全国大学生高等数学竞赛试题汇总及答案

合集下载

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

大学生数学知识竞赛试题及答案

大学生数学知识竞赛试题及答案

大学生数学知识竞赛试题及答案本文为大学生数学知识竞赛试题及答案的整理和汇总。

以下是一系列数学试题及答案,涵盖了各个层次和难度的题目,以供大学生参考和练习。

试题分门别类,内容全面且有层次感。

读者可根据自身情况选择适合的题目进行学习和应用。

一、代数题1. 求下列方程的根:x^2 - 5x + 6 = 0。

答案:x = 2, x = 3。

2. 已知函数 f(x) = 2x^2 + 3x - 2,求 f(x) = 0 的解。

答案:x = -2/4, x = 1/2。

二、几何题1. 在平面直角坐标系中,已知 A(2, 3) 和 B(5, -1),求 AB 的长度。

答案:AB 的长度为√26。

2. 已知直线 L1 过点 A(3, 4),斜率为 -2,求直线 L1 的方程。

答案:直线 L1 的方程为 y = -2x - 1。

三、概率题1. 甲、乙、丙三个人按顺序抛掷一枚均匀的硬币,甲获得先抛中正面,乙获得后抛中正面,丙获得最后抛中正面的机会。

已知甲乙丙依次抛掷的概率分别为 1/4,1/3,1/2,求丙最后抛中正面的概率。

答案:丙最后抛中正面的概率为 1/24。

2. 在一副扑克牌中,红心和黑桃的总数分别为 26 张,从中随机抽取一张牌,求抽到红心或黑桃的概率。

答案:抽到红心或黑桃的概率为 1/2。

四、微积分题1. 求函数 f(x) = x^3 的导数。

答案:f'(x) = 3x^2。

2. 求曲线 y = x^2 在点 (2, 4) 处的切线方程。

答案:切线方程为 y = 4x - 4。

五、数论题1. 判断数 n = 12345678 是否为质数。

答案:n 不是质数。

2. 求最大公约数和最小公倍数:8 和 12。

答案:最大公约数为 4,最小公倍数为 24。

六、线性代数题1. 已知矩阵 A = [[1, 2], [3, 4]],求矩阵 A 的逆。

答案:A 的逆矩阵为 [[-2, 1], [1.5, -0.5]]。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

I 4zx dydz 2z dzdx (1 z 2) dxdy
S
[解 1]S 的方程为 z e x2 y2 (1 x 2 y 2 4)
补两平面 S1 : z e(x2 y 2 1, 下侧) S2 : z e2 (x2 y 2 4, 上侧)
2
e2
zdV 2 zdz
3. 设 为 f (x) arctan x 在 [ 0, b] 上应用 拉格朗日 中值定理的 “中值”,则
lim
b0
2 b2
…………
(C )
(A) 1; (B) 1 ; (C) 1 ; (D) 1 .
2
3
4
4.

f
(x)
,
g(x)
连续,当
x
0 时,
f
(x)

g(x)
为等价无穷小,令
F(x)
x 0
0
2a
(2) F (x) 1 [G '(x a) G '(x a)] 1 [ f (x a) f (x a)]
2a
2a
(3) lim F(x) lim G(x a) G(x a) lim [G(x a) G(x)] [G(x) G(x a)]
a0
a0
2a
a0
2a
1 [G '(x) G '(x)] G '(x) f (x) 2

lim
f
(0,
y
1 n
)
n
lim 1
f (0, y 1) n
f
(0,
y
)
n
f (0, y 1) f (0, y)
lim
n
n 1 f (0, y)

大学生数学竞赛试卷及答案(数学类)

大学生数学竞赛试卷及答案(数学类)

Fe1 = e2 , F 2 e1 = Fe2 = e3 ," , F n −1e1 = F ( F n − 2 e1 ) = Fen −1 = en

(*)
Me1 = (an1 F n −1 + an −11 F n − 2 + " + a21 F + a11 E )e1 = an1 F n −1e1 + an −11 F n − 2 e1 + " + a21 Fe1 + a11 Ee1 = an1en + an −11en −1 + " + a21e2 + a11e1 = α1 = Ae1
圆柱面的半径即为平行直线 x = y = z 和 x − 1 = y + 1 = z 之间的距离. P0 (1, −1, 0) 为 L0 上的点.
G JJJG G JJJG | n ×ቤተ መጻሕፍቲ ባይዱP0 S | | n × P0O | G G = 对圆柱面上任意一点 S ( x, y, z ) , 有 , 即 |n| |n| (− y + z − 1) 2 + ( x − z − 1) 2 + (− x + y + 2) 2 = 6 ,
地, Wm 在 g 下是不变的. 下面证明, Wm 在 f 下也是不变的.事实上,由 f (η ) = λ0η ,知
fg (η ) = gf (η ) + f (η ) = λ0 g (η ) + λ0η
fg 2 (η ) = gfg (η ) + fg (η ) = g (λ0 g (η ) + λ0η ) + (λ0 g (η ) + λ0η ) = λ0 g 2 (η ) + 2λ0 g (η ) + λ0η

第六届高等数学竞赛(文科类)试题答案

第六届高等数学竞赛(文科类)试题答案

第六届文科高等数学竞赛试题答案一、填空题(本题共5小题, 每小题3分, 满分15分.)1.5;2. ;3. ;4. ;5. .二、选择题(本题共5小题, 每小题3分, 满分15分.)1.D ; 2、A ; 3、A ; 4、B ; 5、C三、(本题满分10分)2011lim[ln(1)]x x x x →-+ =20ln(1)lim x x x x →-+=0111lim 2x x x →-+ =01lim 2(1)x x x x →+ =011lim21x x →+ =12四、(本题满分12分)令 , 则当 时 , 时212(1)f x dx -⎰=112()f t dt -⎰=211211221t te dt dt -+-⎰⎰ =0-12=-12五、(本题满分12分)cos sin cos sin sin cos sin cos t t t t dydy e t e tt tdt dx dx e t e t t t dt--===++22d y dx =cos sin cos sin 1()()sin cos sin cos sin cos t t d t tdt tdx t t dt t t e t e t --=•+++ =3(12sin cos )(12sin cos )(sin cos )t t t t t e t t -+--+ =32(sin cos )t e t t -+六、(本题满分12分)21cos 2cos 2x x dx dx x x =+⎰⎰ =21sec 22x x dx ⎰=tan 2x xd ⎰ =tan tan 22x x x dx -⎰ =sin 2tan 2cos 2x x x dx x -⎰ =cos 2tan 22cos 2x d x x x +⎰ =tan 2ln |cos |22x x x C ++七、(本题满分12分)设切线斜率为 , 则|2|2x a x a k y x a =='===切线方程为 , 即又设该切线与抛物线 两交点横坐标为 和 , 不妨设 由222222(2)1041ax a y x a x a y x x ⎧-=⇒+-+-=⎨=-+-⎩ 所以 ,因此1022(412)x x S x x ax a dx =-+--+⎰ =10322[(2)(1)]3xx x a x a x -+-+- =2102(243)()3a a x x -+- =3224(243)3a a -+ , 令 (唯一)当 时 , 当 时 , 所以在 时 有唯一极小值, 此即为最小值, 从而 时所作切线与抛物线 所围成图形面积最小.八、(本题满分12分)证明: 令 , 则 在[0,1] 上连续, 在(0,1)内可导,且 , 又 , , 所以由罗尔定理可知, 至少存在 使得 , 因此 =0 所以()()f f ξξξ'=-。

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。

第二届全国大学生数学竞赛决赛试题及详细解答

第二届全国大学生数学竞赛决赛试题及详细解答

第二届全国大学生数学竞赛决赛试题及答案(非数学类,2011)一.计算下列各题(本题共3小题,每小题各5分,共15分。

)(1).求11cos 0sin lim xx x x -→⎛⎫ ⎪⎝⎭;解:方法一(用两个重要极限):()()20003221sin 1cos sin 1cos 001sin cos 12limlimlim sin 11331cos 3222sin sin lim lim 1lim x x x x x xxx x x x x x x x x x x x x x x x x x x x x x x ee eee→→→-∙---→→------→-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭=====方法二(取对数):0202000322sin 1sin 1ln lim11cos lim1cos 201sin cos 12limlimlim 11333222sin lim x x x x x xx x x xx xx x x xx x x x x eex ee e e→→→→→-⎛⎫ ⎪⎝⎭--→----⎛⎫== ⎪⎝⎭====(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; 解:方法一(用欧拉公式)令111...12n x n n n n=++++++ 111ln =C+o 1211111ln 2=C+o 1212n nn n n n+++-++++++-+由欧拉公式得(),则(),其中,()1o 表示n →∞时的无穷小量,-ln2o 1n x ∴=两式相减,得:(),lim ln 2.n n x →∞∴=方法二(用定积分的定义)111lim lim lim()12n n n n x n n n→∞→∞→∞=++++111lim ()111n n n nn→∞=++++101ln 21dx x==+⎰(3)已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx 。

第十一届全国大学生数学竞赛决赛试题及答案

第十一届全国大学生数学竞赛决赛试题及答案

点 P 的坐标代入,得曲线
y
=
f (x) 在 P 点的切线斜率为 y′ =
5
.
因此,切线方程
2
为 y − (3 + π=)
5 2
x
−1

π 2
,即
y
=
5x+1−π . 2 24
3、设平面曲线 L 的方程为 Ax2 + By2 + Cxy + Dx + Ey + F =0 ,且通过五个点
P1(−1, 0)、P2 (0, −1)、P3(0,1)、P4 (2, −1) 和 P5 (2,1) ,则 L 上任意两点之间的直线距 离最大值为______________.
------------ 6 分
六、(12 分) 设 Ω 是由光滑的简单封闭曲面 Σ 围成的有界闭区域,函数 f (x, y, z)
在 Ω 上具有连续二阶偏导数,且
f (x, y, z) (x, y,z )∈Σ
=0.
记 ∇f

f (x, y, z) 的梯度,
并令 ∆=f
∂2 f ∂x2
+
∂2 ∂y
f
k −1
( ) =k 1=k 1
xdx
n
=
xdx
= 2 n
0
3
n , 得 an ≥
1
n
n n+ n k=1
k

2n 3 n+
n
.
于是可得
2n 3n+
n

an <
2 3
1+
1 n
1+ 1 . n
------------ 3 分

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案大学生高等数学竞赛试题汇总与答案1.试题一:已知函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,若对任意的x ∈ [0, 1],都有f(x) ≤ x,证明函数f(x)在区间[0, 1]上存在唯一的根。

解答:首先,由题意可知,函数f(x)在区间[0, 1]上连续,且f(0) = 0,f(1) = 1,即函数f(x)在区间[0, 1]的端点值分别为0和1。

假设存在两个不同的根x1和x2,且0 ≤ x1 < x2 ≤ 1。

则根据题意有f(x1) = 0,f(x2) = 0。

由于f(x)在区间[0, 1]上连续,根据介值定理,对于任意的c ∈ (0, 1),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。

当c = 0时,根据题意有f(x1) = 0,所以x1也是f(x) = 0的根,与x1和x2不同的假设矛盾。

当c = 1时,根据题意有f(x2) = 0,所以x2也是f(x) = 0的根,与x1和x2不同的假设矛盾。

综上所述,假设不成立,即函数f(x)在区间[0, 1]上存在唯一的根。

2.试题二:已知函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0,证明函数f(x)在区间(0, +∞)上单调递增。

解答:根据题意可知,函数f(x)在区间[0, +∞)上连续,且f(0) = 0,f(x) > 0,对任意的x > 0,且f'(x) > 0。

假设存在两个不同的数x1和x2,且0 < x1 < x2。

由于f(x)在区间[0, +∞)上连续,根据介值定理,对于任意的c ∈ (0, f(x2)),都存在一个介于x1和x2之间的数x0,使得f(x0) = c。

根据函数的导数性质,当x > 0时,f'(x) > 0,即函数f(x)在区间(0, +∞)上单调递增。

高等数学竞赛试题解答

高等数学竞赛试题解答

高等数学竞赛试题参考答案一、选择题(15)1. 下列命题中正确的命题有几个? …………………………………………( A ) (1)无界变量必为无穷大量; (2) 有限多个无穷大量之和仍为无穷大量; (3)无穷大量必为无界变量; (4) 无穷大量与有界变量之积仍为无穷大量. (A) 1个; (B) 2个; (C) 3个; (D) 4个.2. 设 1, 0()0, 0x f x x ≠⎧=⎨=⎩,1sin , 0() 1 , 0x x g x x x ⎧≠⎪=⎨⎪=⎩则0x =是间断点的函数是 …( B )(A) ()()f x g x +; (B) ()()f x g x -; (C) {}m ax (), ()f x g x ; (D) {}m in (), ()f x g x3. 设ξ为()arctan f x x =在[ 0, ]b 上应用拉格朗日中值定理的“中值”,则22limb bξ→= …………………( C )(A) 1; (B) 12; (C) 13; (D) 14.4. 设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim ( C )(A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在;(D) 一定不存在.5. 设)(x f 是连续函数,)()(x f x F 是的原函数,则( A ) (A) 当)(x f 为奇函数时,)(x F 必为偶函数; (B) 当)(x f 为偶函数时,)(x F 必为奇函数; (C) 当)(x f 为周期函数时,)(x F 必为周期函数; (D) 当)(x f 为单调增函数时,)(x F 必为单调增函数.二、填空(每题3分共15分)6、已知)(x f 在),(∞+-∞内可导,且2e )(lim ='∞→x f x ,()[])1()(lim lim--=-+∞→∞→x f x f ax a x x x x ,则=a 17、设函数)(x f 在0=x 点的某个邻域内连续,且21)(lim 0=-→xx e x f ,则曲线)(x f y = 在0=x 处的法线方程为 02=+y x 8、设)(sin 42x y =,则)(3x d dy =42sin 34x x9、已知2sin ()lim ()tt t xf x t →+∞-=, ()f x '等于x xe 2sin 2sin --10、不定积分1[ln(ln )]ln x dxx+⎰等于C x x +)ln(ln三、计算解答(60) 11、 计算:nn nxnx )21(lim 22++∞→解:nnn n n xn x x n x n x n xn x n x n x n x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++<++=++<+214)2(1))2(1()21()1(22222易知 ,1x ne n x =⎪⎭⎫ ⎝⎛+对nx n x ⎪⎪⎪⎪⎭⎫⎝⎛-+21进行变量代换,令,2m x n =-则当∞→n 时,∞→m 并且,2xm += 因此有xxm m nn e m x m x x n x=⎥⎦⎤⎢⎣⎡++=⎪⎪⎪⎪⎭⎫⎝⎛-+∞→∞→2)1()1(lim 21lim 由夹逼原理得.)21(lim 22xn n e nxnx =++∞→12、设()1tan 1x f x arc x-=+,求在x=0处的n 阶导数。

2023年高等数学竞赛试题答案

2023年高等数学竞赛试题答案

高等数学竞赛试题1一、填空:1.若()⎪⎩⎪⎨⎧≤->-=,x ,a x ,x f x x x01e 0,arctan e 122sin 是()+∞∞-,上旳持续函数,则a = -1 。

2.函数x x y 2sin +=在区间⎥⎦⎤⎢⎣⎡ππ,2上旳最大值为332+π 。

3.()=+⎰--22d e x x x x26e 2-- 。

4.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周得到旳旋转面在点()230,,处旳指向外侧旳单位法向量为{}32051,,。

5.设函数()x,y z z =由方程2e =+----xy z x x y z 所确定,则=z d ()y x x x xy z xy z d d e 1e 1-1+++---- 。

二、选择题:1. 设函数 f (x )可导,并且()50='x f ,则当0→∆x 时,该函数在点0x处微分dy 是y ∆旳( A )(A )等价无穷小; (B )同阶但不等价旳无穷小; (C)高阶无穷小; (D )低阶无穷小。

2. 设函数f (x )在点x = a 处可导,则()x f 在点x = a处不可导旳充要条件是( C ) (A )f (a ) = 0,且()0='a f ; (B )f (a)≠0,但()0='a f ; (C )f (a ) = 0,且()0≠'a f ; (D )f (a )≠0,且()0≠'a f 。

3. 曲线12+-+=x x x y ( B )(A)没有渐近线; (B )有一条水平渐近线和一条斜渐近线; (C )有一条铅直渐近线; (D)有两条水平渐近线。

4.设()()x,y x,y f ϕ与均为可微函数,且()0≠'x,y yϕ。

已知()00,y x 是()x,y f 在约束条件()0=x,y ϕ下旳一种极值点,下列选项中旳对旳者为( D )(A )若()00=',yx f x,则()00=',yxf y ; (B )若()00=',yx f x,则()00≠',yxf y;(C )若()00≠',yx f x,则()00=',yxf y; (D )若()00≠',yx f x,则()00≠',yxf y。

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)行, 因 此, 由 , Z y =2y 知(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年第一届全国大学生数学竞赛预赛试卷、填空题(每小题5分)(x + y ) ln (1 +》)1.计算 D -------------------- x dxdy =16/15,其中区域D 由直线y = 1与J 1-x-y两坐标轴所围成三角形区域.令t = 1 -u ,贝y u =1 -t1 2du =-2tdt ,u 2=1 —2t 2t 4,u(1—u)二 t 2(1—t)(1 t),22 .设f(x)是连续 函数,且满足f(x) = 3x 2 - .o f(x)dx-2 ,则f(x) = _______________ .2解:令 A=J 0f(x)dx ,贝S f(x)=3x 3—A —2,22A (3x 2- A - 2)d x = 8 - QA 2) = 4 - 2A ,解得 A =—。

因此 f(x) =3x 2-10。

3323 .曲面z=L ,y 2-2平行平面2x 2y-z = 0的切平面方程是2解:因平面2x ,2y-z=0的法向量为(2,2,-1),而曲面2z=x y 2-2 在(X 0,y °)处的法向量为2(Z x (x °, y °),Z y (x °, y °),T ),故(Z x (x °, y °), Z y (x °, y 。

),-1)与(2,2^1)平解:令 x y=u,x=v ,贝卩 x=v, y=u —v ,■0 1 dudv = dudvJdxdy= det 〔2 =Z x (x °, y °) =x °,2 =Z y (x °, y °) =2y °,即 X o = 2, y ° =1,又 z(X o , y °) = z(2,1) = 5,于是曲面 2x 亠 2y —z =0 在(X o , y °,z(X o , y 。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类)

第一届全国大学生数学竞赛预赛试卷(非数学类)2009一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=,dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(22-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

最新全国数学竞赛试题及答案

最新全国数学竞赛试题及答案

最新全国数学竞赛试题及答案试题一:代数问题题目:若\( a \), \( b \), \( c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \) 和 \( c \) 也是三角形的三边长。

答案:根据勾股定理的逆定理,如果三角形的两边平方和等于第三边的平方,那么这个三角形是直角三角形。

已知 \( a^2 + b^2 = c^2 \),可以推断出 \( a \), \( b \), \( c \) 构成的三角形是直角三角形,且 \( c \) 是斜边。

现在需要证明 \( a + b \) 和 \( c \)也能构成三角形。

由于 \( a \), \( b \) 是直角三角形的两个直角边,根据三角形的边长关系,有 \( a + b > c \)。

又因为 \( a \), \( b \), \( c \) 是正数,所以 \( a + b \) 和 \( c \) 都大于零。

根据三角形不等式定理,任意两边之和大于第三边,我们有 \( (a + b) + c > a \)和 \( (a + b) + c > b \),所以 \( a + b \) 和 \( c \) 可以构成三角形的两边,第三边可以是 \( a \) 或 \( b \)。

试题二:几何问题题目:在圆 \( O \) 中,弦 \( AB \) 与直径 \( CD \) 垂直相交于点 \( M \)。

已知 \( OM = 5 \) 厘米,求弦 \( AB \) 的长度。

答案:根据垂径定理,圆的直径 \( CD \) 垂直平分弦 \( AB \),所以 \( AM = MB \)。

设 \( AM = x \),则 \( AB = 2x \)。

由于\( OM \) 是半径 \( OC \) 的一半,我们有 \( OC = 10 \) 厘米。

根据勾股定理,我们有 \( OM^2 + AM^2 = OC^2 \),即 \( 5^2 +x^2 = 10^2 \)。

大学数学竞赛题库及答案

大学数学竞赛题库及答案

大学数学竞赛题库及答案一、单项选择题1. 设函数f(x) = (x - 1) / (x + 1),则f(-1)的值为()A. -1B. 0C. 1D. -∞答案:A2. 设矩阵A = [[a, b], [c, d]],则A的行列式det(A)的值为()A. ad - bcB. a + b + c + dC. ab + bd + ca + dcD. |a| |b| |c| |d|答案:A3. 设函数f(x) = x^3 - 6x + 9,则f'(x)的值为()A. 3x^2 - 6B. x^3 - 6C. 9 - 6xD. 3x^2答案:A4. 设函数f(x) = ln(x),则f'(x)的值为()A. 1/xB. xC. 1D. e^x答案:A5. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积a·b的值为()A. -5B. 4C. 7D. 0答案:A二、多项选择题6. 以下哪个选项是正确的矩阵乘法规则?()A. AB = BAB. (AB)C = A(BC)C. (A+B)C =AC+BC D. A(B+C) = AB+AC答案:B7. 以下哪个选项是正确的导数运算法则?()A. (f+g)' = f' + g'B. (fg)' = fg' + gf'C. (f/g)' = f'/g - f/g^2D. (f^n)' = nf^(n-1)答案:A、C三、填空题8. 设函数f(x) = x^2 - 4x + 3,则f(x)的图像是一个________。

答案:抛物线9. 设矩阵A = [[1, 2], [3, 4]], 则矩阵A的逆矩阵A^-1为________。

答案:[[2, -1], [-3, 1]]10. 设向量a = (2, 3), 向量b = (-1, 2), 则向量a与向量b的夹角θ的值为________。

数学竞赛近年试题及答案

数学竞赛近年试题及答案

数学竞赛近年试题及答案【试题一】题目:求函数 \( f(x) = 3x^2 - 5x + 2 \) 在区间 \( [1, 3] \) 上的最大值和最小值。

【答案】首先,我们可以通过求导数来找到函数的极值点。

函数 \( f(x) \) 的导数为 \( f'(x) = 6x - 5 \)。

令 \( f'(x) = 0 \) 得到 \( x = \frac{5}{6} \)。

接下来,我们需要检查区间端点 \( x = 1 \) 和 \( x = 3 \) 以及极值点 \( x = \frac{5}{6} \) 处的函数值:- \( f(1) = 3(1)^2 - 5(1) + 2 = 0 \)- \( f(3) = 3(3)^2 - 5(3) + 2 = 23 \)- \( f\left(\frac{5}{6}\right) = 3\left(\frac{5}{6}\right)^2 - 5\left(\frac{5}{6}\right) + 2 \)计算得到 \( f\left(\frac{5}{6}\right) =3\left(\frac{25}{36}\right) - \frac{25}{6} + 2 = -\frac{1}{6} \)。

因此,函数 \( f(x) \) 在区间 \( [1, 3] \) 上的最小值为 \( -\frac{1}{6} \),最大值为 \( 23 \)。

【试题二】题目:证明对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 \) 的和等于 \( \frac{n(n+1)(2n+1)}{6} \)。

【答案】我们可以利用数学归纳法来证明这个等式。

基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为 \( \frac{1(1+1)(2*1+1)}{6} = 1 \),等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x y y x D d d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u u v u u u u u ⎰-=102d 1u uu (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________. 解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰, 解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y ________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得29ln )()()(y e e y y f x e y y f y f '=''+因)(29ln y f y xe e =,故y y y f x'=''+)(1,即))(1(1y f x y '-=',因此 2222)](1[)())(1(1d d y f x y y f y f x y x y '-'''+'--=''= 322232)](1[)](1[)())(1(1)](1[)(y f x y f y f y f x y f x y f '-'--''='--'-''= 二、(5分)求极限x enxx x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 解 :因x enx x x x x e nxx x x nn e e e n e e e )1(lim )(lim 2020-++++=+++→→ΛΛ 故 nxn e e e e x e n n e e e A nx x x x nx x x x -+++=-+++=→→ΛΛ2020lim lim e n n n e n ne e e e nx x x x 21212lim 20+=+++=+++=→ΛΛ 因此e n A x e nxx x x e e ne e e 2120)(lim +→==+++Λ 三、(15分)设函数)(xf 连续,⎰=10d )()(t xt f x g ,且A x x f x =→)(lim 0,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim0和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→x x f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=x u u f x x g 0d )(1)(,故 0)0(1)(lim d )(lim )(lim 0000====→→→⎰f x f x u u f x g x x x x 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 200000d )(lim d )(1lim )0()(lim )0(xt t f x t t f x x g x g g x x x x x ⎰⎰→→→==-='22)(lim 0A x x f x ==→ 22d )(1lim )(lim ])(d )(1[lim )(lim 02000200A A A u u f x x x f x x f u u f x x g x x x x x x =-=-=+-='⎰⎰→→→→ 这表明)(x g '在0=x 处连续.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---L x y L x y x ye y xe x ye y xed d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe . 证 :因被积函数的偏导数连续在D 上连续,故由格林公式知(1)y x ye y xe x x ye y xe D x y L x y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=--- y x e e Dx y d d )(sin sin ⎰⎰-+=⎰--Lx y x ye y xe d d sin sin y x ye y xe x D x y d d )()(sin sin ⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=- y x e e Dx y d d )(sin sin ⎰⎰+=-而D 关于x 和y 是对称的,即知y x e e D x y d d )(sin sin ⎰⎰-+y x e e Dx y d d )(sin sin ⎰⎰+=- 因此⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin (2)因)1(2)!4!21(2242t t t e e tt +≥+++=+-Λ 故22cos 522cos 12sin 22sin sin x x x e e x x -=-+=+≥+- 由 ⎰⎰⎰⎰⎰+=+=----Dx y L D x y y y y x e e y x e e x ye y xed d )(d d )(d d sin sin sin sin sin sin 知⎰⎰⎰⎰⎰+++=----Dx y L D x y y y y x e e y x e e x ye y xe d d )(21d d )(21d d sin sin sin sin sin sin ⎰⎰⎰⎰⎰⎰+=+++=---Dx x D x x D y y y x e e y x e e y x e e d d )(d d )(21d d )(21sin sin sin sin sin sin 200sin sin 25d 22cos 5d )(πππππ=-≥+=⎰⎰-x x x e e x x 即 2sin sin 25d d π⎰≥--L y y x ye y xe 五、(10分)已知x x e xe y 21+=,x x exe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 解 设x x e xe y 21+=,x x exe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程 )(x f cy y b y =+'+''的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程0=+'+''cy y b y的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是02=++c b λλ因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++=x e x )21(-=二阶常系数线性非齐次微分方程为 x x xe e y y y 22-=-'-''六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是2323dt )(311023102b a x b x a bx ax +=⎥⎦⎤⎢⎣⎡+=+=⎰ 即)1(32a b -=而此图形绕x 轴旋转一周而成的旋转体的体积 ⎰⎰-+=+=10221022dt ))1(32(dt )()(x a ax bx ax a V ππ ⎰⎰⎰-+-+=10221031042dt )1(94dt )1(34dt x a x a a x a πππ 22)1(274)1(3151a a a a -+-+=πππ 即22)1(274)1(3151)(a a a a a V -+-+=πππ 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 04040904554=+--+a a a即054=+a因此45-=a ,23=b ,1=c .七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u x n n n, 且n e u n =)1(, 求函数项级数∑∞=1)(n n x u之和.解x n n ne x x u x u 1)()(-+=', 即x n e x y y 1-=-'由一阶线性非齐次微分方程公式知)d (1x x C e y n x ⎰-+=即)(n x C e y nx+= 因此)()(nx C e x u nxn += 由)1()1(n C e u n e n +==知,0=C , 于是ne x x u xn n =)( 下面求级数的和:令∑∑∞=∞===11)()(n xn n n n e x x u x S 则x e x S e x x S n e x e x x S x n x n n x n xn -+=+=+='∑∑∞=-∞=-1)()()()(1111 即xe x S x S x-=-'1)()( 由一阶线性非齐次微分方程公式知)d 11()(x xC e x S x ⎰-+= 令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u的和)1ln()(x e x S x --=八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量. 解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故x t t ex t f 1ln 22)(-==在(0,)+∞上严格单调减。

相关文档
最新文档