高中数学不等式模块知识点集合

合集下载

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高中数学不等式知识点归纳

高中数学不等式知识点归纳

高中数学不等式知识点归纳什么是不等式一般地,用纯粹的大于号“>”、小于号“,≥,≤,≠)连接的式子叫做不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

高中数学基本不等式知识点数学知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0数学知识点2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

数学知识点3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。

高中不等式知识点

高中不等式知识点

高中不等式知识点高中阶段,不等式是数学中的重要内容之一。

不等式不仅在数学中有广泛的应用,也在生活中有很多实际意义。

下面我将重点介绍高中阶段学习不等式的一些重要知识点。

1. 不等式的基本性质:(1) 加减性质:对于不等式两边同时加减同一个数,不等号的方向保持不变;(2) 乘除性质:如果同一个正数或同一个负数同时乘或除不等式两边,不等号方向不变,如果同一个正数乘或除不等式两边,不等号的方向保持不变,如果同一个负数乘或除不等式两边,不等号的方向发生改变;(3) 倒置性质:不等号两边同时倒置,不等号的方向也要倒置。

2. 不等式的解集表示法:(1) 常用解集表示法:使用不等号来表示解集,如x>2表示x 大于2;(2) 区间表示法:使用数轴上的区间来表示解集,如[2, +∞)表示大于或等于2的所有实数。

3. 一元一次不等式:一元一次不等式指的是只含有一个未知数(一元)和一次方程的不等式。

对于一元一次不等式的求解,可以进行类似于方程的运算,通过移项和化简得出解集。

4. 一元二次不等式:一元二次不等式指的是含有一个未知数(一元)以及二次项(平方项)的不等式。

对于一元二次不等式的求解,可以通过变换成二次方程,求出方程的解集,再用数轴上的区间来表示解集。

5. 系统不等式:系统不等式指的是多个不等式组成的一个问题。

对于系统不等式的求解,可以通过图像法,通过画出各个不等式的直线图像,找出满足全部条件的交集部分来表示解集。

6. 约束条件的不等式:在一些实际问题中,不仅有不等式的限制条件,还有其他的约束条件。

对于这种情况,需要将不等式的解集与其他条件进行比较来确定最终的解集。

不等式作为数学中的重要内容,不仅仅是应试的一部分,更是对学生逻辑思维和数学思考能力的考验。

通过学习不等式,可以培养学生的分析问题和解决问题的能力,使他们在解决实际问题时能够灵活运用数学知识。

在生活中,不等式也有很多实际应用,如求解最大值、最小值问题、经济学中的供求关系等等。

高中数学不等式知识点总结

高中数学不等式知识点总结

高中数学不等式知识点总结一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

扩展资料高中数学不等式知识点总结:1、用符号〉,=,〈号连接的式子叫不等式。

2、性质:①如果x>y,那么y<z;如果yy;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的.n次幂>y的n次幂(n为正数),x的n 次幂<y的n次幂(n为负数)。

或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

最新高中数学不等式知识点归纳汇总

最新高中数学不等式知识点归纳汇总

最新高中数学不等式知识点归纳汇总不等式是数学中非常重要的一个概念,它在数学问题的解决中起到了重要的作用。

下面对高中数学中的不等式知识点进行归纳汇总:1.不等式的基本性质:不等式中的“<”表示小于,不等式中的“>”表示大于。

两个不等式可以通过交换号“<”和“>”的顺序来得到另一个不等式。

对于相等的数,可以用等号“=”表示。

不等式中可以同时出现相等的情况。

2.不等式的运算性质:不等式具有类似于等式的加减乘除法的性质。

对于不等式两边同时加一个常数、减一个常数、乘以一个正数或除以一个正数,都不改变不等式的大小关系。

但是当乘以或除以一个负数时,需要注意将不等号方向翻转。

3.不等式的解集表示:通常以“解”或者“S”来表示不等式的解集。

解集是指满足不等式的所有实数。

解集可以用数轴上的区间表示,也可以用集合表示。

4.一元一次不等式:一元一次不等式是指不等式中只有一个未知数的一次式。

求解一元一次不等式的方法与解一元一次方程的方法类似,首先将不等式变形为x在一侧且常数在另一侧的形式,然后通过分情况讨论的方法求解不等式。

5.绝对值不等式:绝对值不等式是指不等式中含有绝对值的不等式。

求解绝对值不等式的常用方法是分情况讨论,根据绝对值的定义进行讨论。

6.二次不等式:二次不等式是指不等式中含有二次式的不等式。

求解二次不等式的方法包括图像法、因式分解法、配方法等。

解二次不等式时需要先将不等式变形为标准形式,然后根据二次曲线图像的几何性质进行分析。

7.有理不等式:有理不等式是指不等式中含有有理式的不等式。

求解有理不等式的方法类似于求解二次不等式,需要先将不等式变形为标准形式,然后通过分情况讨论的方法求解不等式。

8.综合性不等式:综合性不等式是指由两个或多个不等式组合而成的不等式。

综合性不等式的解集是由各个不等式解集的交集或并集构成的。

求解综合性不等式的方法是根据不等式之间的关系,找到解集的范围。

9.不等式的应用:不等式在数学的各个分支中有着广泛的应用。

高中不等式知识点总结

高中不等式知识点总结

1.不等式的解法(1)同解不等式(同解;(2)与同解,(3; 2.一元一次不等式3.一元二次不等式或分4.分式不等式分式不等式的等价变形:)()(x g x f >0⇔f(x)·g(x)>0,)()(x g x f ≥0⇔⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 。

5.简单的绝对值不等式解绝对值不等式常用以下等价变形:|x|<a ⇔x 2<a 2⇔-a<x<a(a>0), |x|>a ⇔x 2>a 2⇔x>a 或x<-a(a>0)。

一般地有:|f(x)|<g(x)⇔-g(x)<f(x)<g(x),|f(x)|>g(x)⇔f(x)>g (x)或f(x)<g(x)。

67.对数不等式(1)当时,(2 8.线性规划(1)平面区域一般地,二元一次不等式0Ax By C ++>在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。

我们把直线画成虚线以表示区域不包括边界直线。

当我们在坐标系中画不等式0A x B y C ++≥所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。

说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域。

特别地,当0C ≠时,通常把原点作为此特殊点。

(2)有关概念引例:设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值。

由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。

由图知,原点(0,0)不在公共区域内,当0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上,作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。

数学高中不等式知识点总结

数学高中不等式知识点总结

数学高中不等式知识点总结高中不等式是数学中的重要内容,在数学学习中有着重要的地位。

不等式作为数学中的一个概念,与等式类似,是数学中一种重要的推理等式。

不等式能够用来描述数的大小关系,包含等于、大于、小于、不等于等关系。

高中不等式的知识点主要包括:不等式的定义、解不等式的方法、不等式的性质、不等式方程的解法以及不等式的应用等。

1.不等式的定义:不等式是数学中用不等号表示的一种数的大于或小于关系。

不等式中的”不等号“主要包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)、不等于号(≠)等。

2.不等式的解法:解不等式的方法主要有图形法和代数法两种。

(1)图形法:可以借助图形来得到不等式的解集。

如在数轴上标明不等式的解集。

(2)代数法:借助数学运算的性质,对不等式进行等价变形,得出不等式的解集。

解不等式时常用的运算性质有:加减、乘除等。

- 加减性:如果将一个不等式的两边都加上或减去一个相同的数,不等式的大小关系保持不变。

即如果a > b,则有a + c > b + c(其中c为常数),同样,如果a < b,则有a + c < b+ c。

- 乘除性:如果将一个不等式的两边都乘以或除以一个正数,不等式的大小关系保持不变。

即如果a > b 且c > 0,则有ac > bc,同样,如果a > b 且c < 0,则有ac < bc。

3.不等式的性质:不等式在数学中有一些特殊的性质。

(1)加法性:如果一个不等式两边都加上相同的正数,不等式的大小关系不变。

(2)乘法性:如果一个不等式两边都乘以相同的正数,不等式的大小关系不变。

但若两边都乘以或除以一个负数,则不等号方向会发生改变。

(3)传递性:如果a > b 且 b > c,则有a > c。

同样,如果a < b 且 b < c,则有a < c。

4.不等式方程的解法:不等式方程是不等式和等式相结合的方程,解不等式方程时可以先将不等式方程转化为等式方程,再根据等式方程的解法求解。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。

不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。

例如,x > y表示x大于y,x < y表示x小于y。

二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。

1.对称性:如果x > y,则y < x。

这就是说,不等式两边同时改变符号,不等式的方向不会改变。

2.传递性:如果x > y,且y > z,则x > z。

这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。

3.可加性:如果x > y,且a > 0,则x + a > y + a。

这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。

4.乘法原则:如果x > y,且m > 0,则x * m > y * m。

这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。

三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。

1.作差比较法:如果x > y,则x - y > 0。

我们可以通过作差来比较两个数的大小。

2.作商比较法:如果x > y,则x / y > 1。

我们可以通过作商来比较两个数的大小。

3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。

我们可以通过韦达定理来比较两个数的大小。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高中不等式知识点归纳总结

高中不等式知识点归纳总结

高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。

一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。

基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。

2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。

对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。

2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。

3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。

对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。

•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。

集合不等式知识点总结

集合不等式知识点总结

集合不等式知识点总结一、集合知识点总结(一)集合的基本概念1. 定义- 集合是由一些确定的、不同的对象所组成的整体。

这些对象称为集合的元素。

- 例如:集合A = {1,2,3},其中1、2、3是集合A的元素。

2. 集合中元素的特性- 确定性:给定一个集合,任何一个对象是不是这个集合的元素是确定的。

例如,“所有的好人”不能构成集合,因为“好人”的标准不明确;而“所有小于5的自然数”能构成集合{0,1,2,3,4}。

- 互异性:集合中的元素是互不相同的。

例如,集合{1,2,2,3}不符合集合的定义,应写成{1,2,3}。

- 无序性:集合中的元素没有顺序之分。

例如,{1,2,3}和{3,2,1}表示同一个集合。

3. 集合的表示方法- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如,A={a,b,c}。

- 描述法:用确定的条件表示某些对象是否属于这个集合的方法。

一般形式为{x|p(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。

例如,{x|x > 0且x∈ R}表示所有大于0的实数组成的集合。

- 图示法(Venn图):用平面上封闭曲线的内部代表集合。

例如,用一个圆表示集合A,圆内的点表示集合A的元素。

(二)集合间的基本关系1. 子集- 定义:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊂eq B(或B⊃eq A)。

- 例如:集合A = {1,2},集合B={1,2,3},则A⊂eq B。

- 性质:- 任何一个集合是它本身的子集,即A⊂eq A。

- 空集varnothing是任何集合的子集,即varnothing⊂eq A。

2. 真子集- 定义:如果A⊂eq B,且存在元素x∈ B,但x∉ A,那么集合A称为集合B 的真子集,记作A⊂neqq B(或B⊃neqq A)。

- 例如:集合A = {1,2},集合B={1,2,3},则A⊂neqq B。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。

平均不等式常用于综合法的标度。

分析方法:不等式两边的关系不够清晰。

通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。

4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。

同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。

高中不等式知识点大全总结

高中不等式知识点大全总结

高中不等式知识点大全总结一、基本不等式性质1. 两个数的比较:(1)当 a > b 时,a-b>0;(2)当 a < b 时,a-b<0;(3)当 a = b 时,a-b=0。

2. 不等式的四则运算:不等式有“加减乘除”运算律,即不等式两边都同时加减(乘除)同一个数,不等式依然成立。

3. 绝对值不等式:对于任何实数 a 和正实数 b,有|a| > b 的不等式解集是 a > b 或 a < -b。

4. 不等式的取反:若不等式 a > b 成立,则其取反 a < b 也成立;若不等式 a > b 不成立,则其取反 a < b 亦成立。

5. 不等式的合并:若不等式 a > b 和 c > d 同时成立,则其合并为 a + c > b + d 成立。

6. 不等式的分拆:若不等式 a + b > c + d 成立,则其分拆为 a > c - b + d 或 b > d - a + c 成立。

二、一元一次不等式一元一次不等式是指只含有一个未知数的一次函数不等式,通常具有形式 ax+b > 0 或ax+b < 0。

1. 解不等式的方法一元一次不等式的解法包括两种:一是化简法,即通过使用运算律化简不等式,然后求出不等式的解集;二是图解法,即将不等式用图形表示出来,然后求出不等式的解集。

2. 一元一次不等式组一元一次不等式组是由若干个一元一次不等式组成的系统。

解一元一次不等式组的方法同样包括化简法和图解法。

三、一元二次不等式一元二次不等式是指只含有一个未知数的二次函数不等式,通常具有形式 ax^2+bx+c > 0 或 ax^2+bx+c < 0。

1. 一元二次不等式的解法一元二次不等式的解法通常使用折线法和区间法。

折线法是利用二次函数的拐点和零点来求解不等式的解集;区间法是将一元二次不等式用图像表示出来,然后找出其零点和开口方向,从而求出解集。

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结3篇

完整版高中数学不等式知识点总结第一篇:基本不等式和二元平均数不等式一、基本不等式:基本不等式又称柯西不等式,是数学中重要的基本工具,对于解决不等式问题有重大意义。

基本不等式的形式如下:$$(a_1^2 + a_2^2 + … + a_n^2)(b_1^2 + b_2^2 + … + b_n^2) \geqslant (a_1b_1 + a_2b_2 + … + a_nb_n)^2$$其中$a_1,a_2,…,a_n$ 和$b_1,b_2,…,b_n$ 是任意实数。

基本不等式的证明过程多种多样,这里给出一种简单易懂的证明方法:设$x=a_1b_1+a_2b_2+…+a_nb_n$,则 $x^2$ 可以表示为:$$x^2={(a_1b_1+a_2b_2+…+a_nb_n)}^2$$$$={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^ 2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$又因为:$${a_1}^2+{a_2}^2+…+{a_n}^2\geqslant2a_1a_2+2a_1a_3+…+2a_{n-1}a_n$$$${b_1}^2+{b_2}^2+…+{b_n}^2\geqslant2b_1b_2+2b_1b_3+…+2b_{n-1}b_n$$因此:$${a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_n}^2 \geqslant 2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$故:$$x^2={a_1}^2{b_1}^2+{a_2}^2{b_2}^2+…+{a_n}^2{b_ n}^2+2a_1b_1a_2b_2+2a_1b_1a_3b_3+…+2a_{n-1}b_{n-1}a_nb_n$$$$\leqslant({a_1}^2+{a_2}^2+…+{a_n}^2)({b_1}^2+{ b_2}^2+…+{b_n}^2)$$即为所求基本不等式。

高中数学不等式公式 高一数学不等式知识点总结

高中数学不等式公式 高一数学不等式知识点总结

高中数学不等式公式高一数学不等式知识点总结1. 不等式的基本性质:- 两边加(减)一个相同的数,不等式的不等关系不变。

- 两边乘(除)一个正数,不等式的不等关系不变。

- 两边乘(除)一个负数,不等式的不等关系反向。

2. 不等式的解集表示:- 不等式的解集可以用区间表示,例如:(a, b)表示大于a小于b的所有实数。

- 不等式的解集也可以用集合表示,例如:{x|x > a}表示大于a的所有实数。

3. 常见的不等式公式:- 两个数的大小关系:若 a < b,则有 a + c < b + c, a - c < b - c, ac < bc (若 c > 0), ac > bc (若 c < 0), a/c < b/c (若 c > 0), a/c > b/c (若 c < 0)。

- 平方不等式:若 a > b,则有 a^2 > b^2。

- 乘方不等式:若 a > b > 0 且 n > 0,则有 a^n > b^n。

- AM-GM 不等式:对于非负实数 a1, a2, ..., an,有 (a1 + a2 + ... + an)/n ≥√(a1a2...an)。

4. 不等式的证明方法:- 利用性质证明法:利用前述不等式的基本性质进行推导,将不等式化为已知的形式。

- 利用数轴法:将不等式的解集在数轴上表示出来,通过移动自变量的位置来判断不等式的成立性。

- 利用函数法:将不等式视为一个函数的性质,通过证明函数的单调性来得出不等式的结论。

- 利用数学归纳法:当不等式涉及到自然数时,可以使用数学归纳法来证明不等式的成立性。

以上是高一数学不等式的一些基本知识点总结,希望对你有帮助。

不等式高中数学知识点

不等式高中数学知识点

不等式高中数学知识点不等式高中数学知识点1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或 a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当时,取等号)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5.含绝对值不等式的性质:6.不等式的恒成立,能成立,恰成立等问题(1)恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(2)能成立问题(3)恰成立问题数学考试答题技巧按部作答,争取每一分这里的按部作答主要是指学生在考试的过程中解答大题的时候。

对于一些比较复杂,难懂的题目,我们可以庖丁解牛,一步一步的解答。

这样一来。

我们可以可能将这道题解答出一半或者是四分之三,我们都知道现在的判题规则是按部给分也就是说学生列出了式子或者是解答对了一半都会得到相应的分数。

这就要求各位老师和同学们一定要注意暗部作答。

不要因为题目的难易程度而盲目的选择放弃,毕竟一道大题十分,做出来一半也就得到了五分到对于学生成绩来说五分还是非常重要的。

小编,建议在我们做大题时一定要注重按部作答这一规则。

因为我们在解答的过程中,如果分不清可以便于我们后期的检查以及教师的教师阅卷,使阅卷时清晰明了一目了然。

高中数学不等式知识点

高中数学不等式知识点

高中数学不等式知识点不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。

3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。

运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)。

高中数学不等式知识点归纳

高中数学不等式知识点归纳

高中数学不等式知识点归纳
高中数学不等式知识点归纳主要包括以下几个方面:
1. 不等式的概念和性质:不等式是数学中比较基础的概念,它表示两个数之间的大小关系。

不等式的性质包括:对称性、传递性、加法法则、乘法法则等。

这些性质在解决不等式问题时非常重要。

2. 一元一次不等式:一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。

解决这类不等式问题,可以通过移项、合并同类项、化系数为1等方法,将其转化为一元一次方程,然后求解。

3. 一元二次不等式:一元二次不等式是含有一个未知数,且未知数的最高次数为2的不等式。

解决这类不等式问题,可以通过因式分解、配方、判别式等方法,将其转化为一元二次方程,然后求解。

4. 分式不等式:分式不等式是含有分式的不等式。

解决这类不等式问题,可以通过通分、分子分母同号或异号等方法,将其转化为整式不等式,然后求解。

5. 绝对值不等式:绝对值不等式是含有绝对值符号的不等式。

解决这类不等式问题,可以通过绝对值的定义,将其转化为分段函数,然后分别求解每一段的情况。

6. 不等式的应用:不等式在实际生活中有广泛的应用,如优化问题、最值问题、范围问题等。

在解决这些问题时,需要根据问题的实际情况,建立相应的不等式模型,然后求解。

以上是高中数学不等式知识点的主要归纳,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5 不等式 知识点归纳一.不等式的概念与性质1.实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a2.不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性)(2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性)(3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则)推论:d b c a d c b a +>+⇒>>, (同向不等式相加)(4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0,推论1:bd ac d c b a >⇒>>>>0,0推论2:n n b a b a >⇒>>0推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强3.常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a(2)ab b a R b a 2,,22≥+∈则(3)+∈R b a ,,则ab b a 2≥+ (4)222)2(2b a b a +≤+4最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积Sxy S y x =+ 即:积定和最小,和定积最大运用最值定理求最值的三要素:一正二定三相等 5 均值不等式:两个正数的均值不等式:ab b a ≥+2三个正数的均值不等是:33abc c b a ≥++ n 个正数的均值不等式:n n n a a a na a a 2121≥+++ 6四种均值的关系:两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是2211222b a b a ab b a +≤+≤≤+ 小结:在不等式的性质中,要特别注意下面4点:1不等式的传递性:若a>b,b>c, 则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c2同向不等式可相加但不能相减,即由a>b,c>d ,可以得出a+c>b+d,但不能得a —c>b —d3不等式两边同时乘以一个数或式时,只有该数或式保证为正,才能得到同向的不等式,否则不能保证所乘之数或式为正,则不等式两边同时乘以该数或式后不能确定不等式的方向;不等式两边同偶次乘方时,也要特别注意不等式的两边必须是正总之,不等式的概念和性质是本章内容的基础,是证明不等式和解不等式的主要依据,必须透彻理解,特别要注意同向不等式可相加,也可相乘,但相乘时,两个不等式都需大于零 处理分式不等式时不要随便将不等式两边乘以含有字母的分式,如果需要去分母,一定要考虑所乘的代数式的正负。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明二.不等式的证明方法(1)比较法:作差比较:B A B A ≤⇔≤-0 作差比较的步骤: ①作差:对要比较大小的两个数(或式)作差 ②变形:对差进行因式分解或配方成几个数(或式)的完全平方和 ③判断差的符号:结合变形的结果及题设条件判断差的符号 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小(2)综合法:由因导果(3)分析法:执果索因基本步骤:要证……只需证……,只需证…… ①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达(4)反证法:正难则反(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的放缩法的方法有: ①添加或舍去一些项,如:a a >+12;n n n >+)1(; ②将分子或分母放大(或缩小) ③利用基本不等式, 如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n ④利用常用结论: Ⅰ、k k k k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k(程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元如:已知222a y x =+,可设θθsin ,cos a y a x ==;已知122≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r ); 已知12222=+by a x ,可设θθsin ,cos b y a x ==; 已知12222=-by a x ,可设θθtan ,sec b y a x ==; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.数学归纳法法证明不等式将在数学归纳法中专门研究例1已知a ,b ∈R ,且a+b=1 求证:()()2252222≥+++b a 证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥ 即()()2252222≥+++b a (当且仅当21==b a 时,取等号) 证法二:(分析法)()()2258)(4225222222≥++++⇐≥+++b a b a B a ⎪⎩⎪⎨⎧≥-⇐≥++-+-=⇐0)21(22584)1(1222a a a a b 因为显然成立,所以原不等式成立点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件 证法三:(综合法)由上分析法逆推获证(略)证法四:(反证法)假设225)2()2(22<+++b a , 则 28)(422<++++b a b a 由a+b=1,得a b -=1,于是有212)1(22<+-+a a 所以0)21(2<-a , 这与0212≥⎪⎭⎫ ⎝⎛-a 矛盾 所以()()2252222≥+++b a 证法五:(放缩法)∵1a b += ∴左边=()()()()222222222a b a b +++⎡⎤+++≥⎢⎥⎣⎦ ()2125422a b =++=⎡⎤⎣⎦=右边 点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式2222⎪⎭⎫ ⎝⎛+≥+b a b a 证法六:(均值换元法)∵1a b +=,所以可设t a +=21,t b -=21,∴左边=()()22221122(2)(2)22a b t t +++=+++-+ 22255252522222t t t ⎛⎫⎛⎫=++-=+≥ ⎪ ⎪⎝⎭⎝⎭=右边 当且仅当t=0时,等号成立点评:形如a+b=1结构式的条件,一般可以采用均值换元证法七:(利用一元二次方程根的判别式法)设y=(a+2)2+(b+2)2,由a+b=1,有1322)3()2(222+-=-++=a a a a y ,所以013222=-+-y a a ,因为R a ∈,所以0)13(244≥-⋅⋅-=∆y ,即2≥y 故()()2252222≥+++b a 小结: 1.掌握好不等式的证明,不等式的证明内容甚广,证明不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点2在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等3比较法是证明不等式最常用最基本的方法当欲证的不等式两端是多项式或分式时,常用差值比较法当欲证的不等式两端是乘积的形式或幂指不等式时常用商值比较法,即欲证1)0,0(,>>>>ba b a b a 可证 4基本思想、基本方法:⑴用分析法和综合法证明不等式常要用等价转化的数学思想的换元的基本方法 ⑵用分析法探索证明的途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要的数学思想方法⑶ “分析法”证明不等式就是“执果索因”,从所证的不等式出发,不断利用充分条件或者充要条件替换前面的不等式,直至找到显然成立的不等式,书写方法习惯上用“⇐”来表达 分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:正难则反原则:若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯简单化原则:寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式 ⑷凡是“至少”、“唯一”或含有否定词的命题适宜用反证法⑸换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题⑹含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件⑺有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(1)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·>与>>或<<同解.⎧⎨⎩⎧⎨⎩(2)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·<与><或<>同解.⎧⎨⎩⎧⎨⎩(3)f(x)g(x)f(x)0g(x)0f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩(4)f(x)g(x)f(x)0g(x)0f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x) 与①f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0);②g(x)<0同解(7)f(x)g(x)f(x)[g(x)]f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.⎧⎨⎪⎩⎪⎧⎨⎩(8)f(x)g(x)f(x)[g(x)] f(x)02<与<≥同解.⎧⎨⎩(9)当a>1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a <1时,a f(x)>a g(x)与f(x)<g(x)同解.(10)a 1log f(x)log g(x)f(x)g(x)f(x)0a a 当>时,>与>>同解.⎧⎨⎩当<<时,>与<>>同解.0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪⎩⎪ 4 零点分段法:高次不等式与分式不等式的简洁解法步骤:①形式:分母)移项,通分(不轻易去←>0)()(x Q x P ②首项系数符号>0——标准式,若系数含参数时,须判断或讨论系数的符号,化负为正 ③判断或比较根的大小小结:1一元一次不等式、一元二次不等的求解要正确、熟练、迅速,这是解分式不等式、无理不等式、指数不等式、对数不等式的基础 带等号的分式不等式求解时,要注意分母不等于0,二次函数c bx ax y ++=2的值恒大于0的条件是0>a 且0<∆;若恒大于或等于0,则0>a 且0≤∆若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形 2忽略对定义域的考虑以及变形过程的不等价,是解无理不等式的常见错误,因此要强化对转化的依据的思考 3 数形结合起来考虑,可以简化解题过程,特别是填空、选择题,还可利用图形验证,解题的结果 4解指数、对数不等式的过程中常用到换元法底数是参数时,须不重不漏地分类讨论化同底是解不等式的前提取对数也是解指数、对数不等式的常用方法之一,在取对数过程中,特别要注意必须考虑变量的取值范围当所取对数的底数是字母时,随时要把“不等号是否变向”这一问题斟酌再三5.解含参数的不等式时,必须要注意参数的取值范围,并在此范围内对参数进行分类讨论分类的标准要通过理解题意(例如能根据题意挖掘出题目的隐含条件),根据方法(例如利用单调性解题时,抓住使单调性发生变化的参数值),按照解答的需要(例如进行不等式变形时必须具备的变形条件)等方面来决定,要求做到不重复、不遗漏解不等式是不等式研究的主要内容,许多数学中的问题都可以转化为一个解不等式的问题,如函数的定义域、值域、最值和参数的取值范围,以及二次方程根的分布等因此解不等式在数学中有着极其重要的地位,是高考的必考内容之一四.含绝对值的不等式1.解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方2.注意利用三角不等式证明含有绝对值的问题||a|─|b||≤|a+b|≤|a|+|b|;||a|─|b||≤|a─b|≤|a|+|b|;并指出等号条件3.(1)|f(x)|<g(x)⇔─g(x)<f(x)<g(x);(2)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<─g(x)(无论g(x)是否为正)(3)含绝对值的不等式性质(双向不等式) b a b a b a +≤±≤±左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号五.简单的线性规划问题 1二元一次不等式表示平面区域:在平面直角坐标系中,已知直线Ax +By +C =0,坐标平面内的点P (x 0,y 0)B >0时,①Ax 0+By 0+C >0,则点P (x 0,y 0)在直线的上方;②Ax 0+By 0+C <0,则点P (x 0,y 0)在直线的下方对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域 2线性规划: 求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量x 、y ;(2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案例1 求不等式|x -1|+|y -1|≤2表示的平面区域的面积 分析:依据条件画出所表达的区域,再根据区域的特点求其面积解:|x -1|+|y -1|≤2可化为114x y x y ≥⎧⎪≥⎨⎪+≤⎩或112x y x y ≥⎧⎪≤⎨⎪-≤⎩或112x y x y ≤⎧⎪≥⎨⎪-+≤⎩或110x y x y ≤⎧⎪≤⎨⎪+≥⎩ 其平面区域如图∴面积S =21×4×4=8 点评:画平面区域时作图要尽量准确,要注意边界例2 某人上午7时,乘摩托艇以匀速v n mi l e/h (4≤v ≤20)从A 港出发到距50 n mi l e 的B 港去,然后乘汽车以匀速w km/h (30≤w ≤100)自B 港向距300 km 的C 市驶去应该在同一天下午4至9点到达C 市设乘汽车、摩托艇去所需要的时间分别是x h 、y h(1)作图表示满足上述条件的x 、y 范围;(2)如果已知所需的经费p =100+3×(5-x )+2×(8-y )(元),那么v 、w 分别是多少时走得最经济?此时需花费多少元?分析:由p =100+3×(5-x )+2×(8-y )可知影响花费的是3x +2y 的取值范围解:(1)依题意得v =y 50,w =x300,4≤v ≤20,30≤w ≤100 ∴3≤x ≤10,25≤y 225 ① 由于乘汽车、摩托艇所需的时间和x +y 应在9至14个小时之间, 即9≤x +y ≤14 ②因此,满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界) (2)∵p =100+3·(5-x )+2·(8-y ),∴3x +2y =131-p设131-p =k ,那么当k 最大时,p 最小在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当x =10,y =4时,p 最小 此时,v =125,w =30,p 的最小值为93元小结:简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标。

相关文档
最新文档