流体力学课件 第五章 流动阻力

合集下载

流体力学D课件 第五章

流体力学D课件 第五章
Re
hf
Vd
对数形式为
lg 1.806 lg Re
在尼古拉兹图中为一条斜直线。
(2) 过渡区 (2300 Re 4000) (3) 湍流完全光滑管区
情况复杂,无单一计算公式。
布拉修斯公式 (4000 Re 105 )
0.3164 Re0.25 基于湍流速度分布导出。
水头损失的两种形式
2 p1 v12 p2 v2 z1 1 z2 2 hw g 2g g 2g
hf hj
沿程损失
局部损失
流体克服粘性阻力 而损失的能量,流 程越长,损失越大
流体克服边界形状改变 所产生的阻力而损失的 能量,发生在局部范围
直圆管流动的沿程损失 1 达西公式 不可压缩粘性流体在内壁粗糙的直圆管中作定常流动时,压 强降低(损失)的表达式(可用量纲分析方法确定)
V12 V2 2 1 1 1 2 2 hm ( p1 p2 ) (V1 V2 ) V2 (V2 V1 ) 1 ( ) g 2g g 2g V1
V12 d12 2 V12 (1 2 ) K e1 2g 2g d2
d K e1 1 d
2. 等效粗糙度 穆迪引入等效粗糙度概念 。对实际商用管,粗糙度呈随机分 布,可通过与尼古拉兹实验曲线作对比,确定其等效粗糙度。 材料(新) 铆钉钢 ε(mm) 0.9~9.0
常用商用管的 等效粗糙度列于 右表中。
水泥 木板
铸铁 镀锌铁 镀锌钢 无缝钢
0.3~3.0 0.18~0.9
0.26 0.15 0.25 ~0.50 0.012 ~0.2
1 2
1
(
Re1=4.22×104,查Mooddy图得λ2=0.027 ,重新计算速度

流体力学第5章管内不可压缩流体运动PPT课件

流体力学第5章管内不可压缩流体运动PPT课件
10
5.1.1 层流与湍流流动
2、流态的判别: (1)临界流速
11
5.1.1 层流与湍流流动
2、流态的判别: (1)临界流速
缺点:临界流速的值随着管径以及工作 液粘度的变化而变化,并不是一个常数, 作为判别标准并不实用。
12
5.1.1 层流与湍流流动
2、流态的判别:
(2)临界雷诺数 对于圆管而言,雷诺数:Re
43
5.2.3 湍流流动中的粘性底层
【粘性底层 】
粘性底层的厚度为:
14.14 d Re
粘性底层的厚度与雷诺数成反比,即:流速 越高,Re数越大——粘性底层的厚度越薄; 流速越低,Re数越小——粘性底层的厚度越 厚。
虽然,粘性底层的厚度仅有几个mm的量级, 但却可能严重影响水流的流动阻力。
d2
0 .1 2
(3)管路中的最大速度: u m a2 x v 2 6 1m 2 /s
(4)壁面处的最大切应力:
m a x 2 p lr 0 22 7 5 3 0 .0 0 6 5 10 .8 3 N 0 /m 6 2
32
33
5.2 湍流流动及沿程摩擦阻力计算
【内容提要】 本节简要介绍紊流理论及湍流沿程阻力 系数的计算
umaxp14lp2
r02
pd2
16l
v q A V(p 1 p d 2 2 )d /4 4/1
2 l (8 p 1 p 2 )d 2 p2 d u ma 3l2 3l22
x
26
5.1.4 圆管道内层流流动及粘性摩擦损失
hf
p
v pd 2
32 l
水平等径管
p 32lv d 2
结论:层流状态,水 头损失与速度呈线性 关系。

流体力学第5章管流损失和阻力计算

流体力学第5章管流损失和阻力计算
流体内部的各种因素
除了流体与管壁之间的摩擦外,流体内部的粘性、湍流等也会导致能量损失。 例如,湍流会使流体的流动变得不规则,增加流体之间的相互碰撞和摩擦,从 而产生更多的能量损失。
损失和阻力的影响
01
能量消耗
管流损失和阻力会导致流体在 流动过程中能量不断损失,这 需要额外提供能量来克服这些 损失,如泵或风机的能耗会增 加。
02 系统效率
管路中的损失和阻力会降低整 个系统的效率,使得系统需要 更多的输入能量才能达到预期 的输出效果。
03
设备选型
04
在进行设备选型时,需要考虑管 路中的损失和阻力,以确保所选 设备能够满足实际需求。例如, 在选择泵时,需要考虑到管路中 的损失和阻力,以确保泵能够提 供足够的扬程和流量。
安全风险
理论发展
实验结果可为流体力学理论的发展提 供实证支持,进一步完善管流损失和 阻力的计算模型。
THANKS
感谢观看
过大的管流损失和阻力可能会导 致流体流动受阻,甚至产生流体 过热、压力过高等问题,这可能 对设备和人员安全造成威胁。因 此,需要进行合理的设计和操作 ,以避免这些问题的发生。
02
管流损失的计算
局部损失计算
局部损失是由于流体在管道中 流动时,遇到突然扩大、缩小、 弯曲等局部障碍而产生的能量 损失。
控制流体流速和压力
降低流体流速
01
适当降低流体在管路中的流速,可以减小流体流动的阻力,从
而降低管流损失。
控制流体压力
02
合理控制流体在管路中的压力,避免过高的压力导致流体流动
阻力的增加。
使用减压阀和稳压阀
03
在管路中安装减压阀和稳压阀,可以稳定流体压力,减小流体

工程流体力学课件

工程流体力学课件
0 u0 u*0
u*
结论:粘性底层中的流速随y呈线性分布。
3、粘性底层的厚度
实验资料表明:当 y 0
时,u*0 11.6
0
11.6
u*

0
8
v2
0
8
v2
0
8 v u*
v
8
0 11.6
32.8 32.8 d 8v v vd
0
32.8d
Re
说明: (1)粘性底层厚度很薄,一般只有十分之几毫米。 (2)当管径d相同时,随着液流的流动速度增大,雷诺数增大,粘性底层 变薄。
0
l 2 ( dux
dy
)2
k 2l 2 ( dux
dy
)2
u*
0 ky dux
dy
dux 1 dy u* k y
ux 1 ln y C u* k
(y 0 )
说明:在紊流核心区(y>08
r0 2
1 2 umax
即圆管层流的平均流速是最大流速的一半。
二、沿程损失与沿程阻力系数
v
1 2
umax
gJ 8
r0 2
J
hf L
8v gr02
hf
32 vL gd 2
( hf v1.0 )
hf
32 vL gd 2
64 L v2 Re d 2g
L v2 d 2g
三、混合长理论
普兰特假设:
(1)引用分子自由程概念,认为
ux
l1
dux dy
uy
l2
dux dy
(2)归一化处理
l 2 ( dux )2
dy
四、紊流流速分布
普兰特假设:

流体力学-第5章

流体力学-第5章

六. 伯努利方程 的应用举例
%%%%%%%%%%%%
恒定总流伯努利方程表明三种机械能相互 转化和总机械能守恒的规律,由此可根据具 体流动的边界条件求解实际总流问题。
1
%%%%%%%%%%%%
先看一个跌水的例子。取 顶上水深处为 1-1 断面,平 均流速为 v1,取水流跌落高 度处为断面 2-2 ,平均流速 为 v2,认为该两断面均取在 渐变流段中。基准面通过断 面 2-2 的中心点。
Gz dQdt( z2 z1 )
2 2 1 1 u u 2 2 m2u2 m1u1 ( 2 1 ) dQdt 2 2 2 2
外力对系统做功=系统机械能量的增加
2 2 u2 u1 ( p1 p2 )dQdt dQdt( z2 z1 ) ( ) dQdt 2 2
实际流体恒定总流 的伯努利方程
断面 A1 是上游断面,断面 A2 是 下游断面,hl 1-2 为总流在断面 A1 和 A2 之间平均每单位重量流体所损耗 的机械能,称为水头损失。水头损 失如何确定,将在后面叙述。
分析流体力学问 题最常用也是最 重要的方程式
二、恒定总流伯努利方程的几何表示——水头线
u p2 u z1 z2 2g 2g
p1
2 1
2 2
(P57 3-39)
单位重量理想 流体沿元流的 能量方程式
能量方程
•能量方程的
物理意义
z
u2 z Cl 2g p
伯努利方程表示能 量的平衡关系。
单位重量流体所具有的位置 势能(简称单位位置势能) **************** p 单位重量流体所具有的压强 势能(简称单位压强势能) **************** 单位重量流体所具 p z 有的总势能(简称 单位总势能)

流体力学4

流体力学4

2、起始段长度:层流 L*=0.02875dRe; 紊流 L*=(25~40)d。 3、① 如果管路很长,l»L* , 则起始段的影响可以忽略,用
64 ② 工程实际中管路较短, Re 考虑到起始段的影响,取 75 Re
5—3 圆管中的湍流

一、时均流动与脉动
管中湍流的速度随时在发生变化, 这种瞬息变化的现象称为脉动。 研究湍流的方法是统计时均法, 研究某一时间段内的湍流时均特性。

三、管路特性
管路特性就是指一条管路上水头H(hW)
与流量qV之间的函数关系,用曲线表示 则称为管路特性曲线。 hW=k· V2 q

例题1:图示两种状态,管水平与管自然 下垂,那种状态流量大,为什么?
1
3
Z2
2
Z1

解:分别对1、2断面及1、3断面列伯努 利方程,有
l V2 l V2 z1 ( 入 ) 2 g (1 入 ) 2 g d d l V2 2 z 2 (1 入 ) 2 g d

d 2g
64 层流 Re
75 ;工程中取 Re
68 0.25 紊流 0.11( R d ) e
5—5 圆管中的局部阻力

局部损失
V hj 2g
2

一、局部阻力产生的原因 1、漩涡; 2、速度的重新分布。
二、几种常用的局部阻力系数 1、管路截面的突然扩大
(V1 V2 ) hj 2g
5—2 圆管中的层流
一、速度分布与流量 p 2 2 1、速度分布 v (R r ) 4l

可简写为 v A Br 公式说明过流断面上的速度v与半径r 成二次旋转抛物面的关系。

流体力学 水力学 流动阻力和水头损失

流体力学 水力学 流动阻力和水头损失

控制流体流速:通过调节阀门、泵等设备控制流体的流速避免过高的流速导致阻力增大。
控制流体压力:通过调节阀门、泵等设备控制流体的压力避免过高的压力导致阻力增大。
避免压力波动:通过安装压力调节器、缓冲器等设备避免流体压力的波动减少阻力和水头损失。
采用低阻力管道:选择低阻力的管道如光滑的管道、低阻力的弯头、阀门等减少阻力和水头损 失。
质量守恒方程:描述流体 的质量变化
动量守恒方程:描述流体 的动量守恒
能量守恒方程:描述流体 的能量守恒
流体:液体和气体统称为流体
水力学:研究水流运动规ቤተ መጻሕፍቲ ባይዱ的科学
流体力学:研究流体运动规律的科学
流体运动:流体在力的作用下产生的运 动
流动阻力:流体在运动过程中受到的阻 力
水头损失:水流在流动过程中损失的能 量
采用低压降流体处 理技术如采用低压 降泵、低压降阀等
采用高效流体处理 技术如采用高效过 滤器、高效换热器 等
采用节能流体处理 技术如采用节能泵、 节能阀等
采用智能流体处理 技术如采用智能控 制阀、智能流量计 等
流动阻力和水头损 失的应用实例
流动阻力:在给排水工程中流动阻力主要来源于管道的摩擦和弯道、阀门等设备的阻力
压力:流体压力越大流动阻力越大 水头损失越大
流体密度:流体密度越大流动阻力 越大水头损失越大
添加标题
添加标题
添加标题
添加标题
温度:流体温度越高流动阻力越大 水头损失越大
流体粘度:流体粘度越大流动阻力 越大水头损失越大
流动阻力和水头损 失的控制和减小方 法
管道材料:选择 具有低摩擦系数、 耐腐蚀、耐磨损 的材料如不锈钢、 聚乙烯等
水力学基本原理
水力学定义:研究液体和气体在运动状态下的力学规律 研究对象:液体和气体在运动状态下的力学规律 研究内容:包括流体静力学、流体动力学、流体热力学等 应用领域:水利工程、船舶工程、航空工程、环境工程等

流体力学 李玉柱PPT

流体力学 李玉柱PPT

0.2 0.008 3.924 Pa 4
0.08 0.008 3.1392 Pa 2
§5.2
均匀流沿程损失的理论分析
§5.2.3 圆管层流的特性
1. 断面流速分布
du du dy dr r gRJ g J 2
du r g J dr 2
§5.1 层流与紊流的概念
水力半径R表示过流断面面积A与湿周x之比。
R A

d 2
1. 圆管
d
d 4 R d 4
A
2. 明渠
m
b
h
R
A


(b mh )h b 2h 1 m 2
§5.1 层流与紊流的概念
§5.1.3 紊流成因浅析
为什么紊流时各流层质点相互混掺? 原因:涡体
第五章 层流、紊流及其能量损失
流线
流速 分布

想 流

第五章 层流、紊流及其能量损失
沿程水头损失:在固体边界平直的流体流动中,
单位重量的流体自一断面流到另一断面所损失的 机械能就叫这两断面之间的水头损失,这种水头 损失是沿程都有并随沿程长度增加而增加的,所 以叫沿程水头损失,常用hf表示。其相应的摩擦 阻力为沿程阻力。
第五章 层流、紊流及其能量损失
对于在某个流程上流动的流体,它的总水头损失 hw遵循叠加原理即 hw=∑hf+∑hj
总水头线 测压管水头线
§5.1 层流与紊流的概念
在不同的初始和边界条件下,实际流体质点的运 动会出现两种不同的运动状态,一种是所有流体质 点作有规则的、互不掺混的运动,另一种是作无规 则掺混的混杂运动。前者称为层流状态,后者称为 紊流状态(别称湍流状态)。 1883年英国物理学家雷诺(Reynolds)通过实验 研究,较深入地揭示了两种流动状态的本质差别与 发生地条件,并确定了流态的判别方法,我们现在 先来学习雷诺实验。

流体力学-张也影-李忠芳 -第5章-管中流动

流体力学-张也影-李忠芳 -第5章-管中流动

z1

p1
g

z2

p2
g
hf
hf
z1
p1
g



z2

p2
g

流动为均匀流,惯性力为零,列平衡方程
p1A p2 A gAl cos 0l2r0 0

z1

p1
g



z2

p2
g


2 0l gr0
f 局部阻碍的形状、尺寸
2.几种常见的局部损失系数
(1)突然扩大
列1-1和2-2断面的能量方程
z1

p1
g

v12 2g

z2

p2
gv22ຫໍສະໝຸດ 2g hj列动量方程
p1A2 p2 A2 gA2 z1 z2 Qv2 v1
hf

k v1.75~2.0 2

v1.75~2.0
结论:流态不同,沿程损失规律不同
ab段 ef段 be段
层流 湍流 临界状态
1 45 2 6015'6325'
m1 1.0 m2 1.75 ~ 2.0
m3 2.0
§5-2 圆管中的层流
1.沿程损失与切应力的关系
列1-1和2-2断面的能量方程
(a)层流 (b)临界状态 (c)湍流
上临界流速vc’ 下临界流速vc——临界流速
vc vc '
2.雷诺数
Re=vd/υ——雷诺数(无量纲)
Re c

vc d

vc d

Rec——临界雷诺数(2320左右) Re<Rec 层流 Re>Rec 湍流(包括层流向湍流的临界区2320~13800)

流体力学(流动阻力及能量损失)

流体力学(流动阻力及能量损失)

查教材第8页表1—2可知,当温度升高到300C以上时,水流转 变为紊流。
例2:某送风管道,输送300C的空气,风管直径为200mm,风 速为3m/s。试求:(1)判断风道内气流的流态;(2)该风管的临 界流速。 解:(1)300C空气的ν=16.6×10-6m2/s(查表1—3)则管中气流雷 × 诺数
第六章
流动阻力及能量损失
1、流动阻力的两种类型 2、流体流动的两种状态 3、均匀流的沿程损失 4、圆管中的层流运动 5、圆管中的紊流运动 6、紊流沿程损失计算 7、管中局部阻力损失计算 8、边界层和绕流阻力
§6-1
流动阻力的两种类型
流体在运动时,与固体周壁间会产生附着力,流体各质点间有 内摩擦力(粘性力)。这些力对流体运动所呈现出的阻滞作用就是 流体的流动阻力。 根据流动边界是否沿程变化,流动阻力分为两类:沿程阻力hf 和局部阻力hj。
§6-2 流体流动的两种状态
一、流态实验——雷诺实验 流态实验 雷诺实验
由层流 紊流时的流
速称为上临界流速 v c 。 ′ 由紊流 层流时的流
速称为下临界流速vc。 实验证明,vc< v c 。 ′ ●实验情况,可概括如下; 当 v > vc 时,流体作紊流运动 ′ 当 v < vc 时,流体作层流运动 当vc< v < v c 时,流态不稳,可能是层流也可能是紊流 ′
临界流速
Re cν 2000×1.14 ×10−6 vc = = = 0.114(m / s) d 0.02
即当v增大到0.114 m/s以上时,水流由层流转变为紊流。 如不改变流速,即v = 0.08 m/s,也可因水温改变,而从层流转 变为紊流。计算应有的ν值
νห้องสมุดไป่ตู้=

《流体力学》PPT课件

《流体力学》PPT课件

h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体


二氧化碳
一氧化碳


密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务

第二节 流体的主要物理性质

第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜直线分布
r hf 1 g grJ 2 l 2
du grh f dr 2l
抛物线分布
2.流速分布 3.流量
Q
r0 0
gh f 2 2 u (r0 r ) 4l
gh f 2 2 gh f 4 (r0 r ) 2 rdr d 4l 128l
(3)粗糙区
莫迪
§5-7 局部损失计算
一、边界层理论
1.边界层:贴近平板存在 较大切应力、粘性影响不能 忽略的这一层液体 。
2.边界层的厚度:当流速达到 边界层的厚度顺流增大,即δ是x的函数。
处时,它
3.转捩点,临界雷诺数 转捩点:在x=xcr处边界层由层流转变为紊流的过渡点。
临界雷诺数: Recr
三、总水头损失
hw h f h j
i 1 i 1 n n
§5-2 流体流动的两种型态
一、雷诺实验
1883年英国物理学家雷诺按图示试验装置对粘性流体进行 实验,提出了流体运动存在两种型态:层流和紊流。
1 4
(a)
hf 5
(b)
2
3
(c)
1.层流 :管中水流呈层状流动,各层的流体质点互不掺混的 流动状态。
四、湍流切应力分布和流速分布
1.切应力分布
du 2 du 2 1 2 L ( ) dy dy
摩擦切应力 普朗特混合长度 : 附加切应力
y L ky 1 r0
k 称为卡门常数
k 0.36 ~ 0.435
2.流速分布 (1)近壁层流层: 管壁切应力
du u 0 dy y
§5-6 湍流的沿程损失
一、湍流沿程损失计算
1.计算公式
l v2 hf d 2g
f ( Re,/d)
2.沿程损失系数的确定 (1)实验和理论的方法 (2)根据实验实测资料,得到经验公式
二、尼古拉兹实验
尼古拉兹用黄沙筛选后由细到粗分为六种,分别粘贴在光 滑管上 用三种不同管径的圆管(25mm、50mm、l00mm)
二、湍流的脉动现象和时均化
1.脉动现象:流场中某空间点的瞬时流速虽然随时间不断变 化,但始终围绕着某一速度平均值上下不断变动的现象称为 脉动现象。
时均速度 瞬时速度
1 u T

T
0
udt
'
u u u
p p p
在研究和计算紊流流动问题时,所指的流动参数都是时均参数 为书写方便起见,常将时均值符号上的“一”省略 我们把时均参数不随时间而变化的流动,称为准定常紊流 时均值只能描述流体总体的运动,不能反映脉动的影响
圆柱体的卡门涡街的脱落频率 f 与流体流动的速度 V 和圆柱体 直径 d 有关,由泰勒(F· Taylor)和瑞利(L· Rayleigh)提出下列经验 公式 V 19.7
f 0.198 1 d Re
上式适用于 250 Re 2 105 范围内的流动,式中无量纲数 Sr 称为斯 特劳哈(V.Strouhal)数 ,即 fd Sr V 根据罗斯柯(A.Roshko)1954年的实验结果,当Re 大于1000 时,斯特劳哈数Sr 近似地等于常数,即Sr =0.21。 根据卡门涡街的上述性质,可以制成卡门涡街流量计
§5-5 圆管中的湍流运动
一、湍流的成因
1.涡体的形成
(a)涡体产生倾向;(b)流速及压强的重新调整;(c)波动的 加剧;(d)涡体的形成。 2.湍流的形成 涡体形成后,在涡体附近的流速分布将有所改变,流速 快的流层的运动方向与涡体旋转的方向一致;流速慢的流层 的运动方向与涡体旋转方向相反。这样,就会使流速快的流 层速度更加增大,压强减小;流速慢的流层速度将更加减小, 压强增大。这将导致涡体两边产生压差,形成横向升力(或 降力),这种升力(或降力)就有可能推动涡体脱离原流层, 作横向运动,进入新流层,从而产生湍流。
过流截面1-1与2-2,列伯诺里方程
2 p1 1v12 p2 2v2 z1 z2 hj g 2g g 2g
2 p1 p2 v12 v2 h j ( z1 ) ( z2 )( ) g g 2g 2g
1-1与2-2流动方向的动量方程
F Q( v
1.沿程阻力:在边界的几何形状和尺寸沿程不变或缓变的情况 下,流体的内部以及流体与固体边界之间存在沿程不变的内 摩擦力。 2.沿程损失:由于沿程阻力作功引起的水头损失,用h f 表示。
二、局部阻力和局部损失
1.局部阻力:流体流经固体边界急剧改变的区域时,流速大小、 方向迅速改变,流动急剧调整产生的流动阻力。 2.局部损失:流体克服这种局部阻力而产生的水头损失,用h j 表示。
三、莫迪图(工业管道)
湍流沿程损失系数的综合计算公式(科里布鲁克公式)
1 2 18.7 1.74 2 lg Re d
工业管道的流区划分标准 (1)光滑区 (2)湍流过渡区
Re* u*

0. 3
0.3 Re* 70.0
Re* 70.0
2 Q gh f d v A 32l
4.平均速度
二、沿程损失计算
hf 32lv gd 2
32lV 64 l v 2 64 l v 2 hf 2 gd Vd d 2 g Re d 2 g
l v2 hf d 2g


64 Re
上式称为圆管中层流运动的沿程损失计算公式,又称为 达西公式。
2
圆管
3.当量直径 :当非圆管流与某一圆管流的过流能力相当时, 即两者的水力半径相同时,圆管的直径为非圆管流的当量直径, d eq 用 表示。
d eq 4 R 4 A

对于非圆管流动,其下临界雷诺数为
Rec
vc d eq

若采用水力半径来定义雷诺数,则
Rec vc R

500
均匀流基本方程
摩阻流速 u*
流速分布 (2)湍流层 : 切应力
u u* y u*
光滑管 u* y u 2.5 ln 5.5 u* 粗糙管
2
0 (1
u* u ln y C k
均匀流动断面切应力: 流速分布表达式:
y ) r0
u y 2.5 ln 8.5 u*
64 Re
(2)流态过渡区(bc线) (3)湍流光滑区(cd线)
2000 Re 4000 d 4000 Re 40 ( )
1

2 lg( Re ) 0.8
(4)湍流过渡区(cd线与ef线所包围的区域 ) d d 1.42 40( ) Re 1000 ( ) lg( Re d / )2 (5)湍流粗糙区(ef线右边区域) 1 d Re 1000 ( ) 1.74 2 lg(d / 2)2
三、湍流结构
1.紊流结构分析 流核区 层流向紊流的过渡区 粘性底层区 厚度δ
近壁层流层厚度 :

32.8d Re
d 管道直径

沿程损失系数
2.“光滑管”和“粗糙管”
绝对粗糙度:管壁凸出部分的平均高度,用 表示。 (1)光滑管 :
0.4
(2)粗糙管
6
(3)过渡粗糙管
6 0 .4
Re 2000
层流 湍流
五、水力要素
1.湿周:过流截面与固体边界相接触的线段长度,用 表示 (实线)。湿周的大小在一定程度上反映了流动阻力的大小, 在过流截面面积相同的条件下,湿周越长,流动阻力越大。
2.水力半径:过流截面面积与对应湿周的比值,用 R 表示。
R A
R A


d / 4 d d 4
p1 A1 p2 A2 l gAl cos 0
l cos z1 z2
均匀流基本 方程
l l hf hf gRJ 或 gR gA gR l
§5-4 圆管中的层流运动和沿程 损失
一、过流截面上的切应力和流速分布
1.切应力分布
§5-3 均匀流动的沿程损失方 程式
2 p1 1v12 p2 2v2 z1 z2 hw g 2g g 2g
v1 v2 hw h f
p1 p2 h f ( z1 ) ( z2 ) g g
总流在流动方向上处于平衡状态,列流动方向平衡方程如 下
卡门涡街
圆柱绕流问题:随着雷诺数的增大边界层首先出现分离,分离 点并不断的前移,当雷诺数大到一定程度时,会形成两列几乎稳 定的、非对称性的、交替脱落的、旋转方向相反的旋涡,并随主 流向下游运动,这就是卡门涡街 卡门对涡街进行运动分析得出了阻力、涡释放频率以及斯特罗 哈数的经验公式
卡门涡街会产生共振,危害很大;也可应用于流量测量。
2.湍流 :管内流体质点发生了杂乱无章的混掺运动的流动 状态成为湍流。
雷诺
二、临界流速
1.临界流速 :当玻璃管中的流速达到某一数值时,流动状态就 要发生变化时玻璃管中的平均流速。 层流
v
湍流
v
2.上临界流速v :由层流转变为湍流的临界流速 。 3.下临界流速 vc :由湍流转变为层流的临界流速 。
V xcr

Recr 5 105 ~ 3 106 平板边界层
二、边界层的分离
1.边界层分离:物面上的边界层在某个位置开始脱离物面, 并在物面附近出现与主流方向相反的回流现象。
①从D到E流动加速,顺压梯度区;流 体压能向动能转变,不发生边界层
分离
②从E到F流动减速, 逆压梯度区;E到 F段动能只存在损耗,速度减小很快
lg h f lg K m lg v 或 h f Kv m
相关文档
最新文档