高中数学基础知识汇总知识讲解
高中数学基本知识点汇总(2篇)
高中数学基本知识点汇总(2篇)高中数学基本知识点汇总(一)一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同性质的事物的全体。
常见的集合表示方法有列举法和描述法。
列举法:将集合中的元素一一列举出来,例如 \( A = \{1, 2, 3\} \)。
描述法:用集合中元素的共同性质来描述集合,例如\( B = \{x \mid x > 0\} \)。
2. 集合的基本运算并集:两个集合的所有元素的集合,记作 \( A \cup B \)。
交集:两个集合的共同元素的集合,记作 \( A \cap B \)。
补集:全集中不属于某集合的元素的集合,记作 \( C_UA \)。
差集:属于第一个集合但不属于第二个集合的元素的集合,记作 \( A B \)。
3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。
函数的定义域、值域和对应关系是函数的三要素。
定义域:函数中自变量可以取值的集合。
值域:函数中因变量可以取值的集合。
对应关系:自变量与因变量之间的对应法则。
4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。
二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。
指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。
对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。
三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。
5. 函数的性质单调性:函数在某一区间内单调递增或单调递减。
奇偶性:奇函数满足 \( f(x) = f(x) \),偶函数满足 \( f(x) = f(x) \)。
周期性:函数在某一区间内重复出现,例如三角函数。
高中数学知识点归纳
高中数学知识点归纳一、集合与函数概念。
1. 集合。
- 集合的定义:一些元素组成的总体。
- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。
- 真子集:A⊆ B且A≠ B,则A⊂neqq B。
- 集合相等:A = B当且仅当A⊆ B且B⊆ A。
- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。
- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。
高-数学知识点(大全)讲解(大全)
高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (12)(一)幂函数 (12)(二)指数&指数函数 (13)(三)反函数的概念及其性质 (14)(四)对数&对数函数 (15)五、三角比 (17)六、三角函数 (24)一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性; (2)元素与集合的关系:①a A ∈↔a 属于集合A ; ②a A ∉↔a 不属于集合A . (3)常用的数集:N ↔自然数集;↔*N 正整数集;Z ↔整数集; Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R .(4)集合的表示方法:集合⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >. (5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A BA CBC ⊆⎧⇒⊆⎨⊆⎩.②B A =或A BA B ⊆⎧⎨⊇⎩↔集合A 与集合B 相等; ③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠. ④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集; ②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B =;()U U U C A B C A C B =(7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件.③欲证明条件α是结论β的充分必要条件,可分两步来证: 第一步:证明充分性:条件⇒α结论β; 第二步:证明必要性:结论⇒β条件α. (4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =, 则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人. 小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.二、不等式2(,)x +∞)2x 2[,)x +∞],21x四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+; (2)n n a a a a a a +++≥+++ 2121. 五、分式不等式:(1)0))((0>++⇔>++d cx b ax d cx b ax ; (2)0))((0<++⇔<++d cx b ax dcx bax .(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>; (2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>. 八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a a ϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明:(1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号); ②+∈≥+R b a ab ba 、(2,当且仅当b a =时取“=”号); 211a b+. ③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号); ⑤n a a a na a a nn n (2121≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当 n a a a === 21时取“=”号); (2)证明不等式的常用方法:①比较法; ②分析法; ③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(; x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域. 求定义域一般需要注意: ①1()y f x =,()0f x ≠;②y ()0f x ≥; ③0(())y f x =,()0f x ≠; ④log ()a y f x =,()0f x >; ⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点; (3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同. 二、函数的基本性质:注意:定义域包括0的奇函数必过原点(0,0)O . (注意:②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I 上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数, 且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =. (4 (5注意:()()f a x f b x +=-⇒()f x 关于2a bx +=对称; ()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数.注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22b c+对称; ()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称;()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数. (6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式.若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T 为这个函数的周期. 注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期; 周期函数的周期有无穷多个,但不一定有最小正周期.①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b =-; (阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =; ③()()f x a f x b +=-+,a b ≠⇒2T a b =-; ④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-; ⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-;⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-; ⑩若()()(2)()f x f x a f x a f x na m +++++++=(m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++=(m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.(0,)+∞[2,a +∞ 在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离. 六、某类带有绝对值的函数:1、对于函数y x m =-,在x m =时取最小值;2、对于函数y x m x n =-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p =-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q =-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122n y x x x x x x =-+-++-,122n x x x <<<,在1[,]n n x x x +∈时取最小值; 1221n y x x x x x x +=-+-++-,1221n x x x +<<<,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示.(3)作幂函数)1,0(≠=a x y a 的草图,可分两步:①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像. (4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大; 方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax by c cx d+=≠+0的变形幂函数的作图: ①作渐近线(用虚线):d x c=-、ay c =;②选取特殊点:任取该函数图像上一点,建议取(0,)bd;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则: ①yx yxaa a +=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④()xx x a a b b=,其中),0,(R y x b a ∈>、.23、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大; 方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈.2、求反函数的步骤:(“解”→“换”→“求”) ①将()y f x =看作方程,解出()x f y =; ②将x 、y 互换,得到1()y f x -=; ③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应. 4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x fy -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数. 5(四)对数&对数函数12 ①01log =a ,1log =a a ,N a N a =log ;②常用对数N N 10log lg =,自然对数N N e log ln =; ③N M MN a a a log log )(log +=,N M NMa a a log log log -=,M n M a n a log log =; ④bN N a a b log log log =,a b b a log 1log =,b n mb a m a n log log =,b b ac a c log log =,log log N N b a a b =.34、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大; 方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义:(1)终边相同的角:①α与2,k k Z πα+∈表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同; ③α与,k k Z πα+∈表示终边共线的角(同向或反向). (2(3)弧度制与角度制互化: ①180rad π=︒; ②1801rad =︒; ③1rad π︒=.(4)扇形有关公式:①rl=α;②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:22222222,244542424324424x k x k x k k x x k x k x k k x k Z x k x k x k k x x k x k x k ππππππππππππππππππππππππππ⎫⎫=⎫⎫=⎪⎪⎬⎪=+⎭⎪⎪⎪⎪⎪⎪⎫=⎬⎬⎪=+⎪⎪⎪⎪⎪=+⎬⎪⎪⎪⎪=-⎪⎪⎪⎪⎭⎭⎭⎪⎪⎫⎫⎫=∈⎬=+⎪⎪⎪⎪⎪⎪=+⎪⎬⎪⎪⎪⎪⎪=+⎪⎪⎪⎭⎪⎪⎪=+⎬⎬⎪⎫⎪⎪⎪=+⎪⎪⎪⎪⎪=-⎬⎪⎪⎪⎪⎪⎪=-⎪⎪⎪⎭⎪⎭⎭⎭(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异 于原点的点(,)P x y ,点P 到原点的距离记为r ,则(7(8)一些重要的结论:(注意,如果没有特别指明,k 的取值范围是k Z ∈) ①角α和角β的终边:②α的终边与2的终边的关系. α的终边在第一象限⇔(2,2)2k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++. ③sin θ与cos θ的大小关系:sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->); sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<);sin cos θθ=⇔5{22}k k ππθππ∈++,⇔θ的终边在直线y x =上(0x y -=).④sin θ与cos θ的大小关系: sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩; sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩;sin cos θθ=⇔3{}44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±.2、三角比公式: (1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式: 第二组诱导公式: 第三组诱导公式: (周期性) (奇偶性) (中心对称性)⎪⎪⎩⎪⎪⎨⎧=+=+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(k k k k ⎪⎪⎩⎪⎪⎨⎧-=--=-=--=-ααααααααcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎩⎪⎪⎨⎧=+=+-=+-=+ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(第四组诱导公式: 第五组诱导公式: 第六组诱导公式:(轴对称) (互余性)⎪⎪⎩⎪⎪⎨⎧-=--=--=-=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin( ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+-=+-=+=+ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin((2)同角三角比的关系:倒数关系: 商数关系: 平方关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα ⎪⎪⎩⎪⎪⎨⎧≠=≠=)0(sin sin cos cot )0(cos cos sin tan αααααααα ⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin(3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±;两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±; 两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα;二倍角的正切公式:ααα2tan 1tan 22tan -=; 降次公式: 万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩; ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=; (5)辅助角公式: ①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ.②版本二:sin cos )a b θθθϕ±=±,其中,0,0,tan 2ba b aπϕϕ><<=.3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理:(1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径);其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=;②R a A 2sin =,R b B 2sin =,RcC 2sin =;③c b a C B A ::sin :sin :sin =; ④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222;(3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比: (1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABC S ab C bc A ac B ===△;③ABC S =△l 为ABC △的周长. (2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<; ②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;④sin cos 22sin cos 22sin cos 22A B C BA C CA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot 22tan cot 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A B A C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos22sin cos 22C AC B ⎧<⎪⎪⎨⎪<⎪⎩; ⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222A B A B AC A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos cos 222cos cos cos 14sin sin sin 222sin sin sin 4sin sin cos 222A B C A B C A B C A B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B CA B C A B C ++=⎧⎨++=--⎩;⑦sin sin sin (0,]23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin (0,8sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B C A B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩. 其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明. (3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角: 略7、和差化积与积化和差公式(理科):(1)积化和差公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩; (2)和差化积公式:sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数; ].;.)1-=; 1min -=y ;解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得 222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+, 于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+. 同理可得函数5sin(2)73y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-. 例2:求函数5sin(2)7,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增; 当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(2)73y x π=++取最大值12;当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值72-;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠: ((2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下: ①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位; 当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位; ②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的倍(纵坐标不变); 当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变); ③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变); 当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变); ④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位; 当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位; 注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上.3、三角函数的值域: (1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值. (2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan baϕϕ=,化为)y x c ϕ=±+. (3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解. (4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为by at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x by c x d+=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解.(7)sin cos a x by c x d +=+型:化为sin cos a x yc x b dy -=-)x b dy ϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 2cos 2222a cb bc a x x b x c x x x -+++=++,然后利用辅 助角公式即可.4备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上) 例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Z k ∈解得62k x ππ=-+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==; ②tan(arctan )a R a a ∈⇒=. (2)先三角函数后反三角函数: ①[,]22ππθ∈-⇒arcsin(sin )θθ=; ②[0,]θπ∈⇒arccos(cos )θθ=;③(,)22ππθ∈-⇒arctan(tan )θθ=. (3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-; ②[1,1]a ∈-⇒arccos()arccos a a π-=-; ③(,)a ∈-∞+∞⇒arctan()arctan a a -=-. 6、解三角方程公式:sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a R x k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.。
最全高中数学知识点总结归纳
最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高中数学知识点总结(最全版)
高中数学知识点总结(最全版)1. 数的性质在高中数学中,我们首先要了解数的性质。
数的性质分为四个方面:整数性质、有理数性质、实数性质和复数性质。
1.1 整数性质整数是数的一种,包括正整数、负整数和零。
整数有以下性质:•整数加法和乘法封闭性:两个整数相加或相乘的结果仍然是整数。
•整数加法和乘法结合律:a+(b+c)=(a+b)+c 和a(b c)=(a b)c。
•整数加法和乘法交换律:a+b=b+a 和 a b=b a。
•整数加法有单位元素0:a+0=0+a=a。
•整数乘法有单位元素1:a1=1a=a。
•整数加法有逆元素:对于任意的整数a,存在一个整数b,使得a+b=b+a=0。
•整数乘法有逆元素:对于任意的整数a(a≠0),存在一个整数b,使得a b=b a=1。
•整数加法和乘法分配律:a(b+c)=a b+a*c。
1.2 有理数性质有理数是可以表示为两个整数的比值的数,包括整数和分数。
有理数有以下性质:•有理数加法和乘法封闭性:两个有理数相加或相乘的结果仍然是有理数。
•有理数加法和乘法结合律、交换律、分配律等性质与整数性质相同。
1.3 实数性质实数是包括有理数和无理数的数,具有以下性质:•实数可以通过实数的加法、减法、乘法和除法运算得到。
•实数加法和乘法封闭性、结合律、交换律、分配律等性质与有理数性质相同。
1.4 复数性质复数是形如a+bi的数,其中a和b是实数,i是虚数单位,有以下性质:•复数加法和乘法是封闭的,满足结合律、交换律和分配律。
•复数乘法有单位元素1,满足任一复数a与1相乘仍得a。
•复数乘法的交换律成立,即a b=b a。
•复数乘法有逆元素,对于任一非零复数a,存在一个复数b,使得a b=b a=1。
2. 代数运算代数运算是指利用代数式进行加法、减法、乘法和除法等运算的过程。
2.1 代数式的加法和减法代数式的加法和减法遵循相同的规则,即同类项相加或相减。
同类项指的是具有相同字母和相同指数的项。
高中数学基本知识点汇总(一)
高中数学基本知识点汇总(一)一、函数与极限1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
(2)函数的定义域、值域、对应法则。
(3)函数的表示方法:解析法、表格法、图象法。
2. 函数的特性(1)单调性:函数在某个区间上单调增加或单调减少。
(2)奇偶性:f(x) = f(x)为偶函数,f(x) = f(x)为奇函数。
(3)周期性:f(x + T) = f(x),T为函数的周期。
(4)对称性:函数图象关于x轴、y轴、原点对称。
(5)凹凸性:函数图象在某区间上凹或凸。
3. 初等函数(1)常数函数:f(x) = C(C为常数)(2)一次函数:f(x) = kx + b(k、b为常数)(3)二次函数:f(x) = ax^2 + bx + c(a、b、c为常数,a≠0)(4)幂函数:f(x) = x^n(n为常数)(5)指数函数:f(x) = a^x(a为常数,a > 0且a≠1)(6)对数函数:f(x) = log_a(x)(a为常数,a > 0且a≠1)4. 极限(1)数列极限的定义:设{a_n}是一个数列,如果存在常数A,对于任意给定的正数ε,总存在正整数N,使得当n > N时,|a_n A| < ε,那么就称常数A是数列{a_n}的极限。
(2)函数极限的定义:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得当0 < |x x_0| < δ时,|f(x) A| < ε,那么就称常数A是函数f(x)当x趋向于x_0时的极限。
(3)无穷小量与无穷大量:无穷小量表示函数在某点附近的增量趋于0,无穷大量表示函数在某点附近的增量趋于无穷。
(4)极限的性质与运算法则。
高中数学基础知识点总结归纳整理
高中数学基础知识点总结归纳整理引言高中数学是学生逻辑思维和解决问题能力培养的重要阶段。
为了帮助学生更好地掌握和复习高中数学知识,本文将对高中数学的主要基础知识点进行系统的总结归纳。
第一部分:代数基础1.1 基本概念数的分类:实数、复数、有理数和无理数代数式的运算:加减乘除和乘方1.2 方程与不等式一元一次方程和不等式的解法一元二次方程的解法和判别式的应用1.3 函数函数的概念:定义域、值域、映射基本初等函数:一次函数、二次函数、指数函数、对数函数和三角函数第二部分:几何基础2.1 平面几何三角形的分类和性质:等边三角形、等腰三角形和直角三角形四边形的分类和性质:平行四边形、矩形、菱形和正方形2.2 解析几何坐标系的引入:平面直角坐标系、极坐标系直线和圆的方程,以及它们的综合应用2.3 空间几何空间图形的基本概念:点、线、面的位置关系棱柱、棱锥和球体的表面积和体积计算第三部分:数列与级数3.1 数列的概念等差数列和等比数列的定义和性质等差数列和等比数列的通项公式和求和公式3.2 级数级数的概念:收敛和发散级数求和:几何级数和调和级数第四部分:概率与统计4.1 概率论基础事件的概率,包括古典概型和几何概型条件概率和独立事件的概念4.2 统计基础数据的收集、整理和描述均值、中位数和众数的计算第五部分:微积分初步5.1 极限与导数极限的概念和运算法则导数的定义和基本导数公式5.2 积分不定积分和定积分的概念积分的基本技巧和应用第六部分:综合应用6.1 函数与方程的综合应用函数与方程结合的问题6.2 几何与代数的综合应用几何与代数结合的问题6.3 数列与极限的综合应用数列与极限结合的问题结语高中数学基础知识点的掌握对于学生的数学素养和未来学术发展至关重要。
通过系统地复习和理解每个知识点,学生可以为进一步的数学学习打下坚实的基础。
希望本文档的总结能够帮助学生构建完整的知识体系,提高解题能力。
高中数学基础知识点整理
高中数学基础知识点整理高中数学是一门重要的学科,对于我们的逻辑思维和解决问题的能力有着极大的锻炼和提升。
下面为大家整理了高中数学的基础知识点,希望能对大家的学习有所帮助。
一、集合与常用逻辑用语1、集合集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
集合中的元素具有确定性、互异性和无序性。
常见的集合表示方法有列举法、描述法和图示法(如韦恩图)。
集合的运算包括交集、并集和补集。
交集是指两个集合中共同的元素组成的集合;并集是指两个集合中所有元素组成的集合;补集则是在全集范围内,某个集合的对立面。
2、常用逻辑用语命题是可以判断真假的陈述句。
原命题、逆命题、否命题和逆否命题之间存在着特定的关系。
充分条件、必要条件和充要条件的判断在解题中经常用到。
二、函数1、函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
函数的三要素是定义域、值域和对应法则。
2、常见函数的性质单调性:函数值随着自变量的增大而增大(或减小)的性质。
奇偶性:如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)定义域内的任意一个x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,周期为 T。
3、函数的图象函数的图象可以直观地反映函数的性质。
通过图象可以判断函数的单调性、奇偶性、周期性等。
三、三角函数1、任意角和弧度制角可以分为正角、负角和零角。
弧度制是另一种度量角的方式,弧度与角度的换算要牢记。
2、三角函数的定义在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为 r,则sinα=y/r,cosα=x/r,tanα=y/x。
高中数学基础知识汇总(详细版)
高中数学基础知识汇总(详细版)一、集合:(1)集合:由一组具有特定关系的元素构成的对象,如{a,b,c}由3个元素a,b,c构成。
(2)定义域(Domain):集合中的所有元素组成的定义域,如定义域 {a,b,c}中包含元素a,b和c。
(3)基数:一个集合中元素的数目叫做其基数,基数等于集合中定义域的数目。
(4)子集:一个集合是另一个集合的子集,如果它包含另一个集合中的所有元素,叫做子集。
(5)相等集:两个集合满足基数相等以及所有定义域相等时,两个集合叫做相等集。
二、函数:(1)函数(Function):将每个元素映射为另一个元素的规则的关系,如f(x)=2x+1。
(2)可逆性:如果f是可逆的,则f(x)和f在对应位置上有一个可逆的函数(f-1)(x)。
(3)偶函数:任何一个f(x)都可以写成两个函数f1(x)和f2(-x),如果f1(x)=f2(-x),则称f(x)为偶函数。
(4)函数的图形表示:用函数的定义域和它的值域的点的集合表示函数的图形。
三、统计:(1)分类数据:以某种类别划分的一组数据。
(2)频率:一个类别出现的次数,频率可以用于判断一类数据的分布。
(3)分布规律:一种数据的出现频率在一段时间内的变化规律,常用折线图表示。
(4)算术平均数:研究序列某个变量在一段时间内全体数据的平均值。
(5)众数:一组数据中出现次数最多的数。
四、代数:(1)多项式:由常系数乘常数的多项式,可以表示为axn+bxn-1+……+c的形式,其中a,b,c都是常数,n是正整数且大于0,x是变量。
(2)一次项:只有一个未知量的多项式,如1x+2、a-3x。
(4)根式:当n为偶数时,其中一项是常数,就是根式,如4x2+3x+1,根式是4x2+1。
(5)代数和式:当两个或多个未知量相加时,叫做代数和式,如2x+3y+4z。
(6)乘法:两个多项式及其系数相乘时,称为乘法,如(2x+3)·(x-1)=2x2-x-3。
高中数学基础知识汇总
三角1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ )(3)角α终边上点P 的坐标为(-12,32),那么sin α=32,cos α=-12;同理角α终边上点Q的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.( × ) (4)α∈(0,π2),则tan α>α>sin α.( √ )(5)α为第一象限角,则sin α+cos α>1.( √ ) 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系终边终边【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质π【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.(√)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.(×)(5)y=sin |x|是偶函数.(√)(6)若sin x >22,则x >π4.( × ) 1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ ) 1.公式的常见变形 (1)1+cos α=2cos 2α2;1-cos α=2sin 2α2;(2)1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.(3)tan α2=sin α1+cos α=1-cos αsin α.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ), 其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =3sin x +4cos x 的最大值是7.( × ) (2)设α∈(π,2π),则1-cos (π+α)2=sin α2.( × )(3)在非直角三角形中有:tan A +tan B +tan C =tan A tan B tan C .( √ ) (4)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( × )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( × ) 1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC中,已知a、b和A时,解的情况如下:a=b sin A b sin A<a<b a≥b a>b判断下面结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC中,若sin A>sin B,则A>B.(√)(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b2+c2-a2>0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(5)在三角形中,已知两边和一角就能求三角形的面积.(√)1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等.3.方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).导数1.导数与导函数的概念(1)函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)与(f(x0))′表示的意义相同.(×)(2)求f′(x0)时,可先求f(x0)再求f′(x0).(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值一般地,当函数f(x)在点x0处连续时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F(x)叫做f(x)的一个原函数.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.(×)(4)若f(x)是偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(√)(5)若f(x)是奇函数,则ʃa-a f(x)d x=0.(√)(6)曲线y=x2与y=x所围成的面积是ʃ10(x2-x)d x.(×)函数1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.(×)(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.(×)(3)映射是特殊的函数.(×)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.(×)(5)分段函数是由两个或几个函数组成的.(×)1.函数的单调性(1)单调函数的定义图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f(1)<f (3),则f (x )为增函数.( × ) 1.函数的奇偶性 (1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ )(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质定义域(-∞,+∞)(-∞,+∞)2.(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数y =2x 12是幂函数.( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是am n=1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质(1)R【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂a m n可以理解为mn 个a 相乘.( × )(3)(-1)24=(-1)12=-1.( × )(4)函数y =a -x 是R 上的增函数.( × ) (5)函数y =a21+x (a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.对数的概念如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中 a 叫做对数的底数, N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质 ①alog a N= N ;②log a a N = N (a >0且a ≠1).(3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质图象(1)定义域:(0,+∞)4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 y =x 对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ ) 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1).⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y =f (x )―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × ) 1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个 c 也就是方程f (x )=0的根. 2.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系2(x 0),(x 0)(x 0) 无交点 判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )集合逻辑1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 BA B (或B A )A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁A={x|x∈U,且x∉A}(1)若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n-1个,真子集有2n-1个.(2)A⊆B⇔A∩B=A⇔A∪B=B.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2)若{x2,1}={0,1},则x=0,1.(×)(3){x|x≤1}={t|t≤1}.(√)(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(5)若A∩B=A∩C,则B=C.(×)(6)含有n个元素的集合有2n个真子集.(×)1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分又不必要条件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.(×)(2)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × )(3)若一个命题是真命题,则其逆否命题是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ ) 1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词和存在量词4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( × ) (2)命题p 和綈p 不可能都是真命题.( √ )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.( √ ) (4)全称命题一定含有全称量词,特称命题一定含有存在量词.( × ) (5)写特称命题的否定时,存在量词变为全称量词.( √ ) (6)∃x 0∈M ,p (x 0)与∀x ∈M ,綈p (x )的真假性相反.( √ )解析几何1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( × ) (7)不经过原点的直线都可以用x a +yb=1表示.( × )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.圆的定义在平面内,到定点的距离等于定长的点的集合叫圆.2.确定一个圆最基本的要素是圆心和半径. 3.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 4.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝⎛⎭⎫-D 2,-E2,半径r =D 2+E 2-4F2.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 6.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × ) (5)圆x 2+2x +y 2+y =0的圆心是⎝⎛⎭⎫1,12.( × ) (6)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质-a≤x≤a -b≤x≤b【知识拓展】点P(x0,y0)和椭圆的关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(5)y2a2+x2b2=1 (a≠b)表示焦点在y轴上的椭圆.(×)(6)x2a2+y2b2=1 (a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.(√)1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a【知识拓展】 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n =1 (mn <0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0 (或ay 2+by +c =0).(1)若a ≠0,可考虑一元二次方程的判别式Δ,有 ①Δ>0⇔直线与圆锥曲线相交; ②Δ=0⇔直线与圆锥曲线相切; ③Δ<0⇔直线与圆锥曲线相离.(2)若a =0,b ≠0,即得到一个一元一次方程,则直线l 与圆锥曲线E 相交,且只有一个交点,①若E 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; ②若E 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2-x 1|=1+1k2|y 2-y 1|. 【知识拓展】过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )。
高中数学知识点总结全2024
高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。
集合的表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的表示方法解析法:用数学式子表示函数关系。
表格法:用表格形式表示函数关系。
图象法:用图象表示函数关系。
二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。
性质:图象是一条直线,k为斜率,b为截距。
2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。
性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。
3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。
性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。
4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。
性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。
5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。
余弦函数:y=cos(x),周期为2π,图象为波形曲线。
正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。
三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。
旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。
2. 空间几何体的三视图主视图:从正面看到的图形。
俯视图:从上面看到的图形。
左视图:从左面看到的图形。
最新高中数学知识点总结(最全版)
高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
高中数学知识点全总结
高中数学知识点全总结1. 集合与简易逻辑- 集合的概念:集合是具有某种特定性质的事物的全体,用大写字母表示。
- 集合的表示法:列举法和描述法。
- 集合之间的关系:子集、真子集、相等。
- 集合的运算:并集、交集、差集、补集。
- 简易逻辑:命题、逻辑连接词、真值表、逻辑等价式。
2. 函数- 函数的概念:函数是定义域到值域的映射。
- 函数的表示法:解析式、图象、列表。
- 函数的性质:单调性、奇偶性、周期性。
- 基本初等函数:幂函数、指数函数、对数函数、三角函数。
- 函数的图像变换:平移、伸缩、对称。
3. 数列- 数列的概念:数列是一列按照一定规则排列的数。
- 数列的表示法:通项公式、递推公式。
- 等差数列:通项公式、求和公式。
- 等比数列:通项公式、求和公式。
- 数列的极限:极限的概念、性质、运算法则。
4. 三角函数- 三角函数的概念:正弦、余弦、正切。
- 三角函数的图像:周期性、奇偶性、单调性。
- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。
- 解三角形:正弦定理、余弦定理、三角形的解法。
5. 向量- 向量的概念:具有大小和方向的量。
- 向量的表示法:坐标表示、单位向量。
- 向量的运算:加法、减法、数乘、点积、叉积。
- 向量的应用:向量在几何中的应用、向量在物理中的应用。
6. 立体几何- 空间几何体:多面体、旋转体。
- 空间直线与平面:位置关系、方程、夹角。
- 空间向量:空间向量的坐标表示、运算。
- 空间几何体的体积:多面体、旋转体的体积计算。
7. 解析几何- 直线:直线的方程、位置关系、交点、平行与垂直。
- 圆:圆的方程、圆与直线的位置关系。
- 圆锥曲线:椭圆、双曲线、抛物线的定义、方程、性质。
- 参数方程与极坐标:参数方程的表示、极坐标的表示、转换。
8. 概率与统计- 随机事件:事件的分类、概率的计算。
- 离散型随机变量:概率分布、期望、方差。
- 连续型随机变量:概率密度函数、期望、方差。
高中数学基础知识点全总结
高中数学基础知识点全总结前言高中数学是学生建立数学思想基础的重要阶段。
在学习过程中,掌握数学基础知识点是非常关键的,它们为后续数学知识的学习打下了坚实的基础。
本文将对高中数学基础知识点进行总结,帮助读者回顾和巩固相关概念,为深入理解和应用扫清障碍。
正文1. 数的概念与数的分类•整数、有理数、无理数的概念及性质•实数的基本性质2. 等式与方程•一次方程及其应用•二次方程及其性质•三次方程及其解的情况分类3. 函数•一元二次函数及其图像、性质和应用•一元二次函数与一次函数的交点坐标求法•反比例函数及其图像、性质和应用4. 几何•二维几何的基本概念:点、线、面、多边形等•直线和平面的性质:平行线、垂直线、平面图形等•三角形及其性质:等腰三角形、等边三角形、直角三角形等5. 概率与统计•随机事件的概念及其性质•事件的排列组合与概率计算•统计学中的数据分析与图表绘制6. 数列与数列的应用•等差数列与等比数列•数列通项的计算与应用•求和公式及其应用7. 三角函数•基本三角函数的定义与性质•三角函数的图像、周期性与对称性•三角函数的应用:解三角形、函数图像分析等8. 平面向量•向量的基本概念与运算规则•向量的线性运算与坐标表示•向量的数量积和与夹角的关系9. 立体几何•直线、平面与空间中的图形关系•体积与表面积的计算•空间向量的应用结尾通过对高中数学基础知识点的全面总结,我们希望读者能够更加清晰地了解这些重要概念和定理,并能正确运用于解题和实际问题中。
高中数学是培养学生逻辑思维和推理能力的关键阶段,只有打好基础,才能在进一步学习和发展中取得更好的成绩。
希望本文能为广大学生提供一定的帮助,加油!。
高中数学全部知识点全总结
高中数学全部知识点全总结一、代数代数是研究数与数之间的关系和运算规律的数学学科,是高中数学的重要组成部分。
代数主要包括有关方程、函数与不等式的内容。
1.一元二次方程一元二次方程是高中数学中非常重要的代数内容。
一元二次方程的标准形式为ax²+bx+c=0,其中a、b、c是已知的实数常数且a≠0。
求一元二次方程的根可以使用求根公式x=(-b±√(b²-4ac))/(2a)。
2.不等式不等式也是代数学中的重要内容,包括一元一次不等式、一元二次不等式、绝对值不等式、多项式不等式等。
求解不等式需要根据不等式的性质和规律进行分析和推导。
3.函数函数是数学中的基本概念,高中数学主要学习一元函数与二元函数。
一元函数可以表示成y=f(x)的形式,其中x为自变量,y为因变量。
函数的概念、性质、图像、导数等是高中数学中重点内容。
4.数列与数列的通项公式数列是指按照一定的规律排列在一起的一组数,数列的通项公式是数列中各项的位置与数值之间的关系公式。
基本的数列有等差数列和等比数列,数列的求和公式也是数学学习的重点内容之一。
5.集合与映射集合是代数学中的基本概念,集合的概念、运算、基本关系、子集等是高中数学知识的一部分。
映射是集合之间的对应关系,包括映射的定义、性质与运算等。
6.排列组合排列组合是数学中的一个分支,包括排列、组合、二项式定理等内容,排列组合是高中数学中的重点难点之一。
二、几何几何是研究空间与图形的数学学科,高中几何主要包括平面几何与立体几何两个部分。
1.平面几何平面几何包括点、线、面与角、三角形、四边形等内容,平面图形的性质、定理与证明是高中数学中的重要内容。
2.立体几何立体几何包括球面几何、空间直角坐标系与空间向量、空间平面与直线等内容,是高中数学学习的重点难点之一。
3.空间解析几何空间解析几何包括向量的数量积与向量的应用、向量的夹角与投影、空间中的平行线与垂直线等内容,是高中数学的难点内容。
高中数学知识点总结归纳(完整版)
高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是一门重要且具有一定难度的学科,涵盖了众多的知识点和概念。
以下是对高中数学主要知识点的全面总结归纳。
一、集合与函数1、集合集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
集合的表示方法有列举法、描述法和图示法。
集合的运算包括交集、并集和补集。
2、函数函数是两个非空数集之间的一种对应关系。
函数的三要素是定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
一次函数的一般形式为 y = kx + b(k ≠ 0),其图像是一条直线。
二次函数的一般形式为 y = ax²+ bx + c(a ≠ 0),其图像是一条抛物线。
通过配方法可以将其化为顶点式 y = a(x h)²+ k,从而确定其顶点坐标和对称轴。
指数函数的形式为 y = a^x(a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
对数函数是指数函数的反函数,形式为 y =logₐ x(a > 0 且a ≠ 1)。
函数的性质包括单调性、奇偶性、周期性等。
二、三角函数1、任意角和弧度制了解任意角的概念,掌握弧度与角度的换算。
2、三角函数的定义在单位圆中定义正弦、余弦和正切函数。
3、诱导公式能够利用诱导公式将任意角的三角函数转化为锐角的三角函数。
4、三角函数的图像和性质正弦函数 y = sin x、余弦函数 y = cos x 和正切函数 y = tan x 的图像特点、周期、对称轴、对称中心以及单调性。
5、两角和与差的三角函数公式包括正弦、余弦和正切的和差公式。
6、二倍角公式sin 2α、cos 2α、tan 2α 的公式。
7、解三角形利用正弦定理和余弦定理解决三角形中的边长、角度和面积等问题。
三、数列1、数列的概念数列是按照一定顺序排列的一列数。
高中数学基础知识汇总[详细版]
3
或 1. (3)无序性
集合中的元素的次序无先后之分.如:由1,2,3 组成一个集合,也可以写成1,3,2 组成一 个集合,它们都表示同一个集合. 学习集合表示方法时应注意的问题
(1)注意 a 与a 的区别. a 是集合a 的一个元素,而a 是含有一个元素 a 的集合,二 者的关系是 a a. (2)注意 与0 的区别. 是不含任何元素的集合,而0 是含有元素 0 的集合. (3)在用列举法表示集合时,一定不能犯用{实数集}或R来表示实数集 R 这一类错误,
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示 集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。 例如{有理数},{x x 0}分别表示有理数集和正实数集。
定义 2 子集:对于两个集合 A 与 B,如果集合 A 中的任何一个元素都是集合 B 中的元素, 则 A 叫做 B 的子集,记为 A B ,例如 N Z 。规定空集是任何集合的子集,如果 A 是 B 的子集,B 也是 A 的子集,则称 A 与 B 相等。如果 A 是 B 的子集,而且 B 中存在元素不属 于 A,则 A 叫 B 的真子集。 便于理解: A B 包含两个意思:①A 与 B 相等 、②A 是 B 的真子集 定义 3 交集, A B {x x A且x B}.
定义 4 并集, A B {x x A或x B}.
定义 5 补集,若 A I,则C1 A {x x I,且x A}称为 A 在 I 中的补集。
定义 6 集合{x a x b, x R, a b} 记作开区间 (a,b) ,集合
高中数学基础知识大全
高考数学基础知识汇总第一部分集合(1)含n个元素的集合的子集数为真子集数为非空真子集的数为第二部分函数与导数1.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵奇函数定义:⑶偶函数定义⑷奇函数在原点有定义,则⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;2.函数的单调性⑴单调性的定义:①增函数②减函数⑵单调性的判定1 定义法:注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);④图像法。
注:证明单调性主要用定义法和导数法。
3.函数的周期性(1)周期性的定义:所有正周期中最小的称为函数的最小正周期。
如没有特别说明,遇到的周期都指最小正周期。
4.基本初等函数的图像与性质(要求每种函数的表达式、图像、性质都一一写出来)⑴幂函数:⑵指数函数:⑶对数函数:⑷正弦函数:⑸余弦函数:(6)正切函数:⑺一元二次函数:;⑻其它常用函数:1 正比例函数:②反比例函数:10.函数图象:⑴图象作法:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:1 平移变换:2 伸缩变换:第三部分 三角函数、三角恒等变换与解三角形 必修4《三角函数》复习题一一 任意角的概念与弧度制 (一)角的概念的推广 1、角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角。
按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做 ,顺时针方向的叫做 ;当射线没有旋转时,我们把它叫做 。
习惯上将平面直角坐标系x 轴正半轴作为角的 ,射线旋转停止时对应的边叫角的 。
2、特殊命名的角的定义:(1)正角,负角,零角 :见上文。
(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边落在坐标轴上的角终边在x 轴上的角的集合: 终边在y 轴上的角的集合: 终边在坐标轴上的角的集合:(4)终边相同的角:与α终边相同的角x=(5) 终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 注:(1)角的集合表示形式不唯一.(2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1、弧度制的定义:2、角度与弧度的换算公式:360°= π 180°= 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为 数,负角的弧度数为 数,零角的弧度数为 . 一个式子中不能角度,弧度混用. 二 任意角三角函数 (一)三角函数的定义 1、任意角的三角函数定义正弦sin α= ,余弦cos α= ,正切tan α=2(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1) 表示α角的正弦值,叫做正弦线。
高中数学基础知识汇总
高中数学基础知识汇总第一章 集合与简易逻辑:一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。
3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。
原命题与它的逆否命题是等价命题。
4.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。
2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠; ③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22x x xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 集合3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。
4.φ是任何集合的子集,是任何非空集合的真子集。
第二部分 函数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔f(-x)=-f(x);)(x f 是偶函数⇔f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; ⑵单调性的判定① 定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分);③复合函数法;④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。
如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ; ④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ;(3)与周期有关的结论)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2;8.基本初等函数的图像与性质⑴幂函数:αx y = ()R ∈α ;⑵指数函数:)1,0(≠>=a a a y x;⑶对数函数:)1,0(log ≠>=a a x y a ;⑷正弦函数:x y sin =;⑸余弦函数:x y cos = ;(6)正切函数:x y tan =;⑺一元二次函数:02=++c bx ax ; ⑻其它常用函数:① 正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x k y ;③函数)0(>+=a xax y ; 9.二次函数: ⑴解析式:①一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点; ③零点式:))(()(21x x x x a x f --= 。
⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422,。
10.函数图象:⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法 ⑵图象变换:① 平移变换:ⅰ))()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ))0(,)()(>±=→=k k x f y x f y ———上“+”下“-”;② 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=; ⅲ )(x f y =−→−=0x )(x f y -=; ⅳ)(x f y =−−→−=xy ()x f y =; ③ 翻转变换:ⅰ)|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ)|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象); 11.函数图象(曲线)对称性的证明(1)证明函数)(x f y =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数)(x f y =与)(x g y =图象的对称性,即证明)(x f y =图象上任意点关于对称中心(对称轴)的对称点在)(x g y =的图象上,反之亦然;注:①曲线C 1:f(x,y)=0关于点(0,0)的对称曲线C 2方程为:f(-x,-y)=0; ②曲线C 1:f(x,y)=0关于直线x=0的对称曲线C 2方程为:f(-x, y)=0; 曲线C 1:f(x,y)=0关于直线y=0的对称曲线C 2方程为:f(x, -y)=0; 曲线C 1:f(x,y)=0关于直线y=x 的对称曲线C 2方程为:f(y, x)=0 ③f(a+x)=f(b -x) (x ∈R )→y=f(x)图像关于直线x=2ba +对称; 特别地:f(a+x)=f(a -x) (x ∈R )→y=f(x)图像关于直线x=a 对称; 12.函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;⑶二分法.(4)零点定理:若y=f(x)在[a,b]上满足f(a)f(b)<0,则y=f(x)在(a,b)内至少有一个零点。
第三部分 三角函数、三角恒等变换与解三角形1.⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l θ=;扇形面积公式:Rl R S 21212==θ。
2.三角函数定义:角α中边上任意一P 点为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy =αtan3.三角函数符号规律:一全正,二正弦,三两切,四余弦; 4.诱导公式记忆规律:“函数名不(改)变,符号看象限”; 5.⑴)sin(ϕω+=x A y 对称轴:2x k πωϕπ+=+;对称中心:))(0,(Z k k ∈-ωϕπ; ⑵)cos(ϕω+=x A y 对称轴:x k ωϕπ+=;对称中心:))(0,2(Z k k ∈-+ωϕππ;6.同角三角函数的基本关系:x xxx x tan cos sin ;1cos sin 22==+; 7.三角函数的单调区间: x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
8.两角和与差的正弦、余弦、正切公式:①;sin cos cos sin )sin(βαβαβα±=±②;sin sin cos cos )cos(βαβαβα =±③βαβαβαtan tan 1tan tan )tan( ±=± 。
9.二倍角公式:①αααcos sin 22sin =; ②ααααα2222sin 211cos 2sin cos2cos -=-=-=;③ααα2tan 1tan 22tan -=。
2(sin cos )12sin cos 1sin 2ααααα±=±=±11。
几个公式:⑴三角形面积公式:11sin 22ABC S ah ab C ∆==; 第四部分 立体几何1.三视图与直观图:2.表(侧)面积与体积公式:⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:S 侧=rh π2;③体积:V=S 底h ⑵锥体:①表面积:S=S 侧+S 底;②侧面积:S 侧=rl π;③体积:V=31S 底h : ⑶台体:①表面积:S=S 侧+S 上底S 下底;②侧面积:S 侧=l r r )('+π;③体积:V=31(S+''S SS +)h ; ⑷球体:①表面积:S=24R π;②体积:V=334R π 。
3.位置关系的证明(主要方法):⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行⇒线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
4.求角:(步骤-------Ⅰ。
找或作角;Ⅱ。
求角) ⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②用向量法: cos |cos ,|a b θ=<>⑵直线与平面所成的角:①直接法(利用线面角定义);②用向量法:sin |cos ,|AB n θ=<>5.求距离:(步骤-------Ⅰ。
找或作垂线段;Ⅱ。
求距离) 点到平面的距离:①等体积法;②向量法:d =。
6.结论:⑴长方体从一个顶点出发的三条棱长分别为a ,b ,c ,则对角线长为,全面积为2ab+2bc+2ca ,体积V=abc 。
⑵正方体的棱长为a ,全面积为6a 2,体积V=a 3。
⑶长方体或正方体的外接球直径2R 等于长方体或正方体的对角线长。
⑷正四面体的性质:设棱长为a ,则正四面体的:① 高:a h 36=;②对棱间距离:a 22;③内切球半径:a 126;④外接球半径:a 46。
第五部分 直线与圆1.直线方程⑴点斜式:)( x x k y y -=- ;⑵斜截式:b kx y += ;⑶截距式:1=+bya x ; ⑷两点式:121121x x x x y y y y --=-- ;⑸一般式:0=++C By Ax ,(A ,B 不全为0)。