.计量经济学检验法:常用的计量经济学检验法有DF检验、ADF检验、KPSS检验等,其中ADF检验最为常用。

ADF检验分为一般ADF检验、增广ADF检验、阶数选择ADF检验等,在跨期比较和模型选择方面有效,而且误判率较低。

3.波动函数法:通过测量时间序列各部分的波动函数,从而判断序列是否平稳。

包括周期波动函数法、空间波动函数法等。

周期波动函数法是通过加权平均数对序列进行周期性处理,得到波动函数,然后计算波动函数的标准偏差,以此来判断序列平稳性;空间波动函数法则是通过空间均方差来判断时间序列的平稳性。

时间序列的平稳性及其检验

时间序列的平稳性及其检验
section data) ★时间序列数据是最常见,也是最常用到的数据。
⒉经典回归模型与数据的平稳性
❖ 经典回归分析暗含着一个重要假设:数据是平稳的。
❖ 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
❖ 经典回归分析的假设之一:解释变量X是非随机变 量
❖ 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
表 9.1.1 一个纯随机序列与随机游走序列的检验
序号 Random1 自相关系数
Q LB
rk (k=0,1,…17)
Random2
rk
自相关系数
Q LB
(k=0,1,…17)
1 -0.031 K=0, 1.000 2 0.188 K=1, -0.051 3 0.108 K=2, -0.393 4 -0.455 K=3, -0.147 5 -0.426 K=4, 0.280 6 0.387 K=5, 0.187 7 -0.156 K=6, -0.363 8 0.204 K=7, -0.148 9 -0.340 K=8, 0.315 10 0.157 K=9, 0.194 11 0.228 K=10, -0.139 12 -0.315 K=11, -0.297 13 -0.377 K=12, 0.034 14 -0.056 K=13, 0.165 15 0.478 K=14, -0.105 16 0.244 K=15, -0.094 17 -0.215 K=16, 0.039 18 0.141 K=17, 0.027 19 0.236
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381

时间序列数据的平稳性检验

时间序列数据的平稳性检验

23
(4)如果Xt~ I (0),Yt~ I (1),则aXt+bYt是I (1), 即I (1)具有占优势的性质。 (5)如果Xt和Yt都是I (1),则aXt+bYt一般情况下 是I (1),但不保证一定是I (1)。如果该线性组合是 I (0),Xt和Yt就是协整的,a、b就是协整参数。
6
三、伪回归现象 将一个随机游走变量(即非平稳数据)对另一个 随机游走变量进行回归可能导致荒谬的结果,传 统的显著性检验将告知我们变量之间的关系是不 存在的。 有时候时间序列的高度相关仅仅是因为二者同时 随时间有向上或向下变动的趋势,并没有真正的 联系。这种情况就称为“伪回归”(Spurious Regression)。
ˆi ),其中r为假设的协整关系的 trace=-T ln(1-
cov( yt , ys ) E( yt * ys ) 0
t s

那么,这一随机过程称为白噪声。
4
二、平稳性原理 如果一个随机过程的均值和方差在时间过程上都 是常数,并且在任何两时期的协方差值仅依赖于 该两时期间的距离或滞后,而不依赖于计算这个 协方差的实际时间,就称它为平稳的。
24
二、协整检验的具体方法 (一)EG检验和CRDW检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 行估计。
yt xt t

然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
12
对于式(5.1),DF检验相当于对其系数的显著 性检验,所建立的零假设是:H0 : 1如果拒绝 零假设,则称Yt没有单位根,此时Yt是平稳的; 如果不能拒绝零假设,我们就说Yt具有单位根, 此时Yt被称为随机游走序列(random walk series)是不稳定的。

81时间序列的平稳性和单位根检验

81时间序列的平稳性和单位根检验
从△GDPP(-1)的参数值看,其统计量的值大于临界值,不能拒绝存在单位根的零假设。同时,由于常数项的t统计量也小于AFD分布表中的临界值,因此不能拒绝不存在趋势项的零假设。需进一步检验模型1。
从△GDPP(-1)的参数值看,其统计量的值大于临界值,不能拒绝存在单位根的零假设。至此,可断定△GDPP时间序列是非平稳的。
例8.1.6检验1978~2006年间中国实际支出法国内生产总值GDPC时间序列的平稳性。下面演示的是检验1978~2000年间中国支出法国内生产总值GDPC时间序列的平稳性。方法原理和过程是一样的,例8.1.6可以作为同学的练习。
首先检验模型3,经过偿试,模型3取2阶滞后:
需进一步检验模型2 。
ቤተ መጻሕፍቲ ባይዱ宽平稳、广义平稳
白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2随机游走的一阶差分(first difference)是平稳的: Xt=Xt-Xt-1=t ,t~N(0,2)如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。
常数项的t统计量小于AFD分布表中的临界值,不能拒绝不存常数项的零假设。
LM检验表明模型残差不存在自相关性,因此该模型的设定是正确的。
GDPt-1参数值的t统计量为正值,大于临界值,不能拒绝存在单位根的零假设。
需进一步检验模型1。
检验模型1,经试验,模型1中滞后项取2阶:
GDPt-1参数值的t统计量为正值,大于临界值,不能拒绝存在单位根的零假设。
LM检验表明模型残差项不存在自相关性,因此模型的设定是正确的。
可断定中国支出法GDP时间序列是非平稳的。

时序预测中的时间序列平稳性检验方法详解(七)

时序预测中的时间序列平稳性检验方法详解(七)

时序预测中的时间序列平稳性检验方法详解时间序列分析是指对一定时间间隔内的数据进行观察、分析和建模的一种统计分析方法。

其中,时序预测是时间序列分析的一个重要应用方向,通过对历史数据的分析和模型构建,来预测未来一段时间内的数据走势。

而时间序列的平稳性是时序预测中的重要前提条件,下面将详细讨论时间序列平稳性的检验方法。

一、平稳性概念及其重要性所谓平稳性,是指时间序列在不同时间点上的统计特性不发生显著的变化。

具体来说,时间序列的均值、方差和自相关性不随时间变化而发生显著变化。

平稳性对于时序预测至关重要,因为只有在时间序列平稳的情况下,我们才能够基于历史数据进行有效的预测。

二、时间序列平稳性的检验方法1. 直观法直观法是一种最简单直接的方法,即通过观察时间序列图来初步判断序列是否平稳。

如果时间序列的均值和方差在不同时间段内基本保持不变,那么可以初步认定序列具有平稳性。

然而,直观法并不够严谨,往往需要结合其他方法进行验证。

2. 统计检验法统计检验法是通过一些统计指标来检验时间序列的平稳性。

常用的方法包括ADF检验、单位根检验、KPSS检验等。

ADF检验是一种通过单位根检验来判断时间序列是否平稳的方法,其基本原理是对原始时间序列进行单位根检验,若序列平稳则对应的p值应当小于显著性水平。

而KPSS检验则是一种基于单位根检验的方法,其原理是对原始序列进行单位根检验,若序列显著偏离平稳则对应的p值应当大于显著性水平。

通过这些统计检验方法,我们可以更加客观准确地判断时间序列的平稳性。

3. 时间序列差分法时间序列差分法是一种通过对时间序列进行差分运算来消除非平稳性的方法。

具体来说,我们可以对原始时间序列进行一阶差分或二阶差分运算,然后对差分后的序列进行平稳性检验。

若差分后的序列满足平稳性条件,则可以认定原始序列具有平稳性。

4. 线性回归法线性回归法是一种利用线性回归模型来检验时间序列平稳性的方法。

具体来说,我们可以建立一个线性回归模型,将时间序列的观测值作为因变量,时间作为自变量,然后对回归系数进行显著性检验。

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验

时间序列分析中的平稳性检验时间序列分析是统计学中重要的研究领域,它用于研究随时间变化的数据,并预测未来的趋势。

平稳性检验是时间序列分析的关键步骤之一,它用于确定时间序列数据是否具有平稳性。

本文将介绍时间序列分析中的平稳性检验的基本概念、方法和应用。

一、平稳性的概念在时间序列分析中,平稳性是指时间序列数据的统计特性在不同时间段内保持不变。

具体而言,平稳性要求时间序列的均值、方差和自相关函数在时间上不发生显著的变化。

如果时间序列数据具有平稳性,那么我们可以利用历史数据对未来进行可靠的预测。

二、平稳性检验的方法为了检验时间序列数据的平稳性,常用的方法包括观察法、单位根检验和ADF检验。

1. 观察法观察法是最简单的平稳性检验方法,它通过观察时间序列数据的图表和统计指标来判断数据是否具有平稳性。

如果时间序列数据的均值和方差在不同时间段内保持相对稳定,且自相关函数衰减较快,那么可以初步认为数据具有平稳性。

2. 单位根检验单位根检验是一种常用的平稳性检验方法,它基于时间序列数据是否具有单位根来判断数据的平稳性。

常用的单位根检验方法包括ADF检验、PP检验和KPSS 检验。

其中,ADF检验是最常用的单位根检验方法之一。

3. ADF检验ADF检验(Augmented Dickey-Fuller test)是一种常用的单位根检验方法,它基于Dickey-Fuller回归模型来判断时间序列数据是否具有单位根。

ADF检验的原假设是时间序列数据具有单位根,即非平稳性;备择假设是时间序列数据不具有单位根,即平稳性。

ADF检验的关键统计量是ADF统计量,它的值与临界值进行比较来判断数据的平稳性。

如果ADF统计量的值小于临界值,那么可以拒绝原假设,认为数据具有平稳性;如果ADF统计量的值大于临界值,那么接受原假设,认为数据不具有平稳性。

三、平稳性检验的应用平稳性检验在时间序列分析中具有广泛的应用。

首先,平稳性检验是进行时间序列建模的前提条件,只有具有平稳性的数据才能进行可靠的建模和预测。

时间序列平稳性和单位根检验

时间序列平稳性和单位根检验
发展的特点和规律。
结合其他统计和经济模型,深入 研究时间序列数据的特征和趋势, 以更好地理解和预测经济运行情
况。
针对时间序列数据的非平稳性, 探索更为有效的分析和预测方法, 以提高经济预测的准确性和可靠
性。
THANKS
感谢观看
• 帕克-帕朗检验(PP检验):PP检验与ADF检验类似,也是基于回归模型进行 单位根检验。它通过比较原始序列与一阶差分序列的方差来构建统计量,以判 断是否存在单位根。
• 扩展迪基-富勒检验(ADF-GLS检验):ADF-GLS检验是ADF检验的一种扩展, 考虑了异方差性问题,提高了检验的准确性。它通过对模型残差进行广义最小 二乘法(GLS)处理来纠正异方差性。
时间序列平稳性和单位根 检验
• 引言 • 时间序列平稳性 • 单位根检验 • 时间序列模型 • 时间序列平稳性和单位根检验的应用 • 结论
01
引言
主题简介
时间序列平稳性
时间序列数据随时间变化而呈现出一定的趋势和周期性。平稳性是指时间序列 数据的统计特性不随时间而变化,即数据的均值、方差和自相关函数等特征保 持恒定。
要点二
意义
在金融、经济、社会和自然等领域中,许多时间序列数据 都具有非平稳性,如股票价格、经济增长、气候变化等。 通过进行平稳性和单位根检验,可以揭示这些数据背后的 动态机制和长期趋势,有助于制定更加科学合理的经济政 策、投资策略和社会发展计划。同时,这些检验方法在统 计学、计量经济学和时间序列分析等领域也具有重要的理 论价值。
模型稳定性
平稳性有助于建立稳定和 可靠的统计模型,因为模 型参数不会随时间而变化。
数据分析基础
平稳性是许多统计分析方 法的前提条件,如回归分 析、时间序列分析和经济 计量分析等。

5.2 时间序列的平稳性及其检验

5.2 时间序列的平稳性及其检验

模型2的估计
结论: 中国实际居民消费 总量增长率序列 GY是平稳的。
检验对数序列lnY
• 首先对lnY的水平序列进行检验,三个模型中参数估计值的统计量的值 均大于各自的临界值,因此不能拒绝存在单位根的零假设,即中国实 际居民消费总量的对数序列是非平稳的。
• 再对lnY的1阶差分序列进行检验,自动选择检验模型滞后项,确定滞 后阶数为0,得到模型3的估计结果:
零假设 H0:=0 备择假设 H1:<0
模型1 模型2 模型3
ADF检验模型
• 检验过程
• 实际检验时从模型3开始,然后模型2、模型1。 • 何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时停止检
验。 • 否则,就要继续检验,直到检验完模型1为止。
• 检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相 应的临界值表。
• 现实经济生活中只有少数经济指标的时间序列表现为平稳的,如利率等;
• 大多数指标的时间序列是非平稳的,例如,以当年价表示的消费额、收 入等常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶 单整。
• 大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。
• 但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种 序列被称为非单整的(non-integrated)。
四、平稳性的单位根检验
1、DF检验(Dicky-Fuller Test)
X t X t1 t X t X t1 t
随机游走,非平稳
对该式回归,如果确实发现ρ=1,则 称随机变量Xt有一个单位根。
X t ( 1) X t1 t X t1 t
等价于通过该式判断是否存在 δ=0。
• 通过上式判断Xt是否有单位根,就是时间序列平稳性的单位根检验。

时间序列---平稳性检验

时间序列---平稳性检验

时间序列---平稳性检验试验一平稳性检验1.图示判断给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。

一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。

进一步的判断:检验样本自相关函数及其图形,随着k的增加,样本自相关函数下降且趋于零。

但从下降速度来看,平稳序列要比非平稳序列快得多。

例题:选择数据1986.01---0995.12的月数据进行分析:时序图:相关系数及图形:初步判断序列为非平稳序列。

2.平稳性的单位根检验原理:对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。

单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。

检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型Xt=α+ρXt-1+μt (*)中的参数ρ是否小于1。

或者:检验其等价变形式Xt=α+δXt-1+μt (**)中的参数δ是否小于0 。

因此,针对式?Xt=α+δXt-1+μt 我们关心的检验为:零假设H0:δ=0。

备择假设 H1:δ<0然而,在零假设(序列非平稳)下,即使在大样本下t 统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。

Dicky 和Fuller 于1976年提出了这一情形下t 统计量服从的分布(这时的t 统计量称为τ统计量),即DF 分布(见表9.1.3)。

由于t 统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。

如果:t<临界值,则拒绝零假设H0:δ =0,认为时间序列不存在单位根,是平稳的。

为了保证DF 检验中随机误差项的白噪声特性,Dicky 和Fuller 对DF 检验进行了扩充,形成了ADF (Augment Dickey-Fuller )检验。

实际检验时从模型3开始,然后模型2、模型1何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检模型1: t mi it it t XX X εβδ+?+=?∑=--11 (*模型2: t mi it it t XX X εβδα+?++=?∑=--11 (*模型3: t m i i t it t X X t X εβδβα+?+++=?∑=--11 (*验停止。

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2 • 随机游走的一阶差分(first difference)是平 稳的: Xt=Xt-Xt-1=t ,t~N(0,2)
时间序列的平稳性及其检验
一、问题的提出 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整时间序列 六、趋势平稳与差分平稳随机过程
一、问题的提出
• 从经典计量经济学模型的方法论基础出发
– 时间序列的平稳性可以替代随机抽样假定,采用平稳 时间序列作为样本,建立经典计量经济学模型,在模 型设定正确的前提下,模型随机扰动项仍然满足极限 法则和经典模型的基本假设(序列无关假设除外), 特别是正态性假设。 – 采用平稳时间序列作为样本,首先需要进行平稳性检 验。
i 1
m
X t t X t 1 i X t i t
样 本 容 量 显著性水平 0.01 0.05 0.10 25 -3.75 3.00 2.63 50 -3.58 -2.93 -2.60 100 -3.51 -2.89 -2.58 500 -3.44 -2.87 -2.57 ∝ -3.43 -2.86 -2.57 t分布临界值 (n=∝) -2.33 -1.65 -1.28
• 关于虚假回归的说明
– 一种误解:只有非平稳时间序列之间才能出现虚假回 归,平稳时间序列之间不会出现虚假回归。 – 回归分析,是一种统计分析,所揭示的是数据之间的 统计关系。数据之间的统计关系是经济行为关系的必 要条件,不是经济关系的充分条件。 – 古亚拉蒂:“从逻辑上说,一个统计关系式,不管多 强或多么有启发性,本身不可能意味着任何因果关系。 要谈因果关系,必须来自统计学之外,诉诸先验的或 者理论上的思考。”
– 如果 时间 序列含有明显的随时间变化的某种趋势 (如上升或下降),也容易导致DF检验中的自相关 随机误差项问题。
• ADF检验模型
X t X t 1 i X t i t
i 1 m
模型1 模型2
X t X t 1 i X t i t
• 采用平稳时间序列建立经典计量经济学结构模型, 可以有效地避免虚假回归。
– 虚假回归(spurious regression)也称为伪回归,是 由2003年诺贝尔经济学奖者格兰杰提出的。 – 格兰杰通过模拟试验发现,完全无关的非平稳时间序 列之间可以得到拟合很好但毫无道理的回归结果。这 一发现说明,非平稳时间序列由于具有共同的变化趋 势,即使它们之间在经济行为上并不存在因果关系, 如果将它们分别作为计量经济学模型的被解释变量和 解释变量,也能够显示较强的统计上的因果关系。
• 一般检验模型
X t X t 1 t X t X t 1 t
零假设 H0:=0 备择假设 H1:<0
• 可通过OLS法下的t检验完成。但是:
– 在零假设(序列非平稳)下,即使在大样本下t统计量 也是有偏误的(向下偏倚),通常的 t 检验无法使用。 – Dicky和 Fuller 于 1976 年提出了这一情形下 t 统计量服 从的分布(这时的t统计量称为统计量),即DF分布。 – 由于t统计量的向下偏倚性,它呈现围绕小于零均值的 偏态分布。
X t X t 1 t
随机游走,非平稳 对该式回归,如果确实 发现ρ =1,则称随机变 量Xt有一个单位根。 等价于通过该式判断 是否存在δ =0。
X t X t 1 t
X t ( 1) X t 1 t X t 1 t
• 通过上式判断Xt是否有单位根,就是时间序列平稳 性的单位根检验。
– 虚假回归,不仅可能出现在非平稳时间序列之间,也 可能出现在平稳时间序列之间和截面数据序列之间。 – 非平稳时间序列之间出现虚假回归的可能性更大,因 此,对时间序列进行平稳性检验,可以有效地减少虚 假回归。 – 在计量经济学模型研究中,杜绝虚假回归的最根本的 方法,是正确的设定模型。
二、时间序列的平稳性 Stationary Time Series
如果t<临界值,则拒绝零假设H0: =0,认为时 间序列不存在单位根,是平稳的。
单尾检验
2、ADF检验(Augment Dickey-Fuller test)
• 为什么将DF检验扩展为ADF检验?
– DF检验假定时间序列是由具有白噪声随机误差项的 一阶自回归过程AR(1)生成的。但在实际检验中,时 间序列可能由更高阶的自回归过程生成,或者随机 误差项并非是白噪声,用 OLS 法进行估计均会表现 出随机误差项出现自相关,导致DF检验无效。
• 定义
– 假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得 到,如果满足下列条件: • 均值E(Xt)=是与时间t 无关的常数; • 方差Var(Xt)=2是与时间t 无关的常数; • 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数。 – 则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。 宽平稳、广义平稳
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
三、平稳性的图示判断
说明
Hale Waihona Puke • 本节的概念是重要的,属于经典时间序列分析。
• 在实际应用研究中,一般直接采用单位根检验, 图示判断应用较少。
• 建议作为自学内容。
四、平稳性的单位根检验
(unit root test)
1、DF检验(Dicky-Fuller Test)
相关文档
最新文档