三角形重心、外心、垂心、内心地向量表示及其性质
三角形的四心的向量表示及其应用
三角形的四心的向量表示及其应用以三角形的四心的向量表示及其应用为题,我们将探讨三角形的四个特殊点,即垂心、重心、外心和内心,并介绍它们在几何学和工程中的应用。
让我们来了解这四个特殊点的定义和向量表示。
对于任意给定的三角形ABC,我们可以定义以下四个特殊点:1. 垂心(Orthocenter):垂心是三角形三条高线的交点,记为H。
垂心到三角形三个顶点的向量分别为AH、BH和CH。
2. 重心(Centroid):重心是三角形三条中线的交点,记为G。
重心到三角形三个顶点的向量分别为AG、BG和CG。
3. 外心(Circumcenter):外心是三角形三条垂直平分线的交点,记为O。
外心到三角形三个顶点的向量分别为AO、BO和CO。
4. 内心(Incenter):内心是三角形三条角平分线的交点,记为I。
内心到三角形三个顶点的向量分别为AI、BI和CI。
这些特殊点在几何学和工程中有着广泛的应用。
下面我们将介绍它们的一些应用:1. 垂心的应用:垂心在三角形的垂心定理中起着重要作用。
根据垂心定理,垂心到三个顶点的距离乘积等于垂心到三个对边的距离乘积。
这个定理在解决三角形的垂直问题时非常有用。
2. 重心的应用:重心是三角形的质心,它将三角形分成六个等面积的三角形。
重心在结构力学中的应用非常广泛,例如在计算物体的质心、计算物体的转动惯量等方面。
3. 外心的应用:外心是三角形外接圆的圆心,外接圆是唯一一个同时与三个顶点相切的圆。
外心在计算三角形的外接圆半径、判断三角形的形状等方面有着重要的应用。
4. 内心的应用:内心是三角形内切圆的圆心,内切圆是唯一一个同时与三条边相切的圆。
内心在计算三角形的内切圆半径、判断三角形的形状等方面有着重要的应用。
除了上述应用之外,这些特殊点还可以用于解决三角形的相似性、面积计算、角度计算等问题。
它们在计算机图形学、建筑设计、航空航天等领域也有着广泛的应用。
总结起来,三角形的四个特殊点——垂心、重心、外心和内心——在几何学和工程中具有重要的地位和应用。
三角形各心含义性质向量表示
性质:重心分中线所成比为2:1 (可作为判断方
法)
uuur uuur uuur GA GB GC
0
uuur PG
1
uuur (PA
uuur PB
uuur PC)
G为三角形重心
3
uuur uuur uuur uuur
OP OA ( AB AC)
P轨迹通过三角形重心
C
MP
A' B
G
A
B
A
C
O
三.“垂心”的向量表示 垂心含义:三条高的交点
PA PB PB PC PC PA
P为三角形垂心
uuur OP
uuur OA
uuur uuurAB
uuur uuurAC
AB
cos B
AC
cos
C
P轨迹通过三角形垂心
(0, )
C
A
E
C
B
P
M H P
A
F
B
O
四.“内心”的向量表示
内心含义:三角形内切圆的圆心
性质:(1)内心到三条边距离相等
(2)三个角的角平分线交点为内心
aGA bGB cGC 0
uuur OP
uuur
OA
uuur uAuBur
uuur uAuC外心”的向量表示
外心含义:三角形外接圆的圆心 性质:(1)三条中垂线交点
(2)外心到三角形三个顶点的距离相等
GA GB GC
2
2
2
GA GB GC
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r⇔G 为ABC ∆的重心. 2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故C tan B tan A tan =++3.O 是ABC ∆的外心⇔||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ruu u r u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心 解析:因为AB是向量AB u u u r 的单位向量设AB u u u r与AC u u u r 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r ,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
三角形重心、外心、垂心、内心地向量表示及其性质85474.docx
三角形“四心”向量形式的充要条件应用1 .O 是 ABC 的重心OAOB OC0 ;SB OCSAOCSAOB1 S AB COA OB OC 0 ;若 O 是 ABC的重心,则3故 u u uru u uru u ur u u urG 为 ABC 的重心 .PG1( PAPBPC )32 .O 是 ABC的垂心OA OB OB OC OCOA ;若 O 是ABC(非直角三角形 ) 的垂心,则SBOC :SAOC :SAOBtan A : :tan B tan C故 tan A OAtan BOBtan C OC 03 .O 是ABC的外心| OA | | OB | | OC | (或 OA222OBOC ):S:SAOBsin::AOBsin 2A : sin 2B : sin 2C若 O 是 ABC 的外心则 SBOCAOCBOC sinAOC sin故 sin 2A OAsin 2BOBsin 2C OC4 . O 是内心OA( AB AC ) OB( BABC) OC( CACB) 0ABC的充要条件是| AB | AC | BA | | BC | | CA|| CB |引进单位向量,使条件变得更简洁。
如果记 AB ,BC ,CA 的单位向量为 e 1,e 2, e3,则刚才 O 是ABC内心的充要条件可以写成OA (e 1 e 3 ) OB (e 1 e 2 )OC (e 2 e 3 ) 0, O 是ABC 内心 的充 要条 件也 可以是aOAbOBcOC。
若 O 是 ABC 的 内心 ,则S BOC : S AOC : SAOBa :b : c故aOA bOB cOC 0或 sin A OA sin BOB sin COC0;uuur uuur uuur uuur uuur uuur r P 是 ABC 的内心 ; e 1A| AB | PC | BC | PA |CA | PB 0e 2uuur uuur向量 ( AB AC)( 0) 所在直线过 ABC 的内心 ( 是BAC 的角平BCuuur uuur| AB | | AC |分线所在直线 ) ;P( 一) 将平面向量与三角形内心结合考查例 1 . O 是 平 面 上 的 一 定 点 , A,B,C 是 平面上 不 共 线的 三个 点 , 动 点 P满 足OP OA(ABAC) ,0, 则 P 点的轨迹一定通过 ABC 的( )(A )外心( B)内心( C)重心( D )垂心解析:因为AB uuur uuuruuure1和 e2,又是向量 AB 的单位向量设 AB 与 AC 方向上的单位向量分别为ABOP OA AP ,则原式可化为AP(e1e2 ) ,由菱形的基本性质知AP 平分BAC ,那么在ABC 中, AP 平分BAC ,则知选 B.(二 )将平面向量与三角形垂心结合考查“垂心定理”例 2 .H 是△ABC 所在平面内任一点,HA HB HB HC HC HA点H是△ABC的垂心.由 HA HB HB HC HB ( HC HA ) 0HB AC 0HB AC ,同理 HC AB , HA BC .故H是△ABC的垂心.(反之亦然(证略))例 3.( 湖南 )P是△ABC 所在平面上一点,若PA PB PB PC PC PA ,则P是△ABC的(D)A .外心B.内心C.重心 D .垂心解析 :由PA PB PB PC得 PA PB PB PC 0 .即PB (PA PC)0,即PB CA 0则 PB CA,同理 PA BC , PC AB所以 P 为 ABC 的垂心 . 故选 D.(三 )将平面向量与三角形重心结合考查“重心定理”例 4 .G 是△ABC 所在平面内一点,GA GB GC =0点G是△ABC的重心 .证明作图如右,图中 GB GC GE连结 BE 和 CE,则 CE=GB ,BE=GC BGCE 为平行四边形 D 是 BC 的中点, AD 为 BC 边上的中线 .将 GB GC GE 代入 GA GB GC =0,得 GA EG =0GA GE2GD ,故G是△ABC的重心.(反之亦然(证略))例 5 .P 是△ABC 所在平面内任一点.G 是△ABC 的重心PG1PC ) .(PA PB3证明PG PA AG PB BG PC CG3PG(AG BG CG ) ( PA PB PC )∵G 是△ABC 的重心∴GA GB GC =0AG BG CG =0,即 3PG PA PB PC由此可得 PG 1 (PA PB PC) .(反之亦然(证略))3uuur uuur uuur r例 6 若 O 为ABC 内一点,OA OB OC 0 ,则O是ABC的()A .内心B.外心C.垂心 D .重心uuur uuur uuur r uuur uuur uuur解析:由 OA OB OC0 得 OB OC OA ,如图以OB、OC为相邻两边构作平行四边形,则uuur uuur uuur uuur1 uuur2 OE ,同理可证其它两边上的这个性OB OC OD ,由平行四边形性质知OE OD , OA2质,所以是重心,选 D 。
三角形重心外心垂心内心的向量表示及其性质58172
向量的童心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:中、每条边上所对应的中线的交点;垂心:中、每条边上所对应的垂线上的交点;内心:中、每个角的角平分线的交点(XX的圆心);外心:中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、是的重心若是的重心,则故,为的重心.2、P是厶ABC所在平面内任一点.G是厶ABC勺重心.证明:PG 二PA AG 二PB BG = PC CG = 3PG 二(AG BG CG)(PA PB PC)TG是厶ABC的重心•••,即由此可得•(反之亦然(证略))3、已知是平面上一定点,是平面上不共线的三个点,动点满足,,则的轨迹一定通过的重心.例1 若为内一点,,则是的()A.内心B.外心C.垂心D.重心二、垂心1、是的垂心若是(非直角三角形)的垂心,则故2、H是面内任一点,点H是厶ABC勺垂心.由,同理,. 故是勺垂心. (反之亦然(证略))3、是所在平面上一点,若,则是勺垂心.由,得,即,所以.同理可证,.•••是的垂心.如图1.4、已知是平面上一定点,是平面上不共线的三个点,动点满足,, 则动点的轨迹一定通过的垂心.例2 P 是厶ABC 所在平面上一点,若,则 P 是厶ABC 的 ()A .外心 B.内心 C.重心 D.垂心三、内心1、是的内心的充要条件是如果记的单位向量为,则刚才是的内心的充要条件可以写成- ► 9------- ► - * ---- ► ------- F- --- 4 9- —►0A ・ 8 (3 =0B ・ e e21=OC ・ e2 飞31=02、是的内心的充要条件也可以是。
OA • AB AC阿阿 =0B *BA BC BC BA 引进单位向量,使条件变得更简洁。
图1B=0C • CA CBC3、若是的内心,则故或者;4、已知为所在平面上的一点,且,,.若,则是的内心.T,,则由题意得,・・T与分别为和方向上的单位向量,•••与平分线共线,即平分.同理可证:平分,平分.从而是的内心,如图。
三角形重心、外心、垂心、内心的向量表示及其性质55632
向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:ABC ∆中、每条边上所对应的中线的交点; 垂心:ABC ∆中、每条边上所对应的垂线上的交点;内心:ABC ∆中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ∆中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、O 是ABC ∆的重心⇔0=++OC OB OA若O 是ABC ∆的重心,则ABC AOB AOC BOC ∆=∆=∆=∆31故0=++OC OB OA ,)(31PC PB PA PG ++=⇔G 为ABC ∆的重心.2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=.证明:CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心∴0=++GC GB GA ⇒0=++CG BG AG ,即PC PB PA PG ++=3由此可得)(31PC PB PA PG ++=.(反之亦然(证略))3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.例1 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心1、O 是ABC ∆的垂心⇔OC OA OC OB OB OA •=•=•若O 是ABC ∆(非直角三角形)的垂心,则 故0tan tan tan =++OC C OB B OA A2、H 是面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是ABC ∆的垂心. (反之亦然(证略))3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.由PA PB PB PC ⋅=⋅,得()0PB PA PC ⋅-=,即0PB CA ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1.4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.例2 P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的() A .外心B .内心C .重心D .垂心图1A1、O是ABC∆的内心的充要条件是=⎫⎛•=⎫⎛•=⎫⎛•CBCAOCBCBAOBACABOA引进单位向量,使条件变得更简洁。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用AB uuu uuu uuur解析:因为AB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为HPGABC 的重心OAOB OC0;ABC 的重心, UT i 3则SU UIL (PABOCAOCAOBABC 的垂心 OAU ULT PBPCur)i-- S AB C--- " ■ - ------- ' i 3故 OA OB OC 0;ABC 的重心.OB OB 0C 0C 0A ;ABC (非直角三角形)的垂心,则SBOC - AOC -S AOB tan A : tan B : tan C故tan AOA tan BOB tan COC 03. O 是 ABC 的外心 |OA | |OB| |OC|(或OA OB------ 2OC )若 O 是 ABC 的外心则 S BOC :S AOC :S AOB sin BOC :sin AOC :sin AOBsin2A : sin2B : sin2C故 sin2AOA sin 2BOB sin 2COC 0矿(旦竺)阪(旦仝)4. O 是内心ABC 的充要条件是|AB | AC |BA | |BC |CB ) 0 I CB |引进单位向量,使条件变得更简洁。
如果记 AB,BC,CA 的单位向量为e i ,e 2,e 3 , 则刚才0是ABC 内心的充要条件可以写成 OA (e 1 e 3) OB (e 1 e 2) OC (e 2 e 3)ABC 内心的充要条件也可以是aOAbOB cOC 0。
若O 是ABC 的内心,则BOC -SAOC:SAOBa: b : c故 aOA bOB cOC 0或 sinAOAsin BOB sinCOC 0;uiur uuu uuu uur uuu uur r| AB | PC | BC | PA | CA | PB 0P 是 uuu uuur向量(-AB m )( 0)所在直线过|AB| |AC|分线所在直线);(一)将平面向量与三角形内心结合考查ABC 的内心;ABC 的内心(是 BAC 的角平OP OA(A ) .O 是平面上的一定点,A,B,C 是平面上不共线的三个点,(AB AC ) (AB AC ),0, 则P 点的轨迹一定通过 ABC 的( )外心(B )内心(C )重心(D )垂心动点P 满足COP OA AP ,则原式可化为 AP (e e 2),由菱形的基本性质知 AP 平分 BAC ,那么在 ABC 中,AP平分 BAC ,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”同理HC AB ,HA BC .故H 是厶ABC 的垂心.(反之亦然(证略)) 例3.(湖南)P 是厶ABC 所在平面上一点,若 PA PBA. 外心B. 内心C. 重心D. 垂心则PB CA,同理PA BC,PC AB 所以P 为 ABC 的垂心.故选D.(三)将平面向量与三角形重心结合考查“重心定理” 例4. 6是厶ABC 所在平面内一点,GA GB GC =0 点6是厶ABC 的重心.证明 作图如右,图中GB GC GE连结BE 和CE 则CE=GB BE=GC BGC 助平行四边形 D 是BC 的中点, 线• 将 GB GC GE 代入 GA GB GC =0,得GA EG =0 GA GE 2GD ,故6是厶ABC 的重心.(反之亦然(证略)) 例5.P 是厶ABC 所在平面内任一点.G 是厶ABC 的重心PG 1 (P A PB PC ).3证明 PG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)•/ G 是厶 ABC 的重心 .I GA GB GC =0 AG BG CG =0,即卩 3PG PA PB PC 由此可得PG 1(PA PB PC).(反之亦然(证略))3例6若0为ABC 内一点, uuu OA uuu uur rOB OC 0,则 0 是 ABC 的()A.内心B . 外心C .垂心D .重心uuu uuu LULT r uuu uuuruuu解析:由OA OB OC 0 得 OB OC OA ,如图以 OB OC 为相邻两边构作平行四边形,则解析:由PA PBPB PC 得 PA PBPB PC0.即 PB (PA PC) 0,即PB CA 0例2.H 是厶ABC 所在平面内任一点,HA HB HB HC HC HA点H 是厶ABC 的垂心.由 HA HB HB HCPP■!HB (HC HA) 0HB AC 0HBAC ,PB PC PC PA ,贝U P 是厶 ABC ^( D )AD 为BC 边上的中OP 1 +OP 2 +OP 3 =0 且 | OP 1 | = | OP 2 | = | OP 3 | 点 O 是正△ P 1P 2P 3 的中心.例9.在△ ABC 中,已知Q G H 分别是三角形的外心、重心、垂心。
三角形重心、垂心、内心、外心的向量性质及简单应用
中学数学研究
41
三角形重心、垂心、内心、外心的向量性质及简单应用
广东省珠海市斗门区第一中学 (519100) 陈水松
一、三角形四心的表述与性质
(一) 重心——三角形三条边上的中线的交点叫做三角
形的重心. 重心将中线长度分成 2: 1 的两部分. 1. −O→A + −O−→B + −O−→C = −→0 ⇔O 是 △ABC 的重心.
AC BC −→ + −−→
.
|AC| |BC|
|−B−B+−−→ →CCb| −B)−→C, 所
= 以
4.
−−→ PO
=
−→ aP A
−−→ + bP B + a+b+c
−−→ cP C
⇔
O
为
△ABC
的内心,
P 为平面上任意点.
(二) 垂心——三角形三条高线的交点叫做三角形的垂
证明
因为
O
为
△ABC
证 法 1 设 O(x, y), A(x1, y1), B(x2, y2), C(x3, y3),
−→ −−→ −−→ OA+OB+OC
=
−→0
⇔
x=
x1 + x2 + x3
(x1 − x) + (x2 − x) + (x3 − x) = 0 (y1 − y) + (y2 − y) + (y3 − y) = 0
=
−→0 ,
所以
−→ AO
=
2−O−→D,
所以
A、O、D
三点共线,
三角形“四心”向量形式的结论及证明
三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。
它们的位置可以用向量的形式来描述。
本文将分别介绍三角形“四心”的向量形式以及其证明。
1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。
证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。
而中线的坐标可以通过两个顶点的坐标的平均值得到。
因此,重心的坐标是三个顶点坐标的平均值。
根据向量加法的性质,可以得到上述结论。
2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。
用O表示外心。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。
其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。
证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。
根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。
根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。
三角形重心、外心、垂心、内心的向量表示及其性质精编版
向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:ABC ∆中、每条边上所对应的中线的交点; 垂心:ABC ∆中、每条边上所对应的垂线上的交点;内心:ABC ∆中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ∆中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、O 是ABC ∆的重心⇔0=++OC OB OA若O 是ABC ∆的重心,则ABC AOB AOC BOC ∆=∆=∆=∆31故=++,)(31PC PB PA PG ++=⇔G 为ABC ∆的重心.2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=.证明:+=+=+=⇒)()(3+++++= ∵G 是△ABC 的重心∴0=++GC GB GA ⇒0=++CG BG AG ,即PC PB PA PG ++=3由此可得)(31++=.(反之亦然(证略))3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.例1 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心1、O 是ABC ∆的垂心⇔∙=∙=∙若O 是ABC ∆(非直角三角形)的垂心,则 故tan tan tan =++C B A2、H 是面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是ABC ∆的垂心. (反之亦然(证略))3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.由PA PB PB PC ⋅=⋅,得()0P B P A P C ⋅-=,即0P B C A ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1.4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.例2 P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的() A .外心B .内心C .重心D .垂心图1A1、O是ABC∆的内心的充要条件是=⎫⎛∙=⎫⎛∙=⎫⎛∙OCOBOA引进单位向量,使条件变得更简洁。
三角形重心垂心外心内心相关性质介绍
三角形重心垂心外心内心相关性质介绍部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑三角形的“四心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。
当三角形是正三角形时,四心重合为一点,统称为三角形的中心。
一、三角形的外心定义:三角形三条中垂线的交点叫外心,即外接圆圆心。
ABC ∆的重心一般用字母O 表示。
性质:1.外心到三顶点等距,即OC OB OA ==。
2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。
二、三角形的内心定义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
ABC ∆的内心一般用字母I 表示,它具有如下性质:性质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。
2.三角形的面积=⨯21三角形的周长⨯内切圆的半径.3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。
4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。
三、三角形的垂心定义:三角形三条高的交点叫重心。
ABC ∆的重心一般用字母H 表示。
性质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。
2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。
四、三角形的“重心”:定义:三角形三条中线的交点叫重心。
ABC ∆的重心一般用字母G 表示。
性质:1.顶点与重心G 的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。
即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=.4.向量性质:<1)=++;<2))(31PC PB PA PG ++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。
三角形重心外心垂心内心的向量表示及其性质
三角形重心外心垂心内心的向量表示及其性质三角形是几何学中的基础概念之一,具有丰富的性质和特点。
其中,重心、外心、垂心和内心是三角形重要的特殊点,它们在三角形的研究和计算中起着重要的作用。
本文将介绍三角形重心、外心、垂心和内心的向量表示及其性质。
一、三角形重心的向量表示及性质重心是三角形三条中线的交点,记为G。
设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c。
则三角形重心G的向量表示为:G = (a + b + c)/3重心G的性质如下:1. 重心到三角形各顶点的向量和为0向量,即AG + BG + CG = 0。
2. 重心将中线分成2:1的比例,即AG : GM = 2:1,BG : GN = 2:1,CG : GP = 2:1,其中M、N、P分别为中线BC、AC、AB的中点。
3. 重心是三角形内切圆和外接圆的同一个圆心。
二、三角形外心的向量表示及性质外心是三角形三条垂直平分线的交点,记为O。
设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c。
则三角形外心O的向量表示为:O = (a⊥ + b⊥ + c⊥)/3其中,a⊥、b⊥、c⊥分别表示向量a、b、c的垂直平分线的向量。
外心O的性质如下:1. 外心到三角形各顶点的距离相等,即OA = OB = OC。
2. 外心是三角形外接圆的圆心,且外接圆的半径为OA、OB、OC中的一个。
三、三角形垂心的向量表示及性质垂心是三角形三条高线的交点,记为H。
设三角形的三个顶点分别为A、B、C,对应的向量为a、b、c。
则三角形垂心H的向量表示为:H = (a⊥ + b⊥ + c⊥)/3其中,a⊥、b⊥、c⊥分别表示向量a、b、c的高线的向量。
垂心H的性质如下:1. 垂心到三角形各顶点的距离相等,即HA = HB = HC。
2. 垂心是三角形内接圆的圆心,且内接圆的半径为HA、HB、HC中的一个。
四、三角形内心的向量表示及性质内心是三角形三条角平分线的交点,记为I。
三角形重心垂心外心内心相关性质介绍资料讲解
三角形重心垂心外心内心相关性质介绍三 角 形 的“四 心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。
当三角形是正三角形时,四心重合为一点,统称为三角形的中心。
一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。
ABC ∆的重心一般用字母O 表示。
性 质:1.外心到三顶点等距,即OC OB OA ==。
2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,.3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。
二、三角形的内心 定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质: 1.内心到三角形三边等距,且顶点与内心的连线平分顶角。
2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。
4.,2190A BIC ∠+=∠οB CIA ∠+=∠2190ο,C AIB ∠+=∠2190ο。
三、三角形的垂心定 义:三角形三条高的交点叫重心。
ABC ∆的重心一般用字母H 表示。
性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。
2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。
四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。
ABC ∆的重心一般用字母G 表示。
性 质:1.顶点与重心G 的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。
即GF GC GE GB GD GA 2,2,2=== 3.重心的坐标是三顶点坐标的平均值.即3,3C B AG C B A G y y y y x x x x ++=++=. 4.向量性质:(1)=++; (2))(31++=,5.ABC AGB CGA BGC S S S S ∆∆∆∆===31。
三角形重心、外心、垂心、内心的向量表示及其性质97114
三角形“四心”向量形式的充要条件应用知识点总结1.O 是ABC 的重心OA OB OC 0;若O 是ABC 的重心,u u urPG 1 (31则S B OC S AOC S AOB3S AB C故OA OB OC 0 ;u uur u u ur u u urPA PB PC ) G 为ABC的重心.2.O 是ABC 的垂心OA OB OB OC OC OA ;若O 是ABC ( 非直角三角形) 的垂心,则S BOC :S AOC :S AOB tan A :tan B :tan C故tan AOA tan BOB tan COC 03.O 是ABC 的外心 2 2 2|OA | |OB | |OC |(或OA OB OC )若O 是ABC 的外心则S BOC:S AOC:S AOB sin BOC:sin AOC:sin AOB sin2A : sin 2B : sin2C故sin 2A OA sin 2BOB sin 2COC 0OA ( AB AC ) OB ( BA BC ) OC ( CA CB ) 04.O 是内心ABC 的充要条件是|AB | AC |BA | |BC | | CA | |CB |引进单位向量,使条件变得更简洁。
如果记AB,BC,CA 的单位向量为e1 ,e2 ,e3 ,则刚才O 是ABC 内心的充要条件可以写成OA (e1 e3) OB (e1 e2) OC (e2 e3) 0,O 是ABC 内心的充要条件也可以是aOA bOB cOC 0 。
若O 是ABC 的内心,则S BOC :S AOC :S AOB a:b :c故aOA bOB cOC 0或sin A OA sin BOB sin COC 0; uuur uuur uuur uuur uuuruuur r| AB|PC |BC |PA |CA|PB 0 P 是ABC的内心;uuur uuur向量( u A u B ur u A u C ur )( 0)所在直线过ABC的内心( 是BAC的角平| AB| |AC |分线所在直线) ;范例(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AB ACOP OA ( ),0, 则P点的轨迹一定通过ABC的( )AB ACA )外心( B)内心( C)重心( D)垂心COP OA AP ,则原式可化为 AP (e 1 e 2) ,由菱形的基本性质知ABC 中, AP 平分 BAC ,则知选 B.(二)将平面向量与三角形垂心结合考查“垂心定理”例 2 . H 是△ ABC 所在平面内任一点, HA HB HB HC HC HA 点 H 是△ ABC 的垂心 . 由 HA HB HB HC HB (HC HA ) 0 HB AC 0 HB AC ,同理HC AB ,HA BC .故H 是△ ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若 PA PB PB PC PC PA ,则P 是△ ABC 的(D ) A .外心B .内心C .重心D .垂心解析:由 PA PB PB PC 得PA PB PB PC 0.即PB (PA PC ) 0,即PB CA 0 则 PB CA,同理 PA BC,PC AB 所以 P 为 ABC 的垂心 . 故选 D.(三)将平面向量与三角形重心结合考查“重心定理”例 4. G 是△ ABC 所在平面内一点, GA GB GC =0 重心.连结 BE 和CE ,则CE=GB ,BE=GC BGCE 为平行四边形 D 是BC 的中点, AD 为BC 边 上的中线 .将 GB GC GE 代入 GA GB GC =0 ,得GA EG =0 GA GE 2GD ,故 G 是△ABC 的重心.(反之亦然(证略)) 例 5. P 是△ABC 所在平面内任一点 .G 是△ABC 的重心 PG 1(PA PB PC ). 3∵G 是△ ABC 的重心 ∴GA GB GC =0 AG BG CG =0,即3PG PA PB PC 由此可得 PG 13(PA PB PC) .(反之亦然(证略))3解析: 因为uuur 是向量 AB 的单位向量设 uuur uuurAB 与 AC 方向上的单位向量分e 1和 e 2 ,AP 平分 BAC ,那么在证明 作图如右,图中 GB GC GE证明 PG PA AG PB BG PC CG3PG (AG BG CG) (PA PB PC) uuur uuur例6 若O 为 ABC 内一点, OA OBu u u r,则 O 是 ABC 的( )A .内心B .外心C .垂心D .重心AB2y 3uuur uuur uuur r uuur uuuruuur解析:由 OA OB OC 0得OB OC OA ,如图以 OB 、 OC为相邻两边构作平行四边形,则uuur uuur uuur uuur uuurOB OC OD ,由平行四边形性质知 OE 1OD , OA 2 OE ,同理可证其它两边上的这个性 质,所以是重心,选 D 。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用1. 0 是AABC 的重心 O OA+OB + OC=0=AAOe = AAOB若0 是AABC 的重心,则“g AAX一故OA+OB + OC = 0;PC = 4-(戸N + RS + OG 为A4BC的心.ABoe △ABC2. 0 是AABC的垂心o OA OB =OB OC = OC・OA ;若0是AABC (非宜角三角形)的垂心,则^ABOC:S MO"S DB = tan A:taii B:taii C 故tan AOA + tan BOB + tan COC= 03. 0 是AABC的外心o lOAimOBITOCI (或dX? =OB^ =OC^)若0 是AABC 的外心则'ABOC:S^OB = sinZBOCtsinZAOC :slnZAOB = $ln2A ; sIn2B:sln2C故sInZAOA + slnlBOB + sInZCOC =CAI CAI ICBI4. 0是内心AABC的充要条件是6^"珞-篦川页务-壬引进单位向量,使条件变得更简洁。
如果记而,,不的单位向量为引,则刚才0是IBCIAABC 内心的充要条件可以写成OA. (Cj+63)= OB.(e,+€2)= 00.(62+63) = 0AABC内心的充要条件也可以是aOA + bOB+cOC = 0 。
若o是AABC的内心,则S QM; S4WB = 3: bj c故aOA + b 而 + cOC = OsSsInAOA + sInBOT + sInCOC = 0I丽1疙+|5?1莎+1乙5lP5 = 6oP是AABC的内心;向助鴿+ 所在直线过WC的内心(是ZBAC的角平广n分线所在直线);(一)将平面向量与三角形内心结合考査例1. 0是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足OP = OA + 2(AB AC —+),A € [0,4-3)JOO P点的轨迹一定通过M3C的()A Cl(A)外心(B)内心(C)重心(D)垂心4 R解析:因为A"_是向量廳的单位向量设廳与疋方向上的单位向量分别为勺和又AB "OP-OA = AP,则原式可化为川>=久2|+勺),由菱形的基本性质知AP平分Z3AC,那么在MBC中,AP平分ZBAC,则知选B.(二)将平面向量与三角形垂心结合考査“垂心定理”例2. 〃是△磁所在平面内任一点,HA H B^HB HC^HC HA O点〃是△磁的垂心.由蔽帀=帀汞0帀蔽-丽=0 0市益-oo丽丄衣,同理花丄而,HA±^•故〃是△磁的垂心•(反之亦然(证略))例3.(湖南)P是△ABC所在平面上一点,若PA・PB = PB、PC = P CPA,则P是ZkABC的(D )D.垂心A.外心B.内心C.重心解析:由莎•而=而•尢得莎而一而药=0.即PB・(PA — PC)=(X即PB・C4 = 0则PB丄(X同理PA丄BUPC丄AB所以P为MBC的垂心•故选D.(三)将平面向量与三角形重心结合考査“重心定理”例4. G是△磁所在平面内一点,刃+而+云=0o点G是△磁的重心.线. 证明作图如右,图中^ + GC = GE连结朋和⑦ 则d包,庞曲70 磁F为平行四边形=>e是%的中点,Q为%边上的中将而+云=52代入方+而+炭=0,得^ + ^=0=> ^ = -GE = -2GD,故G是△磁的重心•(反之亦然(证略))例5. P是△磁所在平面内任F G是△磁的重心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(OC |BC ||BA |(OB AC|AB |(OA =⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心解析:因为ABAB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由0OA OB OC ++=得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
(四) 将平面向量与三角形外心结合考查例7若O 为ABC ∆内一点,OA OB OC ==,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心 解析:由向量模的定义知O 到ABC ∆的三顶点距离相等。
故O 是ABC ∆ 的外心 ,选B 。
(五)将平面向量与三角形四心结合考查例8.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1, 求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题) 证明 由已知1OP +2OP =-3OP ,两边平方得1OP ·2OP =21-, 同理 2OP ·3OP =3OP ·1OP =21-,∴|21P P |=|32P P |=|13P P |=3,从而△P 1P 2P 3是正三角形.反之,若点O 是正三角形△P 1P 2P 3的中心,则显然有1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |. 即O 是△ABC 所在平面内一点,1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |⇔点O 是正△P 1P 2P 3的中心.例9.在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。
求证:Q 、G 、H 三点共线,且QG:GH=1:2。
【证明】:以A 为原点,AB 所在的直线为x 轴,建立如图所示的直角坐标系。
设A(0,0)、B (x 1,0)、C(x 2,y 2),D 、E 、F 分别为AB 、BC 、AC 的中点,则有:112222,0)(,)(,22222x x x y x y E F +D (、、 由题设可设1324,)(,)2x Q y H x y (、,122(,)33x x y G +212243(,)(,)222x x y AH x y QF y ∴==--, 212(,)BC x x y =- 2212422142()0()AH BCAH BC x x x y y x x x y y ⊥∴•=-+=-∴=-212223221232()()0222()22QF ACx x yQF AC x y y x x x y y y ⊥∴•=-+-=-∴=+121221224323()(,),)22x x x x x x y QH x y y --∴=--=--2(22y 2112212221232122122122122()(,),)3233223()23()1 (,)(,)6321=3x x x y x x y x x x y QG y x x x x x y x x x x x y QH+--∴=--=------=--=--222(62y 66y 22y 即=3QH QG ,故Q 、G 、H 三点共线,且QG :GH =1:2例10.若O 、H 分别是△ABC 的外心和垂心.求证OC OB OA OH ++=.证明 若△ABC 的垂心为H ,外心为O ,如图. 连BO 并延长交外接圆于D ,连结AD ,CD .∴AB AD ⊥,BC CD ⊥.又垂心为H ,BC AH ⊥,AB CH ⊥, ∴AH ∥CD ,CH ∥AD ,∴四边形AHCD 为平行四边形,∴OC DO DC AH +==,故OC OB OA AH OA OH ++=+=.著名的“欧拉定理”讲的是锐角三角形的“三心”——外心、重心、垂心的位置关系: (1)三角形的外心、重心、垂心三点共线——“欧拉线”;(2)三角形的重心在“欧拉线”上,且为外——垂连线的第一个三分点,即重心到垂心的距离是重心到外心距离的2倍。
“欧拉定理”的向量形式显得特别简单,可简化成如下的向量问题.例11. 设O 、G 、H 分别是锐角△ABC 的外心、重心、垂心. 求证 OH OG 31= 证明 按重心定理 G 是△ABC 的重心⇔)(31OC OB OA OG ++= 按垂心定理 OC OB OA OH ++= 由此可得 OH OG 31=. 补充练习1.已知A 、B 、C 是平面上不共线的三点,O 是三角形ABC 的重心,动点P 满足OP =31 (21OA +OB 21+2OC ),则点P 一定为三角形ABC 的 ( B )A.AB 边中线的中点B.AB 边中线的三等分点(非重心)C.重心D.AB 边的中点 1. B 取AB 边的中点M ,则OM OB OA 2=+,由OP=31 (21OA +OB 21+2OC )可得3MC OM OP 23+=,∴MC MP 32=,即点P 为三角形中AB 边上的中线的一个三等分点,且点P 不过重心,故选B.2.在同一个平面上有ABC ∆及一点O满足关系式: 2O A +2BC =2OB +2CA =2OC +2AB,则O为ABC ∆的 ( D )A 外心 B 内心 C 重心 D 垂心2.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足:0PA PB PC ++=,则P 为ABC ∆的 ( C )A 外心 B 内心 C 重心 D 垂心3.已知O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:)(AC AB OA OP ++=λ,则P 的轨迹一定通过△ABC 的 ( C ) A 外心 B 内心 C 重心 D 垂心4.已知△ABC ,P 为三角形所在平面上的动点,且动点P 满足:0PA PC PA PB PB PC •+•+•=,则P 点为三角形的 ( D )A 外心 B 内心 C 重心 D 垂心5.已知△ABC ,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+•=,则P 点为三角形的 ( B ) A 外心 B 内心 C 重心 D 垂心6.在三角形ABC 中,动点P 满足:CP AB CB CA •-=222,则P 点轨迹一定通过△ABC 的: ( B )A 外心 B 内心 C 重心 D 垂心7.已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 , 则△ABC 为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形 解析:非零向量与满足(||||AB ACAB AC +)·=0,即角A 的平分线垂直于BC ,∴ AB =AC ,又cos A =||||AB AC AB AC ⋅=12,∠A =3π,所以△ABC 为等边三角形,选D . 8.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 9.点O 是ABC ∆所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(B )(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点10. 如图1,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,AN y AC =,则113x y+=。