[整理]FLUENT边界条件(2)—湍流设置.
3.6.5在FLUENT中设定湍流模型[共3页]
3.6.5在FLUENT中设定湍流模型[共3页]118精通CFD ⼯程仿真与案例实战—— FLUENT GAMBIT ICEM CFD Tecplot(第2版)表3-3⼏种壁⾯处理⽅法的⽐较优点缺点标准壁⾯函数法应⽤较多,计算量⼩,有较⾼的精度适合⾼雷诺数流动,对低雷诺数流动问题,有压⼒梯度、⾼度蒸腾和⼤的体积⼒、低雷诺数和⾼速三维流动问题不合适⾮平衡壁⾯函数法考虑了压⼒梯度,可以计算分离,再附着以及撞击问题对低雷诺数流动问题,有较强压⼒梯度、强体积⼒及强三维性问题不适合增强壁⾯处理不依赖壁⾯法则,对于复杂流动,特别是低雷诺数流动很适合要求⽹格密,因⽽要求计算机处理时间长,内存⼤ 3.6.5 在FLUENT 中设定湍流模型在FLUENT 中设定湍流模型的过程如下。
在Viscous Model 对话框中选中Inviscid (⽆粘)选项,FLUENT 会将流体视为没有黏性的理想流体,此时⽆须指定其他参数,如图3-8所⽰。
在Viscous Model 对话框中选中Laminar (层流)选项,FLUENT 会将流体视为层流流动求解,如图3-9所⽰。
若勾选Low-Pressure Boundary Slip 复选框,将考虑压⼒较低时速度和温度滑移边界条件对流动的影响,⽐如半导体制造装置的模拟。
图3-8 在Viscous 模型对话框中选择⽆粘流动图3-9 在Viscous 模型对话框中选择层流流动在Viscous Model 对话框(见图3-10)内选中Spalart-Allmaras (1 eqn)选项,即选择了Spalart-Allmaras 模型。
Spalart-Allmaras Production 选项组中的V orticity-Based (基于涡的⽣成)选项和Strain/V orticity-Based (基于应变/涡的⽣成)选项为两种计算变形张量的⽅法。
包含涡和应变张量能更精确地预测湍流涡旋的影响,因⽽⼀般结果更为可靠。
fluent外流场边界条件设置
fluent外流场边界条件设置Fluent外流场边界条件设置在计算流体力学领域,Fluent是一个广泛使用的计算流体动力学(CFD)软件包,用于模拟和分析流体流动和传热问题。
在Fluent 中,边界条件的设置对于模拟结果的准确性和可靠性至关重要。
本文将重点介绍Fluent中外流场边界条件的设置。
1. 壁面边界条件壁面是流体流动中最常见的边界之一,它可以是实际物体的表面,也可以是虚拟的边界。
在Fluent中,壁面边界条件的设置直接影响着流动的速度和温度分布。
常见的壁面边界条件有:- 固定温度壁面:假设壁面具有固定的温度,适用于需要考虑热传导的问题,如热交换器。
- 固定热流壁面:假设壁面具有固定的热流,适用于需要考虑热辐射的问题,如太阳能集热器。
- 固定速度壁面:假设壁面具有固定的流体速度,适用于需要考虑流体动力学的问题,如风洞实验。
2. 入口边界条件入口边界条件是指流体流动进入计算区域的位置。
在Fluent中,入口边界条件的设置对于模拟结果的准确性和可靠性至关重要。
常见的入口边界条件有:- 固定速度入口:假设流体从入口进入计算区域时具有固定的速度,适用于需要考虑流体动力学的问题,如风洞实验。
- 固定压力入口:假设流体从入口进入计算区域时具有固定的压力,适用于需要考虑压力变化的问题,如管道流动。
- 固定质量流入口:假设流体从入口进入计算区域时具有固定的质量流率,适用于需要考虑质量守恒的问题,如喷气发动机。
3. 出口边界条件出口边界条件是指流体流动离开计算区域的位置。
在Fluent中,出口边界条件的设置对于模拟结果的准确性和可靠性至关重要。
常见的出口边界条件有:- 压力出口:假设流体从出口离开计算区域时具有固定的压力,适用于需要考虑压力变化的问题,如管道流动。
- 压力出流:假设流体从出口离开计算区域时具有与环境相等的压力,适用于需要考虑流体回流或循环的问题,如涡轮机。
- 非滑移壁面:假设流体从出口离开计算区域时与壁面无相对滑移,适用于需要考虑边界层效应的问题,如飞机机翼。
湍流边界条件参数的设置
2011-8-30蓝色流体|流体专业论坛专注流体 - Pow…标题: [fluent相关]湍流边界条件参数的设置作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。
在FLUENT 中可以使用的湍流模型有很多种。
在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。
本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。
在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。
特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。
在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。
违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。
在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。
下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(Turbulence Intensity)湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。
湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。
在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。
比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。
(整理)FLUENT边界条件(2)—湍流设置.
FLUENT边界条件(2)—湍流设置(fluent教材—fluent入门与进阶教程于勇第九章)Fluent:湍流指定方法(Turbulence Specification Method)2009-09-16 20:50使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。
其下参数共两项,(1)是Turbulence Intensity,确定方法如下:I=0.16/Re_DH^0.125 (1)其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。
雷诺数Re_DH=u×DH/υ(2)u为流速,DH为水利直径,υ为运动粘度。
水利直径见(2)。
(2)水利直径水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。
水力半径R=A/X (3)其中,A为截面积(管子的截面积)=流量/流速X为湿周(字面理解水流过各种形状管子外圈湿一周的周长)例如:方形管的水利半径R=ab/2(a+b)水利直径DH=2×R (4)举例如下:如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。
则DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径Re_DH=u×DH/υ=10*0.02/10e-6=20000I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%水力半径:润湿周长横截面积=h r , 水力直径:h h r 4D =对圆管而言,管道直径和水力直径是一回事。
Fluent软件的使用(2)
压力速度耦合方法
当使用压力基求解时,压力速度耦合算法(通过 连续方程和动量方程的组合推导出压力修正方程) 有四种。
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 默认方法,鲁棒性很强。
速度入口Velocity Inlet
描述速度的三种方法
Magnitude, Normal to Boundary Components
Magnitude and Direction
除非使用UDF或者profile文件, 否则只能使用均匀的速度剖面。
通常用在不可压缩流动中,不推 荐在可压缩流动中使用。
Pressure-Based (coupled)
Density-Based (coupled)
压力基求解器包含两种算法:
解耦求解器,顺序求解压力修 正方程和动量方程 耦合求解器,同时求解压力修 正方程和动量方程
Solve Energy Solve Species Solve Turbulence Equation(s) Solve Other Transport Equations as required
速度大小可以是负的,表明正在 使用速度出口边界。
压力入口Pressure Inlet
对于可压与不可压流动均适用。
从驻点到入口的无损转换条件。
FLUENT计算入口处的静压和速度
通过边界的质量流率取决于内部的 求解和描述的流动方向
要求的信息
总的表压 超音速/初始化的表压
Yes
Check for accuracy
No
Stop
可用的求解器
Fluent提供两种求解器——压 力基的和密度基的。 压力基的求解器将速度和压 力(或者压力修正量)作为 基本变量
fluent边界条件设置教程
l 0.07L
其中 L 为管道的相关尺寸。因子 0.07 是基于完全发展湍流流动混合长度的最大值的,对于 非圆形截面的管道,你可以用水力学直径取代 L。
如果湍流的产生是由于管道中的障碍物等特征,你最好用该特征长度作为湍流长度 L 而不是用管道尺寸。
使用流动边界条件 下面对流动边界条件的使用作一概述 对于流动的出入口,FLUENT 提供了十种边界单元类型:速度入口、压力入口、质量 入口、压力出口、压力远场、质量出口,进风口,进气扇,出风口以及排气扇。 下面是 FLUENT 中的进出口边界条件选项: 速度入口边界条件用于定义流动入口边界的速度和标量 压力入口边界条件用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件用于可压流规定入口的质量流速。在不可压流中不必指定入口的 质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。 压力出口边界条件用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回 流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场条件用于模拟无穷远处的自由可压流动,该流动的自由流马赫数以及静态条件 已经指定了。这一边界类型只用于可压流。 质量出口边界条件用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情 况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口 边界条件假定出了压力之外的所有流动变量正法向梯度为零。对于可压流计算,这一条 件是不适合的。 进风口边界条件用于模拟具有指定的损失系数,流动方向以及周围(入口)环境总压和 总温的进风口。 进气扇边界条件用于模拟外部进气扇,它具有指定的压力跳跃,流动方向以及周围(进 口)总压和总温。 通风口边界条件用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静 压和静温。 排气扇边界条件用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处) 的静压。
边界条件中湍流设置
在入口、出口或远场边界流入流域的流动,FLUENT 需要指定输运标量的值。
本节描述了对于特定模型需要哪些量,并且该如何指定它们。
也为确定流入边界值最为合适的方法提供了指导方针。
使用轮廓指定湍流参量在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。
如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。
一旦你创建了轮廓函数,你就可以使用如下的方法:● Spalart-Allmaras 模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性比之后的下拉菜单中选择适当的轮廓名。
通过将m_t/m 和密度与分子粘性的适当结合, FLUENT 为修改后的湍流粘性计算边界值。
● k-e 模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. KineticEnergy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。
● 雷诺应力模型:在湍流指定方法下拉菜单中选择K 和Epsilon 并在湍动能(Turb. KineticEnergy )和湍流扩散速度(Turb. Dissipation Rate )之后的下拉菜单中选择适当的轮廓名。
在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。
湍流量的统一说明在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。
比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。
在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。
然而必须注意的是要保证边界值不是非物理边界。
非物理边界会导致你的解不准确或者不收敛。
fluent第五章边界条件
第五章 边界条件5-1 FLUENT 程序边界条件种类FLUENT 的边界条件包括: 1, 流动进、出口边界条件2, 壁面,轴对称和周期性边界3, Internal cell zones :fluid, solid (porous is a type of fluid zone )4, Internal face boundaries :fan, radiator, porous jump, wall, interior5-2 流动进口、出口边界条件FLUENT 提供了10种类型的流动进、出口条件,它们分别是:★一般形式: ★可压缩流动: 压力进口 质量进口 压力出口 压力远场★不可压缩流动: ★特殊进出口条件: 速度进口 进口通分,出口通风 自由流出 吸气风扇,排气风扇进口出口壁面orifice (interior)orifice_plate and orifice_plate-shadow流体Example: Face and Cell zones associated with Pipe Flow through orifice plate1,速度进口(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题,对可压缩问题不适用,否则该入口边界条件会使入口处的总温或总压有一定的波动。
2,压力进口(pressure-inlet):给出进口的总压和其它需要计算的标量进口值。
对计算可压不可压问题都适用。
3,质量流进口(mass-flow-inlet):主要用于可压缩流动,给出进口的质量流量。
对于不可压缩流动,没有必要给出该边界条件,因为密度是常数,我们可以用速度进口条件。
4,压力出口(pressure-outlet):给定流动出口的静压。
对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。
该边界条件只能用于模拟亚音速流动。
5,压力远场(pressure-far-field):该边界条件只对可压缩流动适合。
FLUENT全参数设置
FLUENT全参数设置FLUENT是一款流体力学仿真软件,用于通过求解流动和传热问题来模拟和分析各种工程现象。
在使用FLUENT进行仿真之前,我们需要进行全参数设置,以确保所得到的结果准确可靠。
本文将介绍FLUENT的全参数设置,并提供一些适用于新手的建议。
1.计算网格设置:计算网格是FLUENT仿真中最重要的因素之一、合适的网格划分能够很好地表达流场和传热场的特征。
在设置计算网格时,可以考虑以下几个因素:-网格类型:可以选择结构化网格或非结构化网格。
结构化网格具有规则排列的单元,易于生成和细化。
非结构化网格则适用于复杂的几何形状。
-网格密度:根据仿真需求和计算资源的限制,选择合适的网格密度。
一般来说,流动和传热现象较为复杂时,需要更密集的网格划分。
-边界层网格:在靠近流体边界处增加边界层网格可以更准确地捕捉边界层流动的细节。
-剪切层网格:对于具有高速剪切层的流动,应添加剪切层网格以更好地刻画流场。
2.物理模型设置:- 湍流模型:选择合适的湍流模型,如k-epsilon模型、Reynolds Stress Model(RSM)等。
根据流动领域的特点,选用合适的湍流模型能够更准确地预测湍流现象。
- 辐射模型:对于辐射传热问题,可以选择合适的辐射模型进行建模。
FLUENT提供了多种辐射模型,如P1模型、Discrete Ordinates模型等。
-传热模型:根据具体问题,选择适当的传热模型,如导热模型、对流传热模型等。
在选择传热模型时,需要考虑流体性质和边界条件等因素。
3.数值方法设置:数值方法的选择和设置对仿真结果的准确性和稳定性有很大影响。
以下是一些建议:-离散格式:选择合适的离散格式进行数值计算。
一般来说,二阶精度的格式足够满足大多数仿真需求。
-模拟时间步长:选择合适的模拟时间步长以保证数值稳定性。
一般来说,时间步长应根据流场的特性和稳定性来确定。
-松弛因子设置:对于迭代求解的过程,设置合适的松弛因子能够提高求解的收敛速度。
FLUENT应用及相关问题
FLUENT边界条件使用范围速度入口边界条件:用于定义流动入口边界的速度和标量。
压力入口边界条件:用来定义流动入口边界的总压和其它标量。
质量流动入口边界条件:用于已知入口质量流速的可压缩流动。
在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。
压力出口边界条件:用于定义流动出口的静压(在回流中还包括其它的标量)。
当出现回流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。
压力远场边界条件:用于模拟无穷远处的自由可压缩流动,该流动的自由流马赫数以及静态条件已知。
这一边界类型只用于可压缩流。
质量出口边界条件:用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情况还未知的情况。
在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口边界条件假定出了压力之外的所有流动变量正法向梯度为零。
不适合于可压缩流动。
进风口边界条件:用于模拟具有指定的损失系数、流动方向以及周围(入口)环境总压和总温的进风口。
进气扇边界条件:用于模拟外部进气扇,它具有指定的压力跳跃、流动方向以及周围(进口)总压和总温。
通风口边界条件:用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静压和静温。
排气扇边界条件:用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处)的静压。
速度入口边界条件速度入口边界条件用于定义流动速度以及流动入口的流动属性相关标量。
这一边界条件适用于不可压缩流,如果用于可压缩流它会导致非物理结果,这是因为它允许驻点条件浮动。
应该注意不要让速度入口靠近固体妨碍物,因为这会导致流动入口驻点属性具有太高的非一致性。
压力入口边界条件压力入口边界条件用于定义流动入口的压力以及其它标量属性。
它即可以适用于可压缩流,也可以用于不可压缩流。
压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。
这一情况可用于很多实际问题,比如浮力驱动的流动。
三十三、Fluent边界条件湍流参数设置详解
三十三、Fluent边界条件湍流参数设置详解0. 写在前面本来想写一篇Fluent边界条件设置的文章,结果发现内容太多,因此退而求其次,想写进出口边界设置的文章,发现内容还是太多,最后就写了这篇单单介绍边界湍流参数设置的文章,结果内容还是将近3000字。
本文干货较多,通过对文章的阅读,相信对于边界湍流参数的设置大家不会有任何问题。
所谓边界湍流参数,主要是指下图中的参数设置:本文写的比较详细,想直接看参数设置的可以直接跳到3.湍流参数的设置。
但还是强烈建议大家完整看下,对边界条件有更深的理解,尤其得看看 2.2 湍流参数重要性这一小节1. 边界条件概述1.1 边界条件概念边界条件说白了就是求解微分方程的某些附加条件,这些附加条件对计算边界做出了要求,比如某个边界温度必须为500K,Fluent求解时必须首先满足这些要求。
求解任何微分方程都需要给定两类条件才能求出定解,一类是边界条件,另一类就是初始条件。
Fluent恰巧需要用户给出这两类条件(实际上任何数值软件如Matlab都需要给出这两类条件)。
1.2 Fluent边界条件Fluent边界条件类型非常非常丰富,仅仅针对进出口边界,Fluent就提供了12种边界条件类型。
velocity inlet 速度入口pressure inlet 压力入口mass-flow inlet 质量流率入口mass-flow outlet 质量流率出口pressure outlet 压力出口pressure far-field 压力远场outflow 自由出流inlet vent 进风口intake fan 进气风扇outlet vent 出风口exhaust fan 排气风扇degassing 脱气虽然进出口边界条件的类型很多,但是这些边界条件存在一些共同点,那就是当使用湍流模型时,边界条件选项中都会出现湍流参数的设置,如Turbulent Viscosity Ratio、Hydraulic Diameter等下面我们就对这些边界条件中的湍流参数设置进行详细的介绍,希望大家能通过这篇文章把湍流参数的设置理解透彻。
湍流边界条件的设置
在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。
在FLUENT 中可以使用的湍流模型有很多种。
在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。
本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。
在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。
特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。
在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。
违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。
在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。
下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(Turbulence Intensity)湍流强度I的定义为:I=Sq rt(u’*u’+v’*v’+w’*w’)/u_avg (8-1)上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。
湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。
在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。
比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。
在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。
内流问题进口处的湍流强度取决于上游流动状态。
如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。
fluent边界条件2
壁面边界条件壁面边界条件用于限制流体和固体区域。
在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。
详情请参阅对称边界条件一节)。
在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。
壁面边界的输入概述壁面边界条件需要输入下列信息:●热边界条件(对于热传导计算)●速度边界条件(对于移动或旋转壁面)●剪切(对于滑移壁面,此项可选可不选)●壁面粗糙程度(对于湍流,此项可选可不选)●组分边界条件(对于组分计算)●化学反应边界条件(对于壁面反应)●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算)●离散相边界条件(对于离散相计算)在壁面处定义热边界条件如果你在解能量方程,你就需要在壁面边界处定义热边界条件。
在FLUENT中有五种类型的热边界条件:●固定热流量●固定温度●对流热传导●外部辐射热传导●外部辐射热传导和对流热传导的结合如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。
详情请参阅在壁面处定义热边界条件。
下面各节介绍了每一类型的热条件的输入。
如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。
热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。
Figure 1:壁面面板对于固定热流量条件,在热条件选项中选择热流量。
然后你就可以在热流量框中设定壁面处热流量的适当数值。
设定零热流量条件就定义了绝热壁,这是壁面的默认条件。
选择固定温度条件,在壁面面板中的热条件选项中选择温度选项。
你需要指定壁面表面的温度。
壁面的热传导可以用温度边界条件一节中的方程1或3来计算。
FLUENT边界条件设定
在垂直于边界上不应该
存在很大的参数梯度.
导致不同的结果.
减小边界附近的网格
扭曲度.
导致计算早期误差过大.
1
2
基本的边界类型
外部面
一般: Pressure inlet, Pressure outlet 不可压: Velocity inlet, Outflow 可压: Mass flow inlet, Pressure far-field 特殊: Inlet vent, outlet vent, intake fan, exhaust fan 其它: Wall, Symmetry, Periodic, Axis
从Type中选择新的类型.
给定边界条件参数
在 BC panels中直接赋值.
给选定的边界设定:
从Zone菜单中选择边界. 点击Set按钮
利用Copy按钮可以复制边界条件.
边界条件的内容可以存盘,
也可以读入.
file write-bc and file read
分析流程
1. 来流条件
均匀性 非预混模型 考虑混合效果
Air
1
2
Combustor Wall
3
2. 喷嘴进口
非预混模型 参数要求高
3. 喷嘴出口
预混模型 参数要求高
1 Fuel
Nozzle Manifold box
基本原则
设定在流体的进、出口
可以有利于收敛.
多通道出口
可以利用 Pressure Outlet 和 Outflow boundaries. Pressure Outlets
(完整版)fluent边界条件设置
边界条件设置问题1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。
该边界条件适用于不可压缩流动问题。
Momentum 动量?thermal 温度radiation 辐射species 种类DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流UDS(User define scalar 是使用fluent求解额外变量的方法)Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的大小Turbulence 湍流Specification method 规范方法k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径2、压力入口边界条件(pressure-inlet):压力进口边界条件通常用于给出流体进口的压力和流动的其它标量参数,对计算可压和不可压问题都适合。
压力进口边界条件通常用于不知道进口流率或流动速度时候的流动,这类流动在工程中常见,如浮力驱动的流动问题。
CFD分析基础-边界条件和湍流
直接数值模拟只适合于模拟简单的低雷诺数流动. 作为可行的方法, 改而求解雷诺平均 Navier-Stokes (RANS) 方程:
2 R U p U ij i i U k x x x x x k i j j j
其中
R u ij iu j
在以下情况下:
不清楚具体域的位置且首次设置; 模型中含两个以上同类型的边界时。.
入口和出口条件
描述流体流入和流出的边界条件类型:
通用的
可压缩流动
压力入口 压力出口
质量流入口 压力远场条件 通风入口, 通风出口, 进气风扇, 排气风扇
不可压缩流动
特殊条件
速度入口 出流条件
只适用于不可压缩流动.
停滞参数根据速度分布的不同而变化.
用于计算可压缩流动可能导致不符合物理规律的结果. 导致不符合物理规律的结果, 不正确的速度场等问题
应避免在接近固体障碍物的位置设定速度入口条件.
应用速度分布图
可选择应用UDF来定义入口边界的速度 分布.
速度分布图可以是空间相关或者时间相关. 通过其它CFD分析结果获得速度分布图 创建含坐标信息和边界数据的文本文件.
在入口处存在压力的增高或降低.
进气风扇和通风入口Inlet Vent/Intake Fan
固壁条件
包含流体和固体的表面. 对于粘性流动,采用无滑移的条件:
壁面上流体切向速度等于固壁速度. 法向速度为 0 温度、热量和辐射等多种条件. 固壁材料的传热可定义为一维的传热计算. 壁面剪切速率和传热特性决定于壁面附近的流场.
fluent边界条件(二)
周期性边界条件周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。
FLUENT提供了两种类型的周期性边界条件。
第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。
第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。
本节讨论了无压降的周期性边界条件。
在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。
周期性边界的例子周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。
下图是周期性边界条件的典型应用。
在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。
正如这些例子所示,周期性平面通常是成对使用的。
Figure 1: 在圆柱容器中使用周期性边界定义涡流周期性边界的输入对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。
(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。
)旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。
本节中的图一就是旋转性周期。
平移性周期边界是指在直线几何外形内形成周期性边界。
下面两图是平移性周期边界:Figure 1: 物理区域Figure 2: 所模拟的区域对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。
Figure 3: 周期性面板(对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。
)如果区域是旋转性区域,请选择旋转性区域类型。
如果是平移性就选择平移性区域类型。
对于旋转性区域,解算器会自动计算通过周期性区域的旋转角度。
旋转轴是为邻近单元指定的旋转轴。
fluent圆管仿真湍流参数设置
一、概述在工程领域中,流体力学仿真是一项十分重要的工作。
在进行流体力学仿真时,对于湍流参数的设置尤为关键。
本文主要讨论在使用fluent软件进行圆管湍流仿真时,如何设置参数以获得准确可靠的结果。
二、湍流模型的选择1. 简介在进行圆管湍流仿真时,首先需要选择合适的湍流模型。
目前常用的湍流模型包括k-ε模型、k-ω模型、SST湍流模型等。
每种湍流模型都有其适用的范围和局限性。
2. 参数设置在fluent软件中,进行湍流模型选择时需要考虑雷诺数、流场特性等因素。
根据具体情况选择合适的湍流模型,并对相应的参数进行设置。
三、网格划分1. 网格类型在进行圆管湍流仿真时,合适的网格划分也是至关重要的。
常见的网格类型包括结构化网格、非结构化网格等。
2. 网格密度对于圆管湍流仿真,网格的密度对结果的准确性有着直接的影响。
在fluent软件中,可以通过设置不同的网格密度来进行网格划分。
四、边界条件设置1. 入口边界条件对于圆管湍流仿真,入口边界条件的设置对结果有着重要的影响。
在fluent软件中,可以通过设定入口速度、湍流强度等参数来进行设置。
2. 出口边界条件出口边界条件的设置同样十分重要。
在fluent软件中,需要考虑出口压力、流速等参数。
五、求解器设置1. 时间步长在进行湍流仿真时,时间步长的选择对结果的精度有着很大的影响。
需要根据具体情况进行合理的设置。
2. 收敛准则在fluent软件中,收敛准则的设置也是必不可少的。
通过调整收敛准则的值来保证计算结果的准确性。
六、计算结果分析1. 流场分布通过fluent软件进行湍流仿真后,可以获得流场的分布情况。
需要对结果进行仔细的分析和比对。
2. 压降计算在圆管湍流仿真中,压降是一个重要的参数。
需要对压降进行精确的计算和分析。
七、总结圆管湍流仿真是流体力学仿真中的重要内容。
在使用fluent软件进行仿真时,正确的参数设置和合理的操作流程至关重要。
通过本文的讨论,相信读者对圆管湍流仿真的参数设置有了更清晰的认识,能够在实际工程中取得更好的仿真结果。
FLUENT 中湍流参数的定义
FLUENT 中湍流参数的定义2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。
在FLUENT 中可以使用的湍流模型有很多种。
在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。
本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。
在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。
特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。
在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。
违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。
在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。
下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(Turbulence Intensity)湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg(8-1)上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。
湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。
在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。
比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。
在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。
fluent湍流设置
湍流边界条件设置在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。
在FLUENT中可以使用的湍流模型有很多种。
在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。
本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。
在大多数情况下,湍流是在入口后面一段距离经过转操形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。
特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。
在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。
违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。
在TurbulenceSpecificationMethod(湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。
下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置:(1)湍流强度(TurbulenceIntensity)湍流强度I的定义为:I=Sqrt(u'*u'+v'*v'+w'*-w1)')/u_avg(8上式中u',v'和w'是速度脉动量,u_avg是平均速度。
湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。
在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。
比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。
在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。
内流问题进口处的湍流强度取决于上游流动状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLUENT边界条件(2)—湍流设置
(fluent教材—fluent入门与进阶教程于勇第九章)
Fluent:湍流指定方法(Turbulence Specification Method)
2009-09-16 20:50
使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。
其下参数共两项,
(1)是Turbulence Intensity,确定方法如下:
I=0.16/Re_DH^0.125 (1)
其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。
雷诺数
Re_DH=u×DH/υ(2)
u为流速,DH为水利直径,υ为运动粘度。
水利直径见(2)。
(2)水利直径
水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。
水力半径
R=A/X (3)
其中,A为截面积(管子的截面积)=流量/流速
X为湿周(字面理解水流过各种形状管子外圈湿一周的周长)
例如:方形管的水利半径
R=ab/2(a+b)
水利直径
DH=2×R (4)
举例如下:
如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。
则
DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径
Re_DH=u×DH/υ=10*0.02/10e-6=20000
I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%
水力半径:润湿周长
横截面积=h r , 水力直径:h h r 4D =
对圆管而言,管道直径和水力直径是一回事。
1、湍流强度
定义:速度波动的均方根与平均速度的比值
小于1%为低湍流强度,高于10%为高湍流强度。
计算公式:
I=0.16*(re)^(-1/8)
式中:I —湍流强度,re —雷诺数
2、湍流尺度及水力直径
湍流尺度(turbulence length):a physical quantity related to the size of the large eddies that contain the energy in turbulent flows 。
通常计算方式:
l=0.07L
L 为特征尺度,可认为是水力直径,因数0.07是基于充分发展的湍流管流中的混合长度的最大值。
湍流参数的选取:
(1)充分发展的内部流动,选取湍流强度(intensity)和水力直径(hydraulic diameter)
(2)导流叶片流动、穿孔板等流动,选取强度(intensity)和长度尺度(length scale)。
(3)四周为壁面引起湍流边界层的流动,选取强度(intensity)和长度尺度(length scale),使用边界层厚度,特征长度等于0.4倍边界层,输入此值到turbulence length scale 中。
3、湍动能(Kinetic energy)
湍流模型中最常见的物理量(k)。
利用湍流强度估算湍动能:
k=3/2*(u*I)^2
其中:u—平均速度,I—湍流强度
4、湍流耗散率(turbulent disspipation rate)
湍流耗散率即传说中的ε。
通常利用k和湍流尺度l估算ε
计算公式为:
cu通常取0.09,k为湍动能,l为湍流尺度
5、比耗散率ω
计算公式为:
ω=k^0.5/(l*c^0.25)式中:k为湍动能,l为湍流尺度,c为经验常数,常取0.09。