函数的单调性 (2)
函数的单调性(2)课件-高二下学期数学人教A版(2019)选择性必修第二册
解得 x> .所以函数 f(x)=2x2-ln x 的递增区间是 2
2
课后练习
4.(2020·天津·高考真题20)已知函数 f ( x) x3 k ln x(k R)
, f ( x)
为 f(x) 的导函数.
(Ⅰ)当k=6时,
(i)求曲线在点(1,f(1))处的切线方程;
9
g ( x) f ( x) f ( x)
+/-
单调性
巩固练习
判断下列函数的单调性,并求出单调区间:
(1) f(x)=3x-x3
(2)f(x)=x-2ln x
巩固练习
判断下列函数的单调性,并求出单调区间:
(1) f(x)=3x-x3
解:(1)函数f(x)=3x-x3 定义域为 R .
对f(x)求导,得f ′(x)=3-3x2 ,
令f ′(x)=0,得x=-1,或x=1。
() = − − 2 + 1
3
2
′() = 2 − − 2
不熟悉的、复杂的函数
熟悉的、简单的函数
算法思想
判断函数的单调性的复杂问题
步骤明确的运算问题
因此,导数是研究函数单调性的基本工具,
利用导数研究函数单调性的方法具有“普适性”。
总结规律
小结:一般情况下,判断函数 = ()的单调性的步骤:
引入新课
3 + 2 + + ( ≠ 0)的函数
形如()
=
问题2
应用广泛,如何利用导数研究这种函数的单调性?
思
路:
定义
域
导
函
数
原
函数
求导
导函数
第二章 2.2 函数的单调性
§2.2 函数的单调性知识梳理:1.函数的单调性: (1)单调函数的定义自左向右看图像是上升的自左向右看图像是下降的(2)上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1) 答案 A解析 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R 上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) 答案 CA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 当a =0时,f (x )=|(ax -1)x |=|x |在区间(0,+∞)上单调递增;当a <0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图像知函数在(0,+∞)上单调递增,如图(1)所示;当a >0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图像知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f (x )=|(ax -1)x |在(0,+∞)上单调递增只需a ≤0. 即“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)上单调递增”的充要条件. 3.函数f (x )=2x x +1在[1,2]的最大值和最小值分别是___________. 答案 43,1解析 f (x )=2x x +1=2(x +1)-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.4.(课本改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图像开口向上,对称轴为直线x =a ,画出草图如图所示.由图像可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞). 应用实例: 题型一 函数单调性的判断例1 (1)判断函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.(2)求函数y =x 2+x -6的单调区间. 解 (1)设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1).∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数.(2)令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数. 由u =x 2+x -6≥0,得x ≤-3或x ≥2. ∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数. ∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).思维升华 (1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之. (2)复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.(1)判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性.(2)求函数y =log 13(x 2-4x +3)的单调区间.解 (1)设x 1,x 2是任意两个正数,且0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2 =x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在(0,a ]上是减函数;当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上为增函数.(2)令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x+3>0,则x <1或x >3. ∴函数y =log 13(x 2-4x +3)的定义域为 (-∞,1)∪(3,+∞).又u =x 2-4x +3的图像的对称轴为x =2,且开口向上,∴u =x 2-4x +3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y =log 13u 在(0,+∞)上是减函数,∴y =log 13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).题型二 利用单调性求参数范围例2 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0. 综合上述得-14≤a ≤0.(2)由已知得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1](2)已知f (x )=⎩⎪⎨⎪⎧a x, x >1,⎝⎛⎭⎫4-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8) 答案 (1)D (2)B解析 (1)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1.∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.(2)因为f (x )是R 上的增函数,所以可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,故选B.题型三 利用函数的单调性求最值例3 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)证明:f (x )为减函数; (3)若f (3)=-1,求f (x )在[2,9]上的最小值. (1)解 令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明 任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,∵当x >1时,f (x )<0,∴f ⎝⎛⎭⎫x 1x 2<0, 即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),∴函数f (x )在区间(0,+∞)上是减函数.(3)解 ∵f (x )在(0,+∞)上是减函数.∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝⎛⎭⎫93=f (9)-f (3),∴f (9)=2f (3)=-2. 即f (x )在[2,9]上的最小值为-2.思维升华 (1)抽象函数的单调性的判断要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等;(2)求函数最值的常用方法:①单调性法;②基本不等式法;③配方法;④图像法;⑤导数法.(1)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x-1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A .2B .3C .4D .-1(2)函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =____.答案 (1)C (2)6解析 (1)根据f (1+x )=f (-x ),可知函数f (x )的图像关于直线x =12对称.又函数f (x )在[12,+∞)上单调递增,故f (x )在(-∞,12]上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4.(2)易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 利用函数的单调性解不等式典例:(12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0,∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不妨设m =n =1,∴f (1+1)=f (1)+f (1)-1⇒f (2)=2f (1)-1,[8分] f (3)=4⇒f (2+1)=4⇒f (2)+f (1)-1=4⇒3f (1)-2=4,∴f (1)=2,∴f (a 2+a -5)<2=f (1),[10分] ∵f (x )在R 上为增函数,∴a 2+a -5<1⇒-3<a <2,即a ∈(-3,2).[12分]答题模板解函数不等式问题的一般步骤:第一步:(定性)确定函数f (x )在给定区间上的单调性;第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒 本题对函数的单调性的判断是一个关键点.不会运用条件x >0时,f (x )>1,构造不出f (x 2)-f (x 1)=f (x 2-x 1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f (M )<f (N )的形式.解决此类问题的易错点:忽视了M 、N 的取值范围,即忽视了f (x )所在的单调区间的约束.课堂小结: 1.利用定义证明或判断函数单调性的步骤: (1)取值;(2)作差;(3)定量;(4)判断. 2.判断单调性的常用方法:定义法、图像法、导数法.。
函数的单调性(二)
当堂检测
1.若函数������ ������ = ln ������ + ������������ − 1在定义域内单调递增,则a的范围
是( B )
A. a>0
B. a≥0
C. a<0 D.a≤0
2.已知函数f(x)= ������+ln x,则有( A )
A.f(2)<f(e)<f(3)
B.f(e)<f(2)<f(3)
∴函数在(b,+∞)单调递增;在(−∞,b)单调递减。
(2)函数的定义域是R. ������′ = ������������ − ������
①当������ ≤ 0时,������′ > 0. ∴ 函数在 −∞, + ∞ 单调递增。
②当������ > 0时,令������′ > 0, 得������ > ln ������ ; 令������′ < 0, 得������ < ln ������ . ∴函数在(−∞,ln ������)单调递减;在(ln ������, + ∞)单调递
=
������ ������
,且
������ ������
<
������
x (−∞,2) 2
������
������
������′ ������
−
0
f(x)
↘
(2,0)
������
+ ↗
0 (0,+∞)
0
−
↘
∴������ ������ 在
−∞,
2+
∞
单调递减;在(
2 ������
∴由������′
第6节 函数的单调性(2)
练习:已知函数 y=f(x)的一个减区间是(2,6),则可以断定函数 y=f(2﹣x)
的( )
A.一个减区间是(4,8) B.一个减区间是(0,4)
C.一个增区间是(﹣4,0) D.一个增区间是(0,4)
解:y=f(x)的一个减区间是(2,6), 令 t=2﹣x,2<t<6, ∴2<2﹣x<6, ∴﹣4<x<0, 根据复合函数的单调性可知当﹣4<x<0,y=f(2﹣x)为增函数, 故选:C.
2.若函数 f(x)=|x﹣a|的单调递减区间是(﹣∞,4],则实数 a 的值为
.
解:当 x≥a 时,f(x)=x﹣a,此时函数为增函数,
当 x≤a 时,f(x)=﹣(x﹣a)=﹣x+a,此时函数为减函数,
则函数的单调递减区间为(﹣∞,a],
∵函数 f(x)=|x﹣a|的单调递减区间是(﹣∞,4],
练习:设函数 f(x)=
减区间为
.
,g(x)=x2f(x﹣1),则函数 g(x)的单调递Leabharlann 解:;∴;
∴g(x)的单调递减区间为[0,1). 故答案为:[0,1).
典例分析:
例 4:函数 f(x)在区间(﹣2,3)上是增函数,则 y=( f x+4)的递增区间是( )
A.(2,7) B.(﹣2,3)
化简为:
y=x2﹣2x+1,开口向上,对称轴 x=1,所以 x 在(0,1)是减区间,x 在(1,+ ∞)是增区间; y=x2+2x+1,开口向上,对称轴 x=﹣1,所以 x 在(﹣1,0)是增区间,x 在(﹣ ∞,﹣1)是减区间; 所以:y=x2﹣2|x|+1 的单调递减区间(﹣∞,﹣1)和(0,1). 故选 D.
第二章 函数
2.2.1函数单调性(二)
函数的单一性(二)课时目标1.理解函数的最大(小)值的观点及其几何意义.2.领会函数的最大(小)值与单一性之间的关系.3.会求一些简单函数的最大(小)值.1.函数的最值设y=f(x)的定义域为A.(1)最大值:假如存在x0∈A,使得关于随意的x∈A,都有__________,那么称f(x0)为yf(x)的最大值,记为______=f(x0).(2)最小值:假如存在 x0∈A,使得关于随意的x∈A,都有f(x)≥f(x0),那么称 f(x0)为yf(x)的最小值,记为________=f(x0).2.函数最值与单一性的联系(1)若函数y=f(x)在区间[a,b]上单一递加,则f(x)的最大值为______,最小值为______.(2)若函数y=f(x)在区间[a,b]上单一递减,则f(x)的最大值为______,最小值为______.一、填空题1.若函数2在区间(-∞,4)上是减函数,则实数a的取值范围是f(x)=x+2(a-1)x+2________.2.已知函数y=x+2x-1,以下说法正确的选项是________.(填序号)1①有最小值2,无最大值;1②有最大值2,无最小值;③有最小值1,最大值 2;2④无最大值,也无最小值.3.已知函数 y=x2-2x+3在区间[0,m]上有最大值3,最小值2,则m的取值范围是________.4.假如函数 f(x)=x2+bx+c对随意的实数x,都有f(1+x)=f(-x),那么f(-2),f(0),f(2)的大小关系为________.5.函数y=|x-3|-|x+1|的________.(填序号)①最小值是0,最大值是4;②最小值是-4,最大值是0;③最小值是-4,最大值是4;④没有最大值也没有最小值.1的最大值是________.6.函数f(x)=1-x1-x的值域是________.7.函数y=|x|+18.函数y=-x2+6x+9在区间[a,b](a<b<3)有最大值9,最小值-7,则a=________,b=__________.9.若y=-2x,x∈[-4,-1],则函数y的最大值为________.二、解答题10.已知函数f(x)=x2-2x+2.1(1)求f(x)在区间[2,3]上的最大值和最小值;(2)若g(x)=f(x)-mx在[2,4]上是单一函数,求m的取值范围.11.若二次函数知足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的分析式;(2)若在区间[-1,1]上不等式f(x)>2x+m恒建立,务实数m的取值范围.能力提高12.已知函数f(x)=3-2|x|,g(x)=x2-2x,结构函数F(x),定义以下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)________.(填序号)①有最大值3,最小值-1;②有最大值3,无最小值;③有最大值7-2 7,无最小值;④无最大值,也无最小值.13.已知函数f(x)=ax2-|x|+2a-1,此中a≥0,a∈R.(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.1.函数的最大(小)值(1)定义中M 第一是一个函数值,它是值域中的一个元素,如函数 f(x)=-x2(x∈R )的最大值为0,有f(0)=0,注意对“存在”的理解. (2)关于定义域内随意元素,都有 f(x)≤M 或f(x)≥M 建立,“随意”是说对每一个值都一定知足不等式.拓展 关于函数y =f(x)的最值,可简记以下:最大值:ymax 或f(x)max ;最小值:ymin 或2.函数的最值与值域、单一性之间的联系f(x)min.(1)对一个函数来说,其值域是确立的,但它不必定有最值,如函数1y =x.假如有最值,则最值必定是值域中的一个元素.(2)若函数f(x)在闭区间[a ,b]上单一,则f(x)的最值必在区间端点处获得.即最大值是f(a)或f(b),最小值是f(b)或f(a).3.二次函数在闭区间上的最值y =f(x)的草图,而后依据图象探究二次函数在给定区间上的最值问题,一般要先作出的增减性进行研究.特别要注意二次函数的对称轴与所给区间的地点关系,它是求解二次函数在已知区间上最值问题的主要依照,而且最大(小)值不必定在极点处获得.第2课时 函数的最大(小)值 知识梳理1.(1)f(x)≤f(x 0)yma x(2)ymin2.(1)f(b)f(a)(2)f(a)f(b)作业设计1.(-∞,-3]分析由二次函数的性质,可知4≤-(a-1),解得a≤-3.2.①分析∵y=x+2x-1在定义域[1,+∞)上是增函数,2∴y≥f(12)=12,即函数最小值为12,无最大值.3.[1,2]分析由y=x2-2x+3=(x-1)2+2知,当x=1时,y的最小值为2,当y=3时,x2-2x+3=3,解得x=0或x=2.2由y=x-2x+3的图象知,当m∈[1,2]时,能保证y的最大值为3,最小值为 2.分析依题意,由f(1+x)=f(-x)知,二次函数的对称轴为x=12,由于f(x)=x2+bx+c张口向上,且f(0)=f(1),f(-2)=f(3),由函数f(x)的图象可知,,+∞)为f(x)的增区间,因此f(1)<f(2)<f(3),即f(0)<f(2)<f(-2).5.③-4x≥3分析y=|x-3|-|x+1|=-2x+2-1≤x<3.4x<-1由于[-1,3)是函数y=-2x+2的减区间,因此-4≤y≤4,综上可知③正确.46.31≤4分析f(x)=123x-2+7.(0,2]分析察看可知y>0,当|x|取最小值时,y有最大值,因此当x=0时,y的最大值为2,即0<y≤2,故函数y的值域为(0,2].8.-2 0分析y=-(x-3)2+18,∵a<b<3,∴函数y在区间[a,b]上单一递加,即-b2+6b+9=9,得b=0(b=6不合题意,舍去)2-a+6a+9=-7,得a=-2(a=8不合题意,舍去).分析函数y=-2在[-4,-1]上是单一递加函数,x2故y max=--1=2.221110.解(1)∵f(x)=x-2x+2=(x-1)+1,x∈[,3],2f(x)的最小值是f(1)=1,5又f()=,f(3)=5,4因此,f(x)的最大值是f(3)=5,即f(x)在区间[12,3]上的最大值是 5,最小值是 1. (2)∵g(x)=f(x)-mx =x 2-(m +2)x +2,∴m +2≤2或m +2≥4,即m≤2或m≥6.22故m 的取值范围是(-∞,2]∪[6,+∞). 11.解(1)设f(x)=ax 2+bx +c(a≠0),由f(0)=1,∴c=1,f(x)=ax 2+bx +1.f(x +1)-f(x)=2x ,∴2ax+a +b =2x ,2a =2a =12-x +1.∴,∴,∴f(x)=x a +b =0b =-1(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒建立,即x 2-3x +1-m>0在[-1,1]上恒建立.令g(x)=x 2-3x +1-m =(x -32)2-54-m , 其对称轴为 x =32,g(x)在区间[-1,1]上是减函数, g(x)min =g(1)=1-3+1-m>0, m<-1.12.③分析绘图获得F(x)的图象:射线AC、抛物线AB及射线BD三段,y=2x+3,联立方程组y=x2-2x,得x A=2-7,代入得F(x)的最大值为 7-2 7,由图可得F(x)无最小值.13.解(1)当a=1时,f(x)=x2-|x|+1x2+x+1,x<0x2-x+1,x≥0.作图(如右所示)(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.若a>0,则f(x)=a(x-2a1)2+2a-4a1-1,1f(x)图象的对称轴是直线x=2 a.11时,f(x)在区间[1,2]上是增函数,0<<1,即a>2a2g(a)=f(1)=3a -2.当1≤1≤2,即1≤a≤1时,2a421 1-1,g(a)=f(2a )=2a -4a11时,f(x)在区间[1,2]上是减函数,2a>2,即0<a<4g(a)=f(2)=6a -3.2.2.1函数单调性(二)11 / 1111 16a -3, 0≤a<4 1 1 综上可得g(a)= 2a -4a -1, 4≤a≤13a -2,a>2。
函数的单调性 (2)
函数的单调性教学设计【教材分析】《函数单调性》是高中数学新教材必修一第二章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
【教学目标】知识与技能:1.通过生活中的例子帮助学生理解函数的单调性和单调函数的意义。
2.学会判断和证明简单函数的单调性。
过程与方法:1.通过探究与活动,使学生明白考虑问题要细致,说理要明确。
2.培养从概念出发,进一步研究其性质的意识及能力。
情感与态度:1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。
2.体会感悟数形结合的重要数学思想。
3.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
【重点难点】重点:函数单调性的概念,判断和证明简单函数的单调性。
难点:函数单调性概念(数学符号语言)的认知,应用定义证明单调性的代数推理论证。
关键:增函数与减函数的概念的理解。
授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪【教法分析】为了实现本节课的教学目标,在教法上我采取了:1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
【学法分析】在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。
然后通过对函数单调性的概念的学习理解,最终把问题解决。
整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
2 第2讲 函数的单调性与最值(2)
第2讲 函数的单调性与最值1.函数的单调性 (1)单调函数的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f(x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值与值域 (1)最值①函数的值域是函数在定义域内对应的函数值的取值范围,其求解关键是确定相应的最值.因此,求解函数的值域时要求出定义域内的所有极值和端点处的函数值,并进行比较,得到函数的最值. ②常见函数的值域一次函数的值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{y ∈R |y ≠0};指数函数的值域是{y |y >0};对数函数的值域是R ;正、余弦函数的值域是[-1,1],正切函数的值域是R .判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(4)闭区间上的单调函数,其最值一定在区间端点处取到.( ) 答案:(1)× (2)× (3)× (4)√下列函数中,在区间(0,+∞)上为增函数的是( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A .选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.(教材习题改编)函数y =(2m -1)x +b 在R 上是减函数,则( )A .m >12B .m <12C .m >-12D .m <-12解析:选B .使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.(教材习题改编)函数f (x )=x 2-2x ,x ∈ [-2,4]的单调递增区间为________,f (x )max =__________.解析:函数f (x )的对称轴为x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的单调递增区间为[-1,1]和[5,7]. 答案:[-1,1],[5,7]确定函数的单调性(区间)[典例引领](1)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性;(2)求函数f (x )=-x 2+2|x |+1的单调区间. 【解】 (1)(定义法)设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增.(2)(图象法)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).若将本例(2)中函数变为f (x )=|-x 2+2x +1|,如何求解?解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).[提醒] 对于函数y =f (φ(x ))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时为增函数;单调性不同时为减函数.[通关练习]1.判断函数y =2x 2-3x的单调性.解:因为f (x )=2x 2-3x =2x -3x ,且函数的定义域为(-∞,0)∪(0,+∞),而函数y =2x 和y=-3x 在区间(-∞,0)上均为增函数,根据单调函数的运算性质,可得f (x )=2x -3x 在区间(-∞,0)上为增函数.同理,可得f (x )=2x -3x 在区间(0,+∞)上也是增函数.故函数f (x )=2x 2-3x在区间(-∞,0)和(0,+∞)上均为增函数.2.作出函数y =|x 2-1|+x 的图象,并根据函数图象写出函数的单调区间.解:当x ≥1或x ≤-1时,y =x 2+x -1=⎝⎛⎭⎫x +122-54;当-1<x <1时,y =-x 2+x +1= -⎝⎛⎭⎫x -122+54.画出函数图象如图所示:由函数图象可知,函数的减区间为(-∞,-1],⎣⎡⎦⎤12,1,函数的增区间为⎣⎡⎦⎤-1,12,[1,+∞).求函数的最值(值域)[典例引领](1)(2018·福建漳州质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+a ,x ≤0,x +4x ,x >0有最小值,则实数a 的取值范围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,4)(2)函数y =x +x -1的最小值为________.【解析】 (1)(基本不等式法)由题意知,当x >0时,f (x )=x +4x≥2x ·4x=4,当且仅当x =2时取等号;当x ≤0时,f (x )=2x +a ∈(a ,1+a ],因此要使f (x )有最小值,则必须有a ≥4,故选B .(2)法一(换元法):令t =x -1,且t ≥0,则x =t 2+1,所以原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又因为t ≥0,所以y ≥14+34=1,故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在[1,+∞)内为增函数,所以y min =1. 【答案】 (1)B (2)1求函数最值的五种常用方法[通关练习]1.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为( )A .83B .43C .23D .1解析:选B .易知f (x )在[-2,0]上是减函数,所以f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43,故选B .2.函数f (x )=|x -1|+x 2的值域为________. 解析:因为f (x )=|x -1|+x 2=⎩⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1,所以f (x )=⎩⎨⎧⎝⎛⎭⎫x +122-54,x ≥1,⎝⎛⎭⎫x -122+34,x <1,作出函数图象如图,由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭⎫34,+∞函数单调性的应用(高频考点)函数单调性结合函数的图象以及函数其他性质的应用已成为近几年高考命题的一个新的增长点,常以选择、填空题的形式出现.高考对函数单调性的考查主要有以下三个命题角度: (1)比较两个函数值或两个自变量的大小; (2)解函数不等式; (3)求参数的值或取值范围.[典例引领]角度一 比较两个函数值或两个自变量的大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e ),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时, [f (x 2)-f (x 1)](x 2-x 1)<0恒成立, 知f (x )在(1,+∞)上单调递减. 因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e ), 所以b >a >c . 【答案】 D角度二 解函数不等式(2016·高考天津卷)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A .(-∞,12)B .(-∞,12)∪(32,+∞)C .(12,32)D .(32,+∞)【解析】 由f (x )是偶函数得f (-2)=f (2),再由偶函数在对称区间上单调性相反,得f (x )在(0,+∞)上单调递减,所以由2|a -1|<2,得|a -1|<12,即12<a <32.【答案】 C角度三 求参数的值或取值范围设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A .(-∞,1] B .[1,4] C .[4,+∞)D .(-∞,1]∪[4,+∞)【解析】 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D .【答案】 D利用函数单调性求解四种题型[通关练习]1.已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是( ) A .(1,2) B.⎝⎛⎦⎤1,32 C.⎣⎡⎭⎫32,2D.⎝⎛⎭⎫32,2解析:选C .由已知条件得f (x )为增函数,所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,所以a 的取值范围是⎣⎡⎭⎫32,2.故选C .2.(2018·甘肃肃南调研)已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是________.解析:因为函数f (x )=ln x +2x 在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得,f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5. 答案:(-5,-2)∪(2,5)函数单调性的常用结论(1)若f (x ),g (x )均是区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数. (2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反. (3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同.函数最值的有关结论(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值(最小值). (3)函数的值域一定存在,而函数的最值不一定存在.(4)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间上端点值就是函数的最值.易错防范(1)区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.(2)函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.(3)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论;②保证各段上同增(减)时,要注意端点值间的大小关系;③弄清最终结果是取并集还是取交集.1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数. 2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A.由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.“a =2”是“函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D .若函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减,则有-3a 2≥-2,即a ≤43,所以“a =2”是“函数f (x )=x 2+3ax -2在区间(-∞,-2]内单调递减”的既不充分也不必要条件.4.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6D .12解析:选C .由已知得,当-2≤x ≤1时,f (x )=x -2;当1<x ≤2时,f (x )=x 3-2.因为f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, 所以f (x )的最大值为f (2)=23-2=6.5.已知函数f (x )在[0,+∞)上为增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( ) A .(0,10) B .(10,+∞)C .⎝⎛⎭⎫110,10 D .⎝⎛⎭⎫0,110∪(10,+∞) 解析:选C.因为g (lg x )>g (1),g (x )=-f (|x |), 所以-f (|lg x |)>-f (1),所以f (|lg x |)<f (1). 又因为f (x )在[0,+∞)上是增函数, 所以|lg x |<1,所以-1<lg x <1, 所以110<x <10.6.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:67.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.若函数f (x )=⎩⎪⎨⎪⎧(a -1)x -2a ,x <2,log a x ,x ≥2(a >0且a ≠1)在R 上单调递减,则实数a 的取值范围是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧(a -1)x -2a ,x <2,log a x ,x ≥2(a >0且a ≠1)在R 上单调递减,则⎩⎪⎨⎪⎧a -1<0,0<a <1,log a2≤(a -1)×2-2a⇒22≤a <1,即实数a 的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,19.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, 因为f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x 2)>f (x 1),所以f (x )在(0,+∞)上是增函数.(2)因为f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又由(1)得f (x )在⎣⎡⎦⎤12,2上是单调增函数,所以f (12)=12,f (2)=2,易知a =25. 10.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 综上所述知0<a ≤1.1.(2018·石家庄市教学质量检测(一))已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为=( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:选B .因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B . 2.已知函数f (x )=4+x 2ln 1+x 1-x 在区间⎣⎡⎦⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =( ) A .0 B .2 C .4D .8解析:选D .令g (x )=x 2ln 1+x1-x,则g (-x )=(-x )2ln 1-x 1+x =-x 2ln 1+x 1-x=-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0, 即M -4+m -4=0,所以M +m =8.3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是__________.解析:在同一直角坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,不难看出函数f (x )在x =2时取得最大值6. 答案:64.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.解析:函数y =x 3在(-∞,0]上是增函数,函数y =ln(x +1)在(0,+∞)上是增函数,且x >0时,ln(x +1)>0,所以f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,解得-2<x <1,所以x 的取值范围是(-2,1). 答案:(-2,1)5.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立. (1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围. 解:(1)因为f (-1)=0,所以a -b +1=0, 所以b =a +1,所以f (x )=ax 2+(a +1)x +1. 因为对任意实数x 均有f (x )≥0恒成立,所以⎩⎪⎨⎪⎧a >0,Δ=(a +1)2-4a ≤0, 所以⎩⎪⎨⎪⎧a >0,(a -1)2≤0.所以a =1,从而b =2,所以f (x )=x 2+2x +1,所以F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1. 因为g (x )在[-2,2]上是单调函数,所以k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故k 的取值范围是(-∞,-2]∪[6,+∞) .6.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(2)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解:(1)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,所以g ′(x )=1-a x 2=x 2-ax2>0.因此g (x )在[2,+∞)上是增函数,所以f (x )在[2,+∞)上是增函数.则f (x )min =f (2)=ln a2.(2)对任意x ∈[2,+∞),恒有f (x )>0. 即x +ax -2>1对x ∈[2,+∞)恒成立.所以a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,所以h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。
【高中数学】第二课时 导数与函数的单调性(二)
第二课时导数与函数的单调性(二) 课标要求素养要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性. 进一步理解函数的导数和其单调性的关系,提升数学运算素养与直观想象素养.题型一含参数函数的单调性【例1】讨论函数f(x)=12ax2+x-(a+1)ln x(a≥0)的单调性.解函数f(x)的定义域为(0,+∞),f′(x)=ax+1-a+1x=ax2+x-(a+1)x.①当a=0时,f′(x)=x-1 x,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.②当a>0时,f′(x)=a⎝⎛⎭⎪⎫x+a+1a(x-1)x,∵a>0,∴a+1 a>0.由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.综上所述,当a≥0时,f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.规律方法(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数的定义域内讨论,还要确定导数为0的点和函数的间断点.【训练1】求函数f(x)=1x2+a ln x(a∈R)的单调递减区间.解 易得函数f (x )的定义域是(0,+∞),f ′(x )=-2x 3+a x =ax 2-2x 3. ①当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 故f (x )在(0,+∞)上单调递减. ②当a >0时,若0<x <2a ,则f ′(x )<0;若x >2a ,则f ′(x )>0,所以f (x )在⎝⎛⎭⎪⎫0,2a 上单调递减,在⎝⎛⎭⎪⎫2a ,+∞上单调递增. 综上可知,当a ≤0时,f (x )的单调递减区间为(0,+∞),当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫0,2a . 题型二 根据函数的单调性求参数【例2】 (1)若函数f (x )=(x 2-cx +5)e x 在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,则实数c 的取值范围是( ) A.(-∞,2] B.(-∞,4] C.(-∞,8]D.[-2,4](2)已知函数f (x )=ln x +(x -b )22在⎣⎢⎡⎦⎥⎤12,2上存在单调递增区间,则实数b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,94 B.(-∞,3) C.⎝ ⎛⎭⎪⎫-∞,32 D.(-∞,2)解析 (1)易得f ′(x )=[x 2+(2-c )x -c +5]e x .∵函数f (x )在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,等价于x 2+(2-c )x -c +5≥0对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立, ∴c ≤x 2+2x +5x +1对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立.∵x ∈⎣⎢⎡⎦⎥⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.(2)易得f ′(x )=12x +x -b =2x 2-2bx +12x .根据题意,得f ′(x )>0在⎣⎢⎡⎦⎥⎤12,2上有解.令h (x )=2x 2-2bx +1,因为h (0)=1>0,所以只需h (2)>0或h ⎝ ⎛⎭⎪⎫12>0,解得b <94,故选A.答案 (1)B (2)A规律方法 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,利用分离参数或函数性质解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围,然后检验参数取“=”时是否满足题意.(2)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解(需验证解的两侧导数是否异号).【训练2】 若函数f (x )=x 3-12x 在区间(k -1,k +1)上不单调,则实数k 的取值范围是( )A.(-∞,-3]∪[-1,1]∪[3,+∞)B.(-3,-1)∪(1,3)C.(-2,2)D.不存在这样的实数k解析 由题意得,f ′(x )=3x 2-12=0在区间(k -1,k +1)上至少有一个实数根. 又f ′(x )=3x 2-12=0的根为±2,且f ′(x )在x =2或-2两侧导数异号,而区间(k -1,k +1)的区间长度为2,故只有2或-2在区间(k -1,k +1)内, ∴k -1<2<k +1或k -1<-2<k +1, ∴1<k <3或-3<k <-1,故选B. 答案 B题型三 函数单调性的应用【例3】(1)已知f(x)为R上的可导函数,其导函数为f′(x),且对于任意的x∈R,均有f(x)+f′(x)>0,则()A.e-2 019f(-2 019)<f(0),e2 019f(2 019)>f(0)B.e-2 019f(-2 019)<f(0),e2 019f(2 019)<f(0)C.e-2 019f(-2 019)>f(0),e2 019f(2 019)>f(0)D.e-2 019f(-2 019)>f(0),e2 019f(2 019)<f(0)(2)已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)·f(x2-1)的解集是()A.(0,1)B.(2,+∞)C.(1,2)D.(1,+∞)解析(1)构造函数h(x)=e x f(x),则h′(x)=e x f(x)+e x f′(x)=e x(f(x)+f′(x))>0,所以函数h(x)在R上单调递增,故h(-2 019)<h(0),即e-2 019f(-2 019)<e0f(0),即e-2 019f(-2 019)<f(0).同理,h(2 019)>h(0),即e2 019f(2 019)>f(0),故选A.(2)构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以x+1<x2-1,解得x>2或x<-1(舍).所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).故选B.答案(1)A(2)B【迁移1】把例3(1)中的条件“f(x)+f′(x)>0”换为“f′(x)>f(x)”,比较e2 019f(-2 019)和f(0)的大小.解令g(x)=f(x)e x,则g′(x)=f′(x)-f(x)e x,因为对任意的x∈R,都有f′(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,所以h(-2 019)<h(0),即f (-2 019)e-2 019<f (0)e 0,所以e 2 019f (-2 019)<f (0). 【迁移2】 把例3(2)中的条件“f (x )<-xf ′(x )”换为“f (x )<xf ′(x )”,解不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1).解 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,∵f (x )<xf ′(x ),∴g ′(x )>0,故g (x )在(0,+∞)上是增函数, 由(x 2+1)f (2x +1)>(2x +1)f (x 2+1)得 f (2x +1)2x +1>f (x 2+1)x 2+1即g (2x +1)>g (x 2+1),所以⎩⎨⎧2x +1>0,2x +1>x 2+1,解得0<x <2. 即不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1)的解集为(0,2).规律方法 用函数单调性比较大小或解不等式时常构造函数,常见的有: (1)对于f ′(x )>g ′(x ),构造h (x )=f (x )-g (x ). (2)对于f ′(x )+g ′(x )>0,构造h (x )=f (x )+g (x ). (3)对于f ′(x )+f (x )>0,构造h (x )=e x f (x ). (4)对于f ′(x )>f (x ),构造h (x )=f (x )e x . (5)对于xf ′(x )+f (x )>0,构造h (x )=xf (x ). (6)对于xf ′(x )-f (x )>0,构造h (x )=f (x )x .【训练3】 (多选题)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )sin x <0,则下列判断中正确的是( ) A.f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4 B.f ⎝ ⎛⎭⎪⎫ln π3>0C.f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin xcos 2x,因为f ′(x )cos x +f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减, 又π6<π4,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4, 即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错;又π6>π3,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确; 又π4<π3,所以g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确;故选CD.答案 CD一、素养落地1.通过学习导数与函数的单调性,提升数学运算与逻辑推理素养.2.对于含参数的导数的单调性,要清楚分类讨论的标准,做到不重不漏.3.利用函数的单调性求参数的取值范围的关键是转化为不等式的恒成立问题或存在性问题,再利用分离参数法或函数的性质求解. 二、素养训练1.设函数f (x )=2x +sin x ,则( ) A.f (1)>f (2)B.f (1)<f (2)C.f(1)=f(2)D.以上都不正确解析f′(x)=2+cos x>0,故f(x)是R上的增函数,故f(1)<f(2). 答案 B2.若f(x)=13x3-ax2的单调减区间是(0,2),则正数a的值是()A.1B.2C.3D.4解析f′(x)=x2-2ax,令f′(x)<0,由于a>0,故解得0<x<2a,故2a=2,即a=1. 答案 A3.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D4.若函数y=x2-2bx+6在(2,8)内是增函数,则实数b的取值范围是________. 解析由题意得y′=2x-2b≥0在(2,8)内恒成立,即b≤x在(2,8)内恒成立,所以b≤2.答案(-∞,2]5.若f(x)=-12x2+b ln(x+2)在(-1,+∞)上是减函数,则b的取值范围是________.解析∵f(x)在(-1,+∞)上为减函数,∴f′(x)≤0在(-1,+∞)上恒成立.∵f′(x)=-x+bx+2,∴-x+bx+2≤0在(-1,+∞)上恒成立,即b≤x(x+2)在(-1,+∞)上恒成立. 设g(x)=x(x+2)=(x+1)2-1,则当x>-1时,g(x)>-1,∴b≤-1.答案(-∞,-1]基础达标一、选择题1.已知函数f(x)=e xx,当1<x<3时,下列关系正确的是()A.f(x)<f(x)<f2(x)B.f(x)<f(x)<f2(x)C.f2(x)<f(x)<f(x)D.f2(x)<f(x)<f(x)解析由题意得f′(x)=(x-1)e xx2,当1<x<3时,f′(x)>0,所以f(x)在(1,3)上单调递增.又1<x<x<3,所以f(x)<f(x).由f(x)在(1,3)上单调递增,可知当x∈(1,3)时,f(x)>f(1)=e,所以f2(x)>f(x).综上f(x)<f(x)<f2(x).答案 A2.已知函数f(x),g(x)对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且当x>0时,有f′(x)>0,g′(x)>0,则当x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0解析由已知,得f(x)为奇函数,g(x)为偶函数.∵当x>0时,f′(x)>0,g′(x)>0,∴f(x),g(x)在(0,+∞)上均单调递增,∴f(x)在(-∞,0)上单调递增,g(x)在(-∞,0)上单调递减,∴当x<0时,f′(x)>0,g′(x)<0.答案 B3.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a=()A.1B.2C.0D. 2解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,∴a2≥1,得a≥2.g′(x)=2x-a x ,依题意g ′(x )≥0在(1,2)上恒成立,即2x 2≥a 在x ∈(1,2)时恒成立,有a ≤2,∴a =2. 答案 B4.已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)解析 f ′(x )=-3x 2+2ax -1,由题意,可知f ′(x )=-3x 2+2ax -1≤0在R 上恒成立,∴(2a )2-4×(-3)×(-1)≤0,解得-3≤a ≤ 3. 答案 B5.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎣⎢⎡⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32 解析 由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x .令f ′(x )=0,解得x =12或x =-12(舍去).当0<x <12时,f ′(x )<0,函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上单调递减;当x >12时,f ′(x )>0,函数f (x )在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增.因为函数f (x )在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32.又k -1≥0,所以1≤k <32.故选C. 答案 C 二、填空题6.若函数f (x )=(x 2+mx )e x 的单调递减区间是⎣⎢⎡⎦⎥⎤-32,1,则实数m 的值为________.解析 f ′(x )=[x 2+(m +2)x +m ]e x .因为f (x )的单调减区间是⎣⎢⎡⎦⎥⎤-32,1,所以f ′(x )=0的两个根分别为x 1=-32,x 2=1,即⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-32=0,f ′(1)=0,解得m =-32.答案 -327.函数f (x )=13x 3-12(2a +1)x 2+(a 2+a )x +4的单调减区间是________.解析 f ′(x )=x 2-(2a +1)x +a 2+a =[x -(a +1)](x -a ),令f ′(x )<0,得a <x <a +1,故f (x )的减区间是(a ,a +1). 答案 (a ,a +1)8.已知f (x )是定义在R 上的奇函数,且f (2)=0,若当x >0时,xf ′(x )+f (x )>0,则不等式xf (x )>0的解集是________. 解析 由题意设g (x )=xf (x ), 则g ′(x )=xf ′(x )+f (x ).∵当x >0时,xf ′(x )+f (x )>0,∴g (x )在(0,+∞)上单调递增. ∵f (x )是定义在R 上的奇函数, ∴g (x )是定义在R 上的偶函数. 又f (2)=0,则g (2)=2f (2)=0, ∴不等式xf (x )>0等价于g (x )>0=g (2), ∴|x |>2,解得x <-2或x >2,∴不等式xf (x )>0的解集是(-∞,-2)∪(2,+∞). 答案 (-∞,-2)∪(2,+∞) 三、解答题9.已知函数f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a >0,求函数f (x )的单调区间. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴f ′(1)=4.又f (1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0. (2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ),由f ′(x )=0得x =-a 或x =a3. 又a >0,由f ′(x )<0,得-a <x <a3, 由f ′(x )>0,得x <-a 或x >a3,故f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为()-∞,-a 和⎝ ⎛⎭⎪⎫a 3,+∞.10.试讨论函数f (x )=kx -ln x 的单调区间. 解 函数f (x )=kx -ln x 的定义域为(0,+∞), f ′(x )=k -1x =kx -1x .当k ≤0时,kx -1<0,∴f ′(x )<0, 则f (x )在(0,+∞)上单调递减. 当k >0时,由f ′(x )<0,即kx -1x <0, 解得0<x <1k ; 由f ′(x )>0,即kx -1x >0,解得x >1k. ∴当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.综上所述,当k ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间; 当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.能力提升11.已知函数f (x )=x ln x +x (x -a )2(a ∈R ).若存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得f (x )>xf ′(x )成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,+∞ B.⎝ ⎛⎭⎪⎫32,+∞ C.(2,+∞)D.(3,+∞)解析 由f (x )>xf ′(x )成立,可得⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0.设g (x )=f (x )x =ln x +(x -a )2,则存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得g ′(x )=1x +2(x -a )<0成立,即a >⎝ ⎛⎭⎪⎫x +12x min .又x +12x ≥2x ·12x =2,当且仅当x =12x ,即x =22时取等号,所以a > 2.故选C. 答案 C12.已知函数f (x )=x 3+ax 2+x +1,a ∈R . (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3). 当Δ>0,即a >3或a <-3时, 令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33.故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R上单调递增.(2)由(1),知只有当a >3或a <-3时, f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数,所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).创新猜想13.(多选题)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x ),对任意的x ∈R 恒成立,则( ) A.f (ln 2)<2f (0) B.f (2)<e 2f (0) C.f (ln 2)>2f (0)D.f (2)>e 2f (0)解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x <0,故g (x )在R 上单调递减,而ln 2>0,2>0,故g (ln 2)<g (0),g (2)<g (0),即f (ln 2)2<f (0)1,f (2)e 2<f (0)1,所以f (ln 2)<2f (0),f (2)<e 2f (0). 答案 AB14.(多空题)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,则实数a 的取值范围是________; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,则实数a 的取值范围是________. 解析 (1)由题知h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.由h (x )在(0,+∞)上存在单调递减区间,可得当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x (x >0),所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.因为a ≠0,所以-1<a <0或a >0.(2)由h (x )在[1,4]上单调递减,得当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.设H (x )=1x 2-2x ,x ∈[1,4],所以a ≥H (x )max ,而H (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以H (x )max =-716(此时x =4). 因为a ≠0,所以-716≤a <0或a >0.答案 (1)(-1,0)∪(0,+∞) (2)⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞)高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
函数的单调性(2)
函数单调性的应用: 函数单调性的应用: 例1、判断函数 、判断函数y= 2x +1+ 4x −13在其定 义域内的单调性,并求其值域。 义域内的单调性,并求其值域。 、(1) 例2、( )函数 、( 函数f(x)在(0,+∞)上是减函数, 在 , )上是减函数, 2-a+1)与 3 的大小关系。 求f(a 与f ( ) 的大小关系。
增函数=增函数 (3)在相同的区间内,增函数 增函数 增函数,增函 )在相同的区间内,增函数+增函数 增函数, 数-减函数 增函数 减函数=增函数 减函数 (1)函数y=-f(x)与函数 )函数 与函数y=f(x)的单调性相反; 的单调性相反; 与函数 的单调性相反
单调性的判断方法:定义法、图象法、 单调性的判断方法:定义法、图象法、性质法
4
是增函数, (2)定义在 (0,+∞)的函数 ) , )的函数f(x)是增函数, 是增函数 满足f(xy)=f(x)+f(y),f(8)=3,解不等式 满足 , , f(x)+f(x-2)>3
1 上是增函数, 的取值范围。 间 ( ,1) 上是增函数,求f(2)的取值范围。 的取值范围 2
例3、如果二次函数 、如果二次函数f(x)=x2-(a-1)x+5在区 在区
小结: 小结:
运用已知函数的单调性, 运用已知函数的单调性可以得到以下的结论
) (1)若f(x) ≥0,则 y = f (x的单调性与函数y=f(x)的 ) , 的单调性与函数 的 单调性相同; 单调性相同;
1 2) f(x)恒为正或恒为负时 恒为正或恒为负时, 与函数 (2)当f(x)恒为正或恒为负时,函数 y = f (x) y=f(x)的单调性相反; 的单调性相反; 的单调性相反
函数的单调性2
判断:1)函数 f (x)= x2 在, 是单调增函数;
y
y x2
o
x
(1)在单调区间上,增函数的图象是上升的,减函数的图象是 下降的。
(2)函数单调性是针对某个区间而言的,是一个局部性质;
(判3)断x:1,2)x定2义取在值的R上任意的性函数 f (x)满足 f (2)> f(1),则
§1.3 函数的单调性
连线题:
蒸蒸日上
每况愈下 波澜起伏
y
y
y
ox
A
ox
B
ox
C
观察下列各个函数的图象,并说说它们 分别反映了相应函数的哪些变化规律:
1、观察这三个图象,你能说出图象的特征吗? 2、随x的增大,y的值有什么变化?
画出下列函数的图象,观察其变化规律:
f(x) = x
1、从左至右图象上升还是下降 _上_升__? 2、在区间 (_-_∞__,+__∞_)_上,随着x的增大,f(x)的值随 着增_大_____ .
我例们3、,物对理于学一中定的量玻的意气耳体定,律当其p 体Vk积(kV为减正小常时数,) 告压诉 强p将增大。试用函数的单调性证明之。
证明:根据单调性的定义,设V1,V2是定义域 取值
(0,+∞)上的任意两个实数,且V1<V2,则
p(V1) 由V1,V2∈
(0,p(V+2∞) )且VkV1 1<VkV2 2,k得VV2V1V1VV2 12>0,
O
D x1 x2
x
y
图象在区间D逐渐上升
区间D内随着x的增大,y也增大
N
f(x2)
函数单调性(2)
在(0,+∞)上是减函数。
下面证明过程是否正确?
证明:设x1,x2是(0,+∞)上任意两个实数,且x1<x2,
则 f(x1)- f(x2)= 所以f(x1)- f(x2)>0 即f(x1)> f(x2)
1
1 x1 1 x2 0
所以f(x)=
x
在(0,+∞)上是减函数。
练 习 巩 固
练 习 2.证 明 函 数 f ( x ) 1 x 在 0, )上 是 增 函 数 .
(函数在一个点上没有单调性)
例1.物理学中的玻意定律 p =
k V
(k为正常数)告诉我们,对于一定量的气体, 当体积V减小时,压强P将增大.试用函数的 单调性证明之.
例 题 讲 解
例2。证明函数f(x)=x2+2在(-∞,0)上是减函数。
证明:设x1,x2是(-∞,0)上的任意两个实数, 且 x1<x2 , f(x1)-f(x2)=(x1 2+2)-(x22+2)
作业
P39 习题1.3 A组2
(2)函数f(x)=x2在(0,+∞)上是增函数.
注意: 证明函数的单调性要严格按照单调性的定义去证明, 其步骤可分为:取值、作差、变形、定号、判断五步。 变形:将f(x1)-f(x2)通过因式分解、配方、有理化等 方法,向有利于判断差的符号的方向变形。
例 题 讲 解
例3、证明函数f(x)=
1 x
取值 作差 变形
= x12- x22 =(x1-x2)(x1+x2) 由x1<x2<0 ,得 x1- x2 <0 , x1+x2<0
所以,(x1-x2)(x1+x2)>0
1.3.1 函数单调性2(屠编)
河南省实验中学 屠新民编
复习准备
1、函数单调性的 、 定义是什么? 定义是什么? 2、证明函数单调 、 性的步骤是什么? 性的步骤是什么? 3、现在已经学过的 、 判断函数单调性有 些什么方法? 些什么方法? 数值列表法(不常用)、 数值列表法(不常用)、 图象法、 图象法、 定义法. 定义法
河南省实验中学 屠新民编
f ( x), f n( x)
(n > 1)
也是增函数. 也是增函数
河南省实验中学 屠新民编
f[g(x)]
题型三: 题型三:利用已知函数单调性进行判断
练习: 练习:求函数 答案: 答案: (-∞, -3]单减区间 - 单减区间; 单减区间 [2,+∞)单增区间 单增区间. 单增区间
f ( x) =
当k>0时,单调性相同; 即有 <y ,由定义可知,y=3- 时 单调性相同; 即有y 由定义可知, = - 1 2 由定义可知 上为增函数. 在 上为增函数 当k<0时,单调性相反 2f(x)在A上为增函数 时 单调性相反.
河南省实验中学 屠新民编
题型三: 题型三:利用已知函数单调性进行判断
结论3: 结论 :若f(x)与g(x)在 与 在 R上是增函数,则 上是增函数, 上是增函数 f(x)+g(x)也是增函数 也是增函数. 也是增函数 结论5: 结论 :若f(x)(其中 其中 f(x)>0)在某个区间上 在某个区间上 为增函数, 为增函数,则
题型一: 题型一:用定义证明函数的单调性
例1、判断函数 3 f(x)=-x +1在(-∞,0) 是减函数,证明如下: 是减函数,证明如下: 上是增函数还是减函 在 ∞ 0)上任取 1 , x2 ,且 1 < x2 ( , x x 并证明你的结论; 数,并证明你的结论; Q f ( x1 ) f ( x2 ) = (x13 + 1) (x23 + 1) 如果x∈(0,+∞), 2 2 = ( x2 x1 )( x1 + x x2 + x2 ) 函数f(x)是增函数还是 x2 2 3 2 = ( x2 x1 )( x1 + ) + x2 减函数? 减函数? 2 4 又Qx2 x1 > 0, 证明函数单调性 x2 2 3 2 的问题, 的问题,只需严格 (x1 + ) + x2 > 0, 2 4 按照定义的步骤就 ∴ f (x1) f (x2 ) > 0,即f (x1) > f (x2 ). 可以了. 可以了
2.5.2 函数的单调性与反函数(二)
2011-3-9
8
§2.5.2 函数的单调性与反函数(二)
3.设函数 f(x)=kx3+3(k-1)x2-k2+1. (1)当 k 为何值时 函数 设函数 当 为何值时, f(x) 的单调递减区间是 (0, 4); (2)当 k 为何值时 函数 f(x) 当 为何值时, 内单调递减. 在(0, 4)内单调递减 内单调递减 解: 对 f(x) 求导得 f ′(x)=3kx2+6(k-1)x, (1)∵函数 f(x) 的单调递减区间是(0, 4), ∵ 的单调递减区间是( ) ∴不等式 f ′(x)<0 的解集为(0, 4), 的解集为( ) 的解集为( ) 即 kx2+2(k-1)x<0 的解集为(0, 4), 的两根, ∴0 与 4 是方程 kx2+2(k-1)x=0 的两根 1 故由根与系数的关系可求得 k 值为 3 .
3
§2.5.2 函数的单调性与反函数(二)
四、复合函数的单调性
复合函数 f[g(x)] 的单调性与构成它的函数 u=g(x), y=f(u) 的单调性密切相关, 其规律如下: 的单调性密切相关 其规律如下:
函数 u=g(x) y=f(u) y=f[g(x)]
增 增 增
单调性 增 减 减 增 减 减
2011-3-9
9
§2.5.2 函数的单调性与反函数(二)
3.设函数 f(x)=kx3+3(k-1)x2-k2+1. (1)当 k 为何值时 函数 设函数 当 为何值时, f(x) 的单调递减区间是 (0, 4); (2)当 k 为何值时 函数 f(x) 当 为何值时, 内单调递减. 在(0, 4)内单调递减 内单调递减 解: 对 f(x) 求导得 f ′(x)=3kx2+6(k-1)x, (2)命题等价于 kx2+2(k-1)x<0 对 x∈(0, 4) 恒成立 命题等价于 恒成立, ∈ 等价于 kx+2(k-1)<0 对 x∈(0, 4) 恒成立 恒成立, ∈ 设g(x)=kx+2(k-1), 的图象为一条直线, 由于 g(x) 的图象为一条直线 g(0)≤0 ⇒k≤ 1. 则 g(4)≤0 3 2 (或分离变量 ⇔ k< x+2 对 x∈(0, 4) 恒成立.) ∈ 恒成立 )
函数的单调性(二)
详细描述
图像法是直观判断函数单调性的方法。通过 观察函数的图像,如果图像从左到右上升, 即随着x的增大,y的值也增大,则函数在该 区间内单调递增;如果图像从左到右下降, 即随着x的增大,y的值减小,则函数在该区 间内单调递减。
函数单调性的应用
总结词
利用函数单调性解决不等式问题、求最值问 题、证明不等式等。
函数的单调性(二)
目录
• 函数的单调性定义 • 判断函数单调性的方法 • 常见函数的单调性 • 单调性与极值 • 单调性与不等式
01 函数的单调性定义
单调增函数
定义
对于函数$f(x)$在区间$I$上,如果对于任意$x_{1}, x_{2} in I$,当$x_{1} < x_{2}$时,都有$f(x_{1}) leq f(x_{2})$,则称$f(x)$在区间$I$上单调递增。
VS
详细描述
定义法是判断函数单调性的基本方法。根 据函数单调性的定义,如果在区间内任意 两点x1和x2,都有f(x1)<f(x2),则函数在 该区间内单调递增;反之,如果 f(x1)>f(x2),则函数在该区间内单调递减。
图像法
总结词
通过观察函数图像判断函数单调性,如果图 像从左到右上升,则函数单调递增;如果图 像从左到右下降,则函数单调递减。
举例
函数$f(x) = frac{1}{x}$在区间$(0, +infty)$上单调递减。
复合函数的单调性
定义
如果两个函数$f(x)$和$g(x)$满足条件$f[g(x)] = g[f(x)]$,则称这两个函数为互为反函数。如果函数$y = f(g(x))$和$y = g(f(x))$的单调性相同,则称这两个函数为单调增函数;如果它们的单调性相反,则称这两个函数 为单调减函数。
函数的单调性(2)全面版
因此,f(x)的递增区间是: (2k2,2k2)k (Z);
递减区间是:
(2k23,2k43)k (Z).
3
3
(2)f(x)=x/2-ln(1+x)+1
解:函数的定义域是(-1,+∞), f(x)1 1 x1 .
2 1x 2(1x)
由 f(x)0即 2(x11x)0,得x<-1或x>1.
单调函数的图象特征
G=(a,b)
y
y
减函 数
增函 数
oa
bx
oa
bx
若 f(x) 在G上是增函数或减函数, 则 f(x) 在G上具有严格的单调性。
G 称为单调区间
二、新课:
我们已经知道,曲线y=f(x)的切线的斜率就是函数y=
f(x)的导数.
从函数y=x2-4x+3的图像可以看到:
在区间(2,+∞)内,切线的斜
例1:确定函数f(x)=x2-2x+4在哪个区间内是增函数,哪个 区间内是减函数.
解: f(x)2x2.
由2x-2>0,解得x>1,因此,当 x(1,)时,f(x)是增函 数; 令2x-2<0,解得x<1,因此,当 x(,1)时,f(x)是减函 数. 例2:讨论f (x)=x3-6x2+9x-3的单调性.
[ 1 , ) 3
变式:设f(x)=ax3+x恰有三个单调区间,试确定a的取值 范围,并求其单调区间.
故a<0,其单调区间是: 单调递增区间:( 1 , 1 ).
3a 3a
单调递减区间:
( ,
1 )和 (
3a
1 , ). 3a
例4:若函数 f(x)1x31a2x(a1)x1在区间 32
函数的单调性(2)
总结: 对于函数的定义域I内某个区间D上的任意两个自 变量的值 x1 ,x2 ,当 x1 <x2 时,都有 f (x1 )<f (x2 ) , 则在这个区间D上是 增函数 ; x1 <x2 当 时,都有 f (x1 )>f (x2 ) ,则在这个区间D上 是 减函数 。
函数的单调性
生活中的一些实例
1.同学们爬山的时候,上山过程中时间越来 越 ,高度越来越 ;下山过程中时间 越来越 ,高度越来越 。 2.同学们在食堂打开水吗?时间越 ,瓶 子中的水就越 ;倒水的时候,时间 越 ,瓶子中的水就越 。
1.同学们爬山的时候,上山过程中时间越来越 长 ,高度越来越 高 ;下山过程中时间越 来越 长 ,高度越来越 ห้องสมุดไป่ตู้ ; 2.同学们在食堂打开水吗?时间越 长 ,瓶 子中的水就越 多 ;倒水的时候,时间越 长 ,瓶子中的水就越少 3. 请再举一些生活中一个变量变化时,引起另 一个变量变化的例子
观察函数 列问题。
y =x +2 , y =-x+2 ,
y =x,
2
1 y = ,的图象,思考下 x
上述图象用上升和下降来描述有什么变化规律?对于自变量的变化,相 应的函数值有哪些变化规律?
总结: 对于函数的定义域I内某个区间D上的任意两个自变 量的值 x1 ,x2 ,当 时,都有 ,则 在这个区间D上是 增函数 ; 当 时,都有 ,则在这个区间D上 是 减函数 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数单调性教学设计
本节课是高中数学新课程标准必修1的第2章函数里的函数基本性质中介绍的第一个性质。
它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数各类函数的单调性的基础,而且函数单调性在解决函数变化趋势、值域、最值、不等式等许多问题中有着广泛的应用。
对整个高中数学教学起着重要的奠基作用。
研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
下面我就这部分内容的习题教学提出一些不成熟的做法。
教学目标:
(1)在知识方面,通过习题训练,使学生能加深对函数单调性概念的理解,进一步掌握判断并证明函数的单调性方法、学会应用函数的单调性解决相关问题。
(2)在能力方面,培养学生归纳、抽象以及推理的能力,提高学生创新的意识,并渗透数形结合的思想。
(3)在价值观和情感教育方面,让学生在解题的过程中体验数学美,培养学生乐于求索的精神,提高学生的数学修养,使其养成科学、严谨的研究态度。
教学重点和难点:
本节课的教学重点是函数单调性的判定、证明及应用。
其中的教学难点是函数单调性的应用和复合函数单调性的理解。
教法和学法:
在教法上采用传统的讲练结合。
在具体实施上,将采用计算机辅助教学的手段,为了贴切地服务于教学目标,课件的制作是为了能更好的讲练习题,提高课堂效率,用是PowerPoint 软件。
而学生在学习过程中不仅要训练知识技能,还要达到思维的训练,因此这节课要以学生为主体,给学生充足的活动空间。
作为教师,我要做好启发和规范地指导,引领学生大胆地探索,并培养其严谨的数学品质。
教学过程设计:
大概分为复习回顾、例题讲解、规律小结、巩固练习四个版块,最后布置作业。
下面为每部分的具体构思。
1、复习分为概念回顾和基础练习两部分,预计费时7到8分钟左右,其中概念为(1)函数单调性和单调区间的定义以及用定义证明函数单调性的步骤,(2)怎么判断函数单调性及单调区间——可以用定义法,也可以从图象上观察。
形式主要由学生口答。
基础练习部分选择了5道小题目,课件形式给出,请学生口答,内容涉及单调性的理解,一次函数、二次函数的单调性,最后一题让学生们画出图象,观察图象的“升降”写出单调区间,渗透数形结合的思想,都是小题目,难度小,用时少,但紧扣概念,也让学生迅速热身,无形中抓住了学生的课堂注意力。
2、例题选择方面:
关于例1、试判断函数)11(1)(2<<--=
x x x x f 的单调性并证明; 变式:讨论函数)11(1
)(2<<--=x x ax x f 的单调性。
选择这个题目是为了让学生更好地掌握定义法证明函数单调性的方法和基本步骤,变式的选择是为培养学生分情况讨论的意识和能力,讲解过程中要注意证明的规范性,进一步培养学生严谨、规范的科学态度和品质。
关于例2、求函数2
12+--=x x y 的值域。
函数单调性的一个很重要的应用是求函数的值域或最值,选择这道题,教会学生利用单调性来求函数值域的方法。
让学生体会利用单调性求值域时的简捷有效。
丰富学生的知识体系。
关于例3、已知函数)(x f 是定义在),0(+∞上的增函数,且)()()(y f x f y
x
f -= (1)求)1(f 的值
(2)若,1)3(=f 解不等式2)5(<+x f
这是一道抽象函数的题目,对于求出)1(f 、)9(f 分别是0和2用的是赋值法,这是抽象函数中常用的方法,不等式变为)9()5(f x f <+,应用函数单调性,将抽象函数函数值的大小关系,转化为自变量之间的大小关系,即⎩⎨⎧>+<+0
595x x ,提醒学生注意函数定义域!
选择这个抽象函数的例子,目的就是让学生体会并掌握怎么样利用单调性转化函数和自变量的大小关系。
关于例4、已知)(x f 是R 上的减函数,x x x g 4)(2
+-=,求函数))(()(x g f x h =的单调增区间。
最终的那个函数明显是个复合函数,函数)(x g 图象的对称轴是2=x ,开口向下,在),2[+∞上递减,又)(x f 也递减,所以),2[+∞是个增区间。
本题小结:两个函数单调性相同则复合后是增,相反则复合后是减。
3、关于这部分的课堂小结:
我们可以应用函数的单调性求函数值域、解不等式,以及证明一些代数命题。
4、关于巩固练习题目方面的选择:
这部分选两题,类型在例题中已出现,其中第一个要先证明函数的单调性,再求值域。
而第二题则先要判断单调性,再进行证明,确定了单调性之后再应用到三角形的问题中,使学生在解题的过程中体会在一些代数不等式证明中如何应用函数单调性的。
这部分让学生自己做,用投影仪和板书结合,规范其书写和论证。
5、关于作业布置方面:
结合本节课的讲解内容,为进一步巩固教学成果,在作业题型选择上,本人力求做到紧扣和深化上课内容。
一共有三大题,第一题是求单调区间,其中要用图形,数形结合;第二题要利用例4的小结“两个函数单调性相同则复合后是增,相反则复合后是减。
”;第三题是抽象函数题,与课上的例3类型一样,让学生课后练习巩固。