1993年第十届全国初中数学联赛决赛试卷
10届数学试题及答案
10届数学试题及答案在本次10届数学竞赛中,我们精心准备了一套试题,旨在测试参赛者的数学知识和解题技巧。
以下是本次竞赛的试题及其答案。
试题一:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。
答案:首先,我们识别这是一个二次方程。
通过因式分解,我们得到:\[ (x - 2)(x - 3) = 0 \]因此,方程的根为 \( x = 2 \) 和 \( x = 3 \)。
试题二:计算圆的面积,其中圆的半径为5厘米。
答案:圆的面积公式为 \( A = \pi r^2 \),其中 \( r \) 是半径。
将半径\( r = 5 \) 厘米代入公式,我们得到:\[ A = \pi \times 5^2 = 25\pi \]所以,圆的面积为 \( 25\pi \) 平方厘米。
试题三:一个长方体的长、宽、高分别为3米、2米和1米,求其体积。
答案:长方体的体积公式为 \( V = l \times w \times h \),其中 \( l \) 是长度,\( w \) 是宽度,\( h \) 是高度。
将给定的尺寸代入公式,我们得到:\[ V = 3 \times 2 \times 1 = 6 \]因此,长方体的体积为6立方米。
试题四:计算函数 \( f(x) = 2x^3 - 3x^2 + x - 5 \) 在 \( x = 1 \) 时的值。
答案:将 \( x = 1 \) 代入函数中,我们得到:\[ f(1) = 2 \times 1^3 - 3 \times 1^2 + 1 - 5 = 2 - 3 + 1 - 5 = -5 \]所以,函数在 \( x = 1 \) 时的值为 -5。
试题五:一个班级有40名学生,其中30名男生和10名女生。
如果随机选择一名学生,选择到男生的概率是多少?答案:选择到男生的概率是男生人数除以总人数。
因此,概率为:\[ P(\text{男生}) = \frac{30}{40} = \frac{3}{4} \]所以,选择到男生的概率为 \( \frac{3}{4} \)。
历届全国初中数学联赛试卷及答案
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试11=S 3S =132=S120135xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22 (C)23(D)21-.答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
全国初中数学竞赛试题及答案(1993年)
1993年全国初中数学联合竞赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于 (A)cb a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( ) 8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D ,E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ;(3)求c b ,所有可能的值.。
0全国初中数学竞赛试题与答案
1993年全国初中数学联合竞赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612x x 除以12x 的余式是(A)1; (B)-1; (C)1x ; (D)1x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A)Ⅰ,Ⅱ都对 (B)Ⅰ对,Ⅱ错 (C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错.3.设x 是实数,11x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ4.实数54321,,,,x x x x x 满足方程组.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a ,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x ; (B)53124x x x x x ;(C)52413x x x x x ; (D)24135x x x x x . 5.不等式73)1(12x x x 的整数解的个解(A)等于4 (B)小于4 (C)大于5 (D)等于5 6.在ABC 中,BC AO O A ,,是垂心是钝角, 则)cos(OCB OBC 的值是(A)22(B)22(C)23(D)21.答( )7.锐角三角ABC 的三边是a, b, c,它的外心到三边的距离分别为m, n, p,那么m:n:p 等于(A)c b a 1:1:1; (B)cb a ::(C)CB A cos :cos :cos (D)C B A sin :sin :sin .答( ) 8.13333)919294(3可以化简成(A))12(333; (B))12(333(C)123(D)123答( )二.填空题1.当x 变化时,分式15632212x x x x的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x )4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,30A .以BC 边为直径作圆,与AB, AC分别交于D, E,连接DE, 把三角形ABC 分成三角形ADE 与四边形BDEC,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S 的值变小,变大,还是不变?证明你的结论.二.ABC 中, BC=5, AC=12, AB=13, 在边AB ,AC 上分别取点D, E, 使线段DE 将ABC 分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022b cx x c bx x及分别各有两个整数根21,x x 及21,x x ,且,021x x 021x x . (1)求证:;0,0,0,02121x x x x (2)求证:1b ≤c ≤1b ;(3)求c b,所有可能的值.若想一路顺风,请你开心度时光,永葆云淡风轻。
历年全国初中数学联赛试题90-05
1990年全国初中数学联合竞赛试卷 (1)1990年全国初中数学联合竞赛试卷答案 (3)1991全国初中数学联合竞赛试卷 (9)1991全国初中数学联合竞赛试卷答案 (11)1992全国初中数学联合竞赛试卷 (17)1992全国初中数学联合竞赛试卷答案 (19)1993全国初中数学联合竞赛试卷 (25)1993年全国初中数学联合竞赛试卷答案 (28)1994年全国初中数学联赛试题 (34)1994年全国初中数学联赛试题答案 (35)1995年全国初中数学联赛试题 (41)1995年全国初中数学联赛试题答案 (42)1995年全国初中数学联赛参考答案 (47)1996年全国初中数学联赛试题 (55)1996年全国初中数学联赛参考答案 (57)1997年全国初中数学联赛试题 (63)1997年全国初中数学联赛参考答案 (65)1998年全国初中数学联赛试题 (69)1998年全国初中数学联赛参考答案 (70)1999年全国初中数学联合竞赛试卷 (74)1999年全国初中数学联合竞赛试卷答案 (77)2000年全国初中数学联赛试题 (81)2000年全国初中数学联赛试题解答 (83)2001年全国初中数学联赛 (87)2001年全国初中数学联合竞赛试卷答案 (89)2002年全国初中数学联合竞赛试卷 (92)2002年全国初中数学联合竞赛试卷答案 (94)2003年全国初中数学联合竞赛试卷 (95)2003年全国初中数学联赛试题答案 (97)2004年全国初中数学联合数学竞赛试题 (101)2004年全国初中数学联赛试题答案 (103)2005年全国初中数学联赛初赛试卷 (109)1990年全国初中数学联合竞赛试卷第一试一、选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。
1.31231131144++-++的值是( )(A )1 (B )-1 (C )2 (D )-22.在△ABC 中,AD 是高,且AD 2 = BD ²CD ,那么∠BAC 的度数是( )(A )小于90° (B )等于90°(C )大于90° (D )不确定3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k <4; (B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。
初中数学 一元二次方程的公共根与整数根
,j'_'中中中中考要求内容基本要求略高要求 :1,1代例题精讲公共根问题:二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 整数根问题:对于一元二次方程ax 2+bx +c =0(a 丰0)的实根情况,可以用判别式A=b 2-4ac 来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程ax 2+bx +c =0(a 丰0)有整数根,那么必然同时满足以下条件:⑴A=b 2-4ac 为完全平方数;(2)-b+b 2-4ac=2ak 或一b-b 2-4ac=2ak ,其中k 为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)方程的根的取值范围问题:先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围.【例1】求k 的值,使得一元二次方程x 2+kx -1=0,x 2+x+(k-2)=0有相同的根,并求两个方程的根.【例2】1.设a ,b ,c 为AABC 的三边,且二次三项式12+2ax +b 2与x 2+2cx -b 2有一次公因式,证明:元二次方程的公共根与整数根一元二次 方程 一元二次 了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义理解配方法,会用直接开平方法、配方法、公式法、 能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方 方程的解因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据 程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题 较高要求AABC一定是直角三角形.(北京数学竞赛试题)2.三个二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0有公共根.⑴求证:a+b+c-0;⑵求03+b3+c3的值.abc【例3】试求满足方程x2-kx-7-0与x2-6x-(k+1)-0有公共根的所有的k值及所有公共根和所有相异根.【例4】三个二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0有公共根.(1)求证:a+b+c-0;(2)求a3+加+c3的值.abc【例5】二次项系数不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)-0和(b-1)x2-(b2+2)x+(b2+2b)=0(其中a,b为正整数)有一个公共根,求ab +ba的值.a-b+b-a【例6】k为什么实数时,关于x的方程(6-k)(9-k)x2-(117-15k)x+54-0的解都是整数?【巩固】若关于x的方程(6-k)(9-k)x2-(117-15k)x+54-0的解都是整数,则符合条件的整数k的值有个.【例7】(2007年全国初中数学联合竞赛)1.已知a是正整数,如果关于%的方程%3+(a+17)%2+(38-a)%-56=0的根都是整数,求a的值及方程的整数根.2.若k为正整数,且关于k的方程(k2-1)%2-6(3k-1)%+72=0有两个相异正整数根,求k的值.(2000年全国联赛试题)3.关于%的二次方程(k2-6k+8)%2+(2k2-6k-4)%+k2=4的两根都是整数.求满足条件的所有实数k的值.4.当m为何整数时,方程2%2-5m+2m2=5有整数解.5.已知关于%的方程4%2-8n%-3n=2和%2-(n+3)%-2n2+2=0,是否存在这样的n值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n值;若不存在,请说明理由.【例8】求所有有理数r,使得方程r%2+(r+1)%+(r-1)=0的所有根是整数.【例9】1已知关于%的方程%2+(a-6)%+a=0的两根都是整数,求a的值.6.已知k为常数,关于%的一元二次方程(k2-2k)%2+(4-6k)%+8=0的解都是整数,求k的值.【例11】已知p为质数,二次方程%2-2p%+p2-5p-1=0的两根都是整数,请求出p的所有可能的值.【例12】(2007—2008清华附中初三第一次月考试题)1已知12<m<40,且关于%的二次方程%2-2(m+1)%+m2=0有两个整数根,求整数m.2.若一直角三角形两直角边的长,a、b(a丰b)均为整数,且满足[a+b=m+2[ab=4m试求这个直角三角形的三边长.【例13】关于%的方程ax2+2(a-3)x+(a—2)=0至少有一个整数解,且a是整数,求a的值.【巩固】已知方程ax2-(3a2-8a)x+2a2-13a+15=0(a是非负整数)至少有一个整数根,那么【例14】(2008年西城区初三抽样试题)当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2-4mx+4m2-4m-5=0的根都是整数.【例15】(2007—2008清华附中初三第一次月考试题)已知12<m<40,且关于x的二次方程x2-2(m+1)x+m2=0有两个整数根,求整数m.【巩固】设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值及方程的根.【例16]当m为何整数时,方程2x2-5mx+2m2=5有整数解.【例17】已知方程ax2-Q a2-8a )x+2a2-13a+15=0(a是非负整数)至少有一个整数根,那么【例18]若关于x的方程(6-k)(9-k)x2-(117-15k)x+54=0的解都是整数,则符合条件的整数k的值有个.【例19】设方程mx2-(m-2)x+(m-3)=0有整数解,试确定整数m的值,并求出这时方程所有的整数解.【例20】设m为整数,且4<m<40,方程x2-2(2m-3)x+4m2-14m+8=0有两个整数根,求m的值及方程的根.【例21】①已知a是正整数,且使得关于x的一元二次方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根,求a 的值.②已知关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,求a的值. 【例22】(1999年全国联赛试题)已知b,c为整数,方程5x2+bx+c=0的两根都大于-1且小于0,求b和c的值.【例23】(2007年“数学周报”杯全国数学竞赛试题)1.已知a,b都是正整数,试问关于x的方程x2-abx+2(a+b)=0是否有两个整数解?如果有,请求出来;如果没有,请给出证明.(1993年全国数学联赛试题)2.已知方程x2+bx+c=0及x2+cx+b=0分别各有两个整数根x,x12及x',x',且xx>0,x'x'>0.121212⑴求证:x<0,x<0,x'<0,x'<0;1212⑵求证:b-1W c W b+1;⑶求b,c所有可能的值.3.设p、q是两个奇整数,试证方程x2+2px+2q=0不可能有有理根.(北京市数学竞赛)4.试证不论n是什么整数,方程x2-16nx+7s=0没有整数解,方程中的s是任何正的奇数.【例24】求方程a3b-ab3+2a2+2b2+4=0的所有整数解.【例25】1.已知a为整数,关于%,j的方程组「+>=(a+2*的所有解均为整数解,求a的值.[xy=(a2+1)x一2a3+24.求方程x +y=3的所有正整数解.x2一xy+y275.求所有的整数对(x,y),使x3一x2y+xy2一y3=4x2一4xy+4y2+47.【例26】设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值.【例27】(2008年西城区初三抽样试题)当m是什么整数时,关于x的一元二次方程mx2-4x+4=0与x2一4mx+4m2一4m一5=0的根都是整数.【例28】(2007年全国联赛试题)a是正整数,关于x的方程x3+(a+17)x2+(38-a)x-56=0的根都是整数,求a的值及方程的整数根.【例29】(2004年“信利杯”全国初中数学竞赛)已知a,b是实数,关于%,y的方程组卜=x3-ax2-b x有整数解(%,丁),求0,b满足的关系式.I y=ax+b【例30】(2002年上海市初中数学竞赛)已知p为质数,使二次方程x2-2px+p2-5p-1=0的两根都是整数,求出所有可能的p的值.【例31】(2000年全国联赛)设关于x的二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.【例32】b为何值时,方程x2-bx-2=0和x2-2x-b(b-1)=0有相同的整数根?并且求出它们的整数根?【例33】(2000年全国竞赛题)已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有个.【例34】(1998年全国竞赛题)求所有正实数a,使得方程x2-ax+4a=0仅有整数根.【例35】(1996年全国联赛)方程(%—a)(x-8)—1=0有两个整数根,求a的值.【例36】(2000年全国联赛C卷)求所有的正整数a,b,c使得关于x的方程x2-3ax+2b=0,x2-3bx+2c=0,x2-3cx+2a=0的所有的根都是正整数.【例37】(1993年安徽竞赛题)n为正整数,方程x—拒+1)x+/n-6=0有一个整数根,则n=【例38】(第三届《祖冲之杯》竞赛题)求出所有正整数a,使方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根.【例39】(第三届《祖冲之杯》竞赛题)已知方程(a2-1)x2-2(5a+1)x+24=0有两个不等的负整数根,则整数a的值是.【例40】不解方程,证明方程x2-1997x+1997=0无整数根【例41】(1999年江苏第14届竞赛题)已知方程x2-1999x+a=0有两个质数根,则常数a=【例42】(1996年四川竞赛题)已知方程%2+mx-m+1=0有两个不相等的正整数根,求m的值.【例43】(1994年福州竞赛题)当m是什么整数时,关于x的方程x2-(m-1)x+m+1=0的两根都是整数? 【例44】设方程mx2-(m-2)x+(m-3)=0有整数解,试确定整数m的值,并求出这时方程所有的整数解. 【例45】(2007年全国初中数学联合竞赛)已知a是正整数,如果关于x的方程x3+Q+17)x2+(38-a)x-56=0的根都是整数,求a的值及方程的整数根.【例46]若k为正整数,且关于k的方程(k2-1)x2-6(3k-1)x+72=0有两个相异正整数根,求k的值.【例47】(2008年全国初中数学联赛)设a为质数,b,c为正整数,且满足9(2a+2b-c)2=509(4a+1022b-511c)求a(b+c)的值.b-c=2。
奥数基础讲座 二次函数(含解答)-
二次函数讲座问题选讲1.二次函数y=ax 2,y=a (x-h )2,y=a (x-h )2+k ,y=ax 2+b x+c (各式中,a ≠0)•的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:2.抛物线y=ax 2+bx+c (a ≠0)的图象;当a>0时,开口向上,当a<0时开口向下,•对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-). 3.抛物线y=a x 2+bx+c (a ≠0),若a>0,当x ≤-2b a 时,y 随x 的增大而减小;当x ≥-2b a时,y•随x 的增大而增大.若a<0,当x ≤-2b a 时,y 随x 的增大而增大;当x ≥-2b a 时,y 随x 的增大而减小. 4.抛物线y=a x 2+bx+c 的图象与坐标轴的交点:(1)图象与y 轴一定相交,交点坐标为(0,c );(2)当△=b 2-4ac>0,图象与x 轴交于两点A (x 1,0)和B (x 2,0),其中的x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根.这两点间的距离AB=│x 1-x 2│. 当△=0,图象与x 轴只有一个交点;当△<0,图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数,•都有y>0;当a<0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.5.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x 、y 的三对对应值时,可设解析式为一般形式:y=a x 2+bx +c (a ≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=•a (x-h )2+k (a ≠0).(3)当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a (x-x 1)(x-x 2)(a ≠0).6.二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目.因此,以二次函数知识为主的综合性题目是热点考题,往往以大题形式出现.例题剖析例1 (2006年全国初中数学竞赛(浙江赛区)初赛试题)作抛物线A关于x•轴对称的抛物线B,再将抛物线B向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2-1,则抛物线A所对应的函数表达式是()(A)y=-2(x+3)2-2; (B)y=-2(x+3)2+2;(C)y=-2(x-1)2-2; (D)y=-2(x-1)2+2例2 (2006年全国初中数学竞赛(海南赛区))根据下列表格的对应值,判断方程a x2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()(A)3<x<3.23 (B)3.23<x<3.24(C)3.24<x<3.25 (D)3.25<x<3.26例3 (2006年芜湖市鸠江区初中数学竞赛试题)函数y=ax2+bx+c图象的大致位置如右图所示,则ab,bc,2a+b,(a+c)2-b2,(a+b)2-c2,b2-a2等代数式的值中,正数有()(A)2个(B)3个(C)4个(D)5个例4 (2004年河北省初中数学创新与知识应用竞赛决赛试题)一条抛物线y=ax2+bx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则a、b、c中为正数的()(A)只有a (B)只有b (C)只有c (D)只有a和b例5 (2006年“信利杯”全国初中数学竞赛(广西赛区)初赛试题)设b>0,二次函数y=ax2+bx+a2-1的图象为下列图象之一,则a的值是()(A)1 (B)-1 (C(D例6 (2006年芜湖市鸠江区初中数学竞赛试题)若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0)•,•则S=•a+•b+•c•的值的变化范围是__________.例7 (2005年全国初中数学竞赛试题)Rt △ABC 的三个顶点A ,B ,C•均在抛物线y=x 2上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h<1 (B )h=1 (C )1<h<2 (D )h>2例8 (1993年江苏初中数学竞赛试题)已知mn 是两位数,二次函数y=x 2+mx+n•的图象与x 轴交于不同的两点,这两点间距离不超过2.(1)求证:0<m 2-4n ≤4;(2)求出所有这样的两位数mn .例9 (1997年天津市初中数学竞赛试题)已知函数y=x 2-│x │-12的图象与x 轴交于相异两点A ,B ,另一抛物线y=ax 2+bx+c 过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c .例10 (2006年全国初中数学竞赛(浙江赛区)初赛试题)已知二次函数y=x 2+2(m+1)x-m+1.(1)随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x 2+2(m+1)x-m+1图象的顶点P ,求此时m 的值.例11 (2004年河北省初中数学创新与知识应用竞赛决赛试题)通过实验研究,•专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平衡的状态,随后开始分散.学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y•越大表示学生注意力越集中).当0≤x ≤10时,图象是抛物线的一部分,当10≤x ≤20和20≤x≤40时,图象是线段.(1)当0≤x ≤10时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,•使学生在听这道题时,注意力的指标数都不低于36.例12 (2006年全国初中数学竞赛(海南赛区))已知A 1、A 2、A 3是抛物线y=12x 2上的三点,A 1B 1、A 2B 2、A 3B 3分别垂直于x 轴,垂足为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3于点C .(1)如图(a ),若A 1、A 2、A 3三点的横坐标依次为1、2、3,求线段CA 2的长;(2)如图(b ),若将抛物线y=12x 2改为抛物线y=12x 2-x+1,A 1、A 2、A 3•三点的横坐标为连续整数,其他条件不变,求线段CA 2的长;(3)若将抛物线y=12x 2改为抛物线y=ax 2+bx+c ,A 1、A 2、A 3三点的横坐标为连续整数,其他条件不变,请猜想线段CA 2的长(用a 、b 、c 表示,并直接写出答案).例13 设抛物线C 的解析式为y=x 2-2kx+)k ,k 为实数.(1)求抛物线的顶点坐标和对称轴方程(用k 表示);(2)任意给定k 的三个不同实数值,请写出三个对应的顶点坐标,试说明当k•变化时,抛物线C 的顶点在一条定直线L 上,求出直线L 的解析式并画出图象;(3)在第一象限有任意两圆O 1、O 2相外切,且都与x 轴和(2)中的直线L 相切,设两圆在x 轴上的切点分别为A 、B (OA<OB ),试问:OA OB是否为一定值?若是,请求出该定值;若不是,请说明理由; (4)已知一直线L 1与抛物线C 中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.巩固练习一、选择题1.直线y=52x-2与抛物线y=x 2-12x 的交点个数是( ) (A )0个 (B )1个 (C )2个 (D )互相重合的两个 2.关于抛物线y=a x 2+bx+c (a ≠0),下面几点结论中,正确的有( )①当a>0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,•当a<0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程a x 2+bx+c=0(a ≠0)的根,就是抛物线y=ax 2+bx+c 与x 轴交点的横坐标.(A )①②③④ (B )①②③ (C )①② (D )①③④3.若函数y=a x的图象经过点(1,-2),那么抛物线y=ax 2+(a-1)x+a+3的性质说得全对的是( ) (A )开口向下,对称轴在y 轴右侧,图象与正半y 轴相交(B )开口向下,对称轴在y 轴左侧,图象与正半y 轴相交(C)开口向上,对称轴在y轴左侧,图象与负半y轴相交(D)开口向下,对称轴在y轴右侧,图象与负半y轴相交4.函数y=a x2与y=ax(a<0)在同一直角坐标系中的大致图象是()5.如图,抛物线y=x2+bx+c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,则b的值是()(A)b=5 (B)b=-5 (C)b=±5 (C)b=4(第5题)(第5题)6.不论x为何值,函数y=ax+bx+c(a≠0)的永远小于0的条件是()(A)a>0,△>0 (B)a>0,△<0 (C)a<0,△>0 (D)a<0,△<07.已知抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c-3=0的根的情况是(• )(A)有两个不相等的正实数根(B)有两个异号实数根(C)有两个相等的实数根(D)没有实数根8.为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,•正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y=a x2+bx+c(如图),则下列结论:①a<-160;②-160<a<0;③a-b+c>0;④0<b<-12a,其中正确的结论是()(A)①③(B)①④(C)②③(D)②④(第8题) (第12题) (第15题)9.已知:二次函数y=x2+b x+c与x轴相交于A(x1,0),B(x2,0)两点,其顶点坐标为P(-24,24b c b),AB=│x1-x2│,若S△APB=1,则b与c的关系式是()(A)b2-4c+1=0 (B)b2-4c-1=0 (C)b2-4c+4=0 (D)b2-4c-4=010.若函数y=12(x2-100x+196+│x2-100x+196│),则当自变量x取1、2、3、…、•10这100个自然数时,函数值的和是()A.540;B.390;C.194;D.9711.已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有()(A)最小值0 (B)最大值1 (C)最大值2 (D)有最小值1 412.抛物线y=ax2+bx+c的图象如图,OA=OC,则()(A)ac+1=b (B)ab+1=c (C)bc+1=a (D)以上都不是13.若二次函数y=a x2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()(A)0<S<2 (B)S>1 (C)1<S<2 (D)-1<S<114.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()(A)8 (B)14 (C)8或14 (D)-8或-1415.(2005年全国初中数学联赛初赛试题)如图,直线x=1是二次函数y=a x2+bx+c的图象的对称轴,则有()(A)a+b+c=0 (B)b>a+c (C)c>2b (D)abc<0二、填空题1.二次函数y=a x2+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是________.2.已知直线y=2x-1与抛物线y=5x2+k交点的横坐标为2,则k=________,•交点坐标为________.3.已知二次函数y1=ax2+b x+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4)和B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是________.(第3题) (第6题) (第9题)4.有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:_______.5.对于反比例函数y=-2x与二次函数y=-x2+3,•请说出它们的两个相同点①______②________;再说出它们的两个不同点①______,②_______.6.如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于_______.7.设x、y、z满足关系式x-1=1223y z+-=,则x2+y2+z2的最小值为_______.8.已知二次函数y=ax2(a≥1)的图象上两点A、B的横坐标分别是-1、2,点O•是坐标原点,如果△AOB 是直角三角形,则△OAB的周长为________.9.如图,A、B、C是二次函数y=a x2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_____0,c_____0,△_____0.10.炮弹从炮口射出后,飞行的h(m)高度与飞行的时间t(s)之间的函数关系是h=vtsina-5t2,其中v是炮弹发射的初速度,a是炮弹的发射角,当v0=300(m/s),sina=12时,炮弹飞行的最大高度是_______.11.抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-•3)2•+•4•关于原点对称,•则L+•k=________.12.(2000年全国初中数学联合竞赛试题)a,b是正数,并且抛物线y=x2+ax+2b和y=x2+2bx+a都与x 轴有公共点,则a2+b2的最小值是________.13.已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB•的面积等于________.14.(2003年“TRULY@信利杯”全国初中数学竞赛试题)已知二次函数y=ax 2+bx+c (其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则b+c 的最大值为________.15.(2005年全国初中数学竞赛浙江赛区试题)在直角坐标系中,抛物线y=x 2+mx-34m 2(m>0)与x 轴交于A ,B 两点,若A ,B 两点到原点的距离分别为OA ,OB ,且满足11OB OA =23,则m•的值等于_______. 三、解答题1.已知抛物线y=23x 2与直线y=x+k 有交点,求k 的取值范围. 2.如图,P 是抛物线y =x 2上第一象限内的一个点,A 点的坐标是(3,0).(1)令P 点坐标为(x ,y ),求△OPA 的面积S ;(2)S 是y 的什么函数?(3)S 是x 的什么函数?(4)当S=6时,求点P 的坐标;(5)在抛物线y=x 2上求一点P ′,使△OP ′A 的两边P ′O=P ′A .3.抛物线y=ax 2+bx+c 的顶点位于直线y=x-1和y=-2x-4的交点上,且与直线y=•4x-4有唯一交点,试求函数表达式.4.已知实数p<q ,抛物线y 1=x 2-px+2q 与y 2=x 2-qx+2p 在x 轴上有相同的交点A .(1)求A 点坐标;(2)求p+q 的值.5.已知抛物线y =x 2+kx+k-1.(1)求证:无论k 是什么实数,抛物线经过x 轴上一个定点;(2)设抛物线与y 轴交于C 点,与x 轴交于A (x 1,0),B (x 2,0)两点,且满足:x 1<x 2,│x 1│<│x 2│,S △ABC =6,问:过A 、B 、C 三点的圆与抛物线是否有第四个交点,试说明理由,•如果有,求出其坐标.6.如图,已知直线y=-2x+2在x 轴、y 轴分别交于点A 、B ,以线段AB•为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,过C 作CD ⊥x 轴,垂足为D .(1)求点A 、B 的坐标和AD 的长.(2)求过B 、A 、D 三点的抛物线的解析式.7.如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m•就达到警戒线CD ,这是水面宽度为10m .(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?8.先阅读下面一段材料,再完成后面的问题:材料:过抛物线y=a x 2(a>0)的对称轴上一点(0,-14a )作对称轴的垂线L ,•则抛物线上任一点P 到点F (0,14a)的距离与P 到L 的距离一定相等.我们将点F 与直线L•分别称作这抛物线的焦点和准线,如y=x 的焦点为(0,14).问题:若直线y=kx+b 交抛物线y=14x 2于A 、B ,•AC 、BD 垂直于抛物线的准线L ,垂足分别为C 、D (如图).(1)求抛物线y=14x 2的焦点F 的坐标;(2)求证:直线AB 过焦点F 时,CF ⊥DF ; (3)当直线AB 过点(-1,0),且以线段AB 为直径的圆与准线L 相切时,求这直线对应的函数解析式.9.已知某绿色蔬菜生产基地收获的蒜苔,从四月一日起开始上市的30天内,蒜苔每10千克的批发价y (元)是上市时间x (元)的二次函数,•由近几年的行情可知如下信息:(1)求y 关于x 的函数解析式;(2)蒜台每10千克的批发价为10.8元时,问是在上市的多少天?10.已知:抛物线y=ax 2+4ax+t 与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.11.已知二次函数y=x 2+b x+c 的图像与x 轴的两个交点的横坐标分别为x 1、x 2,•一元二次方程x 2+b 2x+20=0的两实数为x 3、x 4,且x 2-x 3=x 1-x 4=3,求二次函数的解析式,•并写出顶点坐标.12.改革开放以来,某镇通过多种途径发展地方经济,1995•年该镇国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平.(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x•之间的关系是y=19x 2+23x+5(x ≥0)该镇那一年的国民生产总值可在1995•年的基础上翻两番(•即达到1995年的年国民生产总值的4倍)?13.已知:二次函数y=-x 2+3b x+c 与x 轴交于点M (x ,0),N (x ,0)两点,与y 轴交于点H .(1)若∠HMO=45°,∠MHN=105°时,求:函数解析式;(2)若│x 1│2+│x 2│2=1,当点Q (b ,c )在直线y=19x+13上时,求二次函数y=-x+3b x+c 的解析式.14.如图,一次函数y=kx+n 的图象与x 轴和y 轴分别交于点A (6,0)和B (0,• 线段AB 的垂直平分线交x 轴于点C ,交AB 于点D .(1)试确定这个一次函数关系式;(2)求过A 、B 、C 三点的抛物线的函数关系式.15.如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (•18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,•其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,•当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标.(3)设从出发起,运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,•并写出此时t 的取值范围.(4)设从出发起,运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,•请求出t 的值;如不可能,请说明理由.16.抛物线y=ax 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,已知抛物线的对称轴为x=1,B (3,0),C (0,-3).(1)求二次函数y=ax 2+bx+c 的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.答案:一、1~9.CDBDD DCBD10.B .提示:∵x 2-100x+196=(x-2)(x-98),∴当2≤x ≤98时,│x 2-100x+196│=-(x 2-100x+196). ∴当自变量x 取2、3、…、98时,函数值都为0. 而当x 取1、99、100时,│x 2-100x+196│=x 2-100x+196,故所求的和为:(1-2)(1-98)+(99-2)(99-98)+(100-•2)(100-98)=97+97+196=390. 11~15.DAACC二、1.互为相反数 2.-17,(2,3). 3.x<-2或x>8 4.y=15x 2-85x+3等 5.图象都是曲线,都过点(-1,2);图象形状不同,x 取值范围不同6.13.2 7.59148..<、<、> 10.1125m 11.-9 12.2013.如图,直线y=-2x+3与抛物线y =x 2的交点坐标为A (1,1),B (-3,9),作AA 1,BB 1分别垂直于x 轴,垂足为A 1,B 1, ∴S △OAB =S梯形AA1BB1-S △AA1O -S △BB1O =12³(1+9)³(1+3)-12³1³1-12³9³3=6.14.由于二次函数的图象过点A (-1,4),点B (2,1),所以4,1,421,32.a b c b a a b c c a -+==--⎧⎧⎨⎨++==-⎩⎩解得 • 因为二次函数图象与x 轴有两个不的交点,所以△=b 2-4ac>0,(-a-1)2-4a (3-2a )>0,即(9a-1)(a-1)>0,• 由于a 是正整数,故a>1,所以a ≥2.又因为b+c=-3a+2≤-4,且当a=2,b=-3,c=-1时,•满足题意, 故b+c 的最大值为-4. 15.2.提示:设方程x 2+mx-34m 2=0的两根分别x 1,x 2,且x 1<x 2, 则有x 1+x 2=-m<0,x 1x 2=-34m 2<0,•所以x 1<0,x 2>0,由11OB OA -=23,可知OA>OB ,又m>0, 所以抛物线的对称轴y 轴的左侧,于是OA=│x 1│=-x 1,OB=x 2. 所以2111x x +=23,1212x x x x +=23,故234mm --=23,解得m=2.三、1.由题意知,方程组22,3.y k y x k ⎧=⎪⎨⎪=+⎩有实数解,即方程23x 2=x+k 有实数解, 整理,得2x 2-3x-3k=0,∴△=9-4³2³(-3k )≥0,∴k ≥-38. 2.(1)S=32y ,又y =x 2,∴S=32x 2;(2)正比例函数;(3)二次函数;(4)P (2,4);(5)P ′(32,94).3.y=23x2+43x-43.4.(1)A(-2,0);(2)p+q=-2.5.(1)(-1,0);(2)过A,B,C三点的圆与抛物线有第四个交点D.∵│x1│<│x2│,•C点在y轴上,∴点C不是抛物线的顶点,由于抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形,所以过A、B、C•三点的圆与抛物线第四个交点与C是对称点.∵x1=-1<0,x1<x2,│x1│<│x2│,∴x2>1,即x2>-1,-k>1,∴k<0,∵S△ABC=6,∴12│1-•k│)²(1+│1-k│)=6,∴(1-k)2+(1-k)-12=0,解得1-k=-4或1-k=3,∴k=-2或k=5(舍去),∴y=x2-2x-3.其对称轴为x=1,据对称性,D点坐标为(2,-3).6.(1)A(1,0),B(0,2),AD=2;(2)y=23x2-83x+2.7.y=-125x2;5小时8.(1)F(0,1);(2)∵AC=AF,∴∠ACF=∠AFC.又∵AC∥OF,∴∠ACF=∠CFO,∴CF平分∠AFO.同理DF平分∠BFO.而∠AFO+∠BFO=180°,∴∠CFO+∠DFO=12(∠AFO+∠BFO)=90°,∴CF⊥DF.(3)设圆心为M切L于N,连结MN,∴MN=12 AB.在直角梯形ACDB中,M•是AB中点,∴MN=12(AC+BC).而AC=AF,BD=BF,∴MN=12(AF+BF),∴AF+BF=AB.∴AB过焦点F(0,1),又AB过点(-1,0),∴1bk b=⎧⎨-+=⎩∴AB对应的函数解析式为y=x+1.9.(1)设这个二次函数解析式为y=ax2+bx+c.根据题意,得15255 1022515 1562525a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩• 解这个三元一次方程组,得12032854a y c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴这个函数解析式为:y=120x 2-32x+854.(或y=120(x-15)2+10) (2)把y=10.8代入上式,得10.8=120(x-15)2+10,(或10.8=120x 2-32x+854).整理,得x 2-30x+209=0,(x-11)(x-19)=0,∴x 1=11,x 2=19, 经检验x=11,x=19都符合题意.即蒜苔每10千克批发价为10.8元时,是上市11天、9天.10.(1)依题意,抛物线的对称轴为y=x-2.∵抛物线与x 轴的一个交点为A (-1,0),∴由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). (2)∵抛物线y=a x 2+4ax+t 与x 轴的一个交点为A (-1,0),∴a (-1)2+4a (-1)+t=0,•∴t=3a .∴y=ax 2+4ax+3a .∴D (0,3a ). ∵梯形ABCD 中,AB ∥CD ,且点C 在抛物线y=a x 2+4ax+3a 上, ∴C (-4,3a ),∴AB=2,CD=4, ∵梯形ABCD 的面积为9,∴12(AB+CD )²OD=9. ∴12(2+4)│3a │=9,∴a=±1. ∴所求抛物线的解析式为y=x 2+4x+3或y=-x 2-4x-3.(3)设点E 坐标为(x 0,y 0),依题意x 0<0,y 0>0,且00||y x =52.∴y=-52.①设点E 在抛物线y=x 2+4x+3上,∴y 0=x 02+4x 0+3.解方程组000200005621540y x x y x x x ⎧=-=-⎧⎪⎨⎨=⎩⎪=++⎩得∴001`25`4x y ⎧=-⎪⎪⎨⎪=⎪⎩∵点E 与点A•在对称轴x=-2的同侧,∴点E 坐标为(-12,54), 设在抛物线的对称轴x=-2上存在一点P ,使△APE 的周长最小. ∵AE 长为定值,∴要使△APE 的周长最小,只须PA+PE 最小. ∵点A•关于对称轴x=-2的对称点是B (-3,0), ∴几何知识可知,P 是直线BE 与对称轴x=-2的交点.•设过点E 、B 的直线的解析式为y=mx+n ,∴1152243302m m n m n n ⎧=⎧⎪-+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩解得 ∴直线BE 的解析式为y=12x+32,把x=-2•代入上式,得y=12, ∴点P 坐标为(-2,-12). ②设点E 在抛物线y=-x 2-4x-3上,∴y 0=-x 02-4x 0-3.解方程0020005243y x x x x ⎧=-⎪⎨⎪=---⎩ 消去y 0,得x 02+32x 0+3=0, ∴△<•0,∴此方程无实数根.综上.在抛物线的对称轴上存在点P (-2,12),使△APE 的周长最小. 11.y=x 2+3x+2;(-32,-14). 12.(1)5;(2)2003. 13.(1)y=-x 2+(2)y=-x 2+13x+94,y=-x 2-x .14.(1)2)先求出点C (2,0),故(x-2)(x-6). 15.(1)∵O ,C 两点的坐标分别为O (0,0),C (8,6),设OC 的解析式为y=kx+b ,将两点坐标代入得:k=34,b=0,∴y=34x . ∵抛物线过O ,A ,C 三点,这三点的坐标为O (0,0),A (18,0),C (8,6). ∵A ,O 是x 轴上两点,故可设抛物线的解析式为y=a (x-0)(x-18). 再将C (8,6)代入得:a=-340.∴y=-340x 2+2720x .(2)D (10,6).(3)当Q 在OC 上运动时,可设Q (m ,34m ), 依题意有:m 2+(34m )2=(2t )2,∴m=85t ,∴Q (85t ,65t )•,•(0≤t ≤5).当Q 在CB 上时,Q 点所走过的路程为2t . ∵OC=10,∴CQ=2t-10,∴Q 点的横坐标为2t-10+8=2t-2.∴Q (2t-2,6),(5<t ≤10).(4)∵梯形OABC 的周长为44,当Q 点在OC 上时,P 运动的路程为t , 则Q 运动的路程为(22-t ).△OPQ 中,OP 边上的高为:(22-t )³35.∴S △OPQ =12t (22-t )³35,S 梯形OABC =12(18+10)³6=84.• 依题意有:12t (22-t )³35=84³12.整理得:t 2-22t+140=0.∵△=222-4³140<0,∴这样的t 不存在.当Q 在BC 上时,Q 走过的路程为22-t ,∴CQ 的长为:22-t-10=12-t , ∴S梯形OCQP=12³6(22-t-10+t )=36≠84³12. ∴这样的t 值也不存在.综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积. 16.(1)将C (0,-3)代入y=ax 2+bx+c ,得c=-3,将c=-3,B (3,0)代入y=a x 2+bx+c ,得9a+3b+c=0. ∵x=1是对称轴,∴-2ba=-1.(2). 将(2)代入(1)得a=1,b=-2.•所以二次函数得解析式是y=x 2-2x-3.(2)AC 与对称轴的交点P 即为到B 、C 的距离之差最大的点.∵C 点的坐标为(0,-3),A 点的坐标为(-1,0).∴直线AC 的解析式是y=-3x-3,又对称轴为x=1,∴点P 的坐标(1,-6).(3)设M (x 1,y ),N (x 2,y ),所求圆的半径为r ,则x 2-x 1=2r ,(1)∵对称轴为x=1,∴x 2+x 1=2.(2) 由(1)、(2)得:x 2=r+1. (3)将N (r+1,y )将代入解析式y=x 2-2x-3,得y=(r+1)2-2(r+1)-3,(4) 整理得:y=r 2-4.由于r=±y ,当y>0时,r 2-r-4=0,解得r 1,r 2(舍去),•当y<0时,r 2+r-4=0,解得r 1,r 2(舍去),所以圆的半径是12+或12.。
初中数学 一元二次方程的公共根与整数根
内容 基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法 理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题公共根问题:二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 整数根问题:对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件:如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 24b ac ∆=-为完全平方数;⑵ 242b b ac ak -+-=或242b b ac ak ---=,其中k 为整数. 以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 方程的根的取值范围问题:先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围.【例 1】 求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 中考要求例题精讲一元二次方程的公共根与整数根【例 2】 ⒈ 设,,a b c 为ABC ∆的三边,且二次三项式222x ax b ++与222x cx b +-有一次公因式,证明:ABC ∆一定是直角三角形.(北京数学竞赛试题)⒉ 三个二次方程20ax bx c ++=,20bx cx a ++=,20cx ax b ++=有公共根. ⑴ 求证:0a b c ++=;⑵ 求333a b c abc++的值.【例 3】 试求满足方程270x kx --=与26(1)0x x k --+=有公共根的所有的k 值及所有公共根和所有相异根.【例 4】 三个二次方程20ax bx c ++=,20bx cx a ++=,20cx ax b ++=有公共根.(1)求证:0a b c ++=;(2)求333a b c abc++的值.【例 5】 二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求b ab aa b a b --++的值.【例 6】 k 为什么实数时,关于x 的方程2(6)(9)(11715)540k k x k x ----+=的解都是整数?【巩固】 若关于x 的方程()()()26911715540k k x k x ----+=的解都是整数,则符合条件的整数k 的值有_______个.【例 7】 (2007年全国初中数学联合竞赛)⒈ 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.⒉ 若k 为正整数,且关于k 的方程22(1)6(31)720k x k x ---+=有两个相异正整数根,求k 的值. (2000年全国联赛试题)⒊ 关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数.求满足条件的所有实数k 的值.⒋ 当m 为何整数时,方程222525x mx m -+=有整数解.⒌ 已知关于x 的方程24832x nx n --=和22(3)220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由.【例 8】 求所有有理数r ,使得方程2(1)(1)0rx r x r +++-=的所有根是整数.【例 9】 ⒈已知关于x 的方程2(6)0x a x a +-+=的两根都是整数,求a 的值.⒉已知k 为常数,关于x 的一元二次方程22(2)(46)80k k x k x -+-+=的解都是整数,求k 的值.【例11】 已知p 为质数,二次方程222510x px p p -+--=的两根都是整数,请求出p 的所有可能的值.【例12】 (2007—2008清华附中初三第一次月考试题)⒈ 已知1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .⒉ 若一直角三角形两直角边的长,a 、b ()a b ≠均为整数,且满足24a b m ab m +=+⎧⎨=⎩. 试求这个直角三角形的三边长.【例13】 关于x 的方程22(3)(2)0ax a x a +-+-=至少有一个整数解,且a 是整数,求a 的值.【巩固】 已知方程()22238213150ax a a x a a --+-+=(a 是非负整数)至少有一个整数根,那么a = .【例14】 (2008年西城区初三抽样试题)当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数.【例15】 (2007—2008清华附中初三第一次月考试题)已知1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .【巩固】 设m 为整数,且440m <<,方程()2222341480x m x m m --+-+=有两个整数根,求m 的值及方程的根.【例16】 当m 为何整数时,方程222525x mx m -+=有整数解.【例17】 已知方程()22238213150ax a a x a a --+-+=(a 是非负整数)至少有一个整数根,那么a = .【例18】 若关于x 的方程()()()26911715540k k x k x ----+=的解都是整数,则符合条件的整数k 的值有_______个.【例19】 设方程2(2)(3)0mx m x m --+-=有整数解,试确定整数m 的值,并求出这时方程所有的整数解.【例20】 设m 为整数,且440m <<,方程()2222341480x m x m m --+-+=有两个整数根,求m 的值及方程的根.【例21】 ①已知a 是正整数,且使得关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根,求a 的值.②已知关于x 的方程2222(38)213150a x a a x a a --+-+= (其中a 是非负整数)至少有一个整数根,求a 的值.【例22】 (1999年全国联赛试题)已知b ,c 为整数,方程250x bx c ++=的两根都大于1-且小于0,求b 和c的值.【例23】 (2007年“数学周报”杯全国数学竞赛试题)⒈ 已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b -++=是否有两个整数解?如果有,请求出来;如果没有,请给出证明.(1993年全国数学联赛试题)⒉ 已知方程20x bx c ++=及20x cx b ++=分别各有两个整数根12,x x 及12,x x '',且120x x >,120x x ''>. ⑴ 求证:10x <,20x <,10x '<,20x '<; ⑵ 求证:11b c b -+≤≤; ⑶ 求,b c 所有可能的值.⒊ 设p q 、是两个奇整数,试证方程2220x px q ++=不可能有有理根.(北京市数学竞赛)⒋ 试证不论n 是什么整数,方程21670s x nx -+=没有整数解,方程中的s 是任何正的奇数.【例24】 求方程33222240a b ab a b -+++=的所有整数解.【例25】 ⒈ 已知a 为整数,关于,x y 的方程组23(2)(1)22x y a xxy a x a +=+⎧⎨=+-+⎩的所有解均为整数解,求a 的值. ⒉ 求方程2237x y x xy y+=-+的所有正整数解. ⒊ 求所有的整数对(,)x y ,使32232244447x x y xy y x xy y -+-=-++.【例26】 设m 是不为零的整数,关于x 的二次方程2(1)10mx m x --+=有有理根,求m 的值.【例27】 (2008年西城区初三抽样试题)当m 是什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数.【例28】 (2007年全国联赛试题)a 是正整数,关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.【例29】 (2004年“信利杯”全国初中数学竞赛)已知,a b 是实数,关于,x y 的方程组32y x ax bxy ax b⎧=--⎨=+⎩有整数解(,)x y ,求,a b 满足的关系式.【例30】 (2002年上海市初中数学竞赛)已知p 为质数,使二次方程222510x px p p -+--=的两根都是整数,求出所有可能的p 的值.【例31】 (2000年全国联赛)设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数,求满足条件的所有实数k 的值.【例32】 b 为何值时,方程 220x bx --=和22(1)0x x b b ---=有相同的整数根?并且求出它们的整数根?【例33】 (2000年全国竞赛题)已知关于x 的方程2(1)210a x x a -+--=的根都是整数,那么符合条件的整数a 有___________个.【例34】 (1998年全国竞赛题) 求所有正实数a ,使得方程240x ax a -+=仅有整数根.【例35】(1996年全国联赛)方程()(8)10---=有两个整数根,求a的值.x a x【例36】(2000年全国联赛C卷) 求所有的正整数a,b,c使得关于x的方程222-+=-+=-+=的所有的根都是正整数.x ax b x bx c x cx a320,320,320【例37】(1993年安徽竞赛题) n为正整数,方程21)60-+-=有一个整数根,则n=__________.x x【例38】(第三届《祖冲之杯》竞赛题)求出所有正整数a,使方程22(21)4(3)0+-+-=至少有一个整ax a x a数根.【例39】(第三届《祖冲之杯》竞赛题) 已知方程22a x a x--++=有两个不等的负整数根,则整(1)2(51)240数a的值是__________.【例40】不解方程,证明方程2199719970-+=无整数根x x【例41】(1999年江苏第14届竞赛题)已知方程219990-+=有两个质数根,则常数a=________.x x a【例42】 (1996年四川竞赛题)已知方程210x mx m +-+=有两个不相等的正整数根,求m 的值.【例43】 (1994年福州竞赛题) 当m 是什么整数时,关于x 的方程2(1)10x m x m --++=的两根都是整数?【例44】 设方程2(2)(3)0mx m x m --+-=有整数解,试确定整数m 的值,并求出这时方程所有的整数解.【例45】 (2007年全国初中数学联合竞赛)已知a 是正整数,如果关于x 的方程()()321738560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.【例46】 若k 为正整数,且关于k 的方程()()221631720k x k x ---+=有两个相异正整数根,求k 的值.【例47】 (2008年全国初中数学联赛)设a 为质数,b c ,为正整数,且满足()()2922509410225112a b c a b c b c ⎧+-=+-⎪⎨-=⎪⎩ 求()a b c +的值.。
初中数学全国竞赛试题及答案
初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。
7. 如果一个数的绝对值等于5,那么这个数可以是______。
8. 一个数的倒数是1/4,那么这个数是______。
9. 一个数的平方是25,这个数可以是______。
10. 一个数的立方根是2,那么这个数是______。
三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。
12. 一个圆的半径是r,求圆的面积。
13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。
四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。
15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。
五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。
如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。
历年(95-10)全国初中数学竞赛联赛几何
历年(95-10)年全国数学竞赛(联赛)分类题型详解- 几何(1)选择题(30道题)1. 如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[]A.62πB.63π C.64πD.65π1995年全国初中数学联赛试题答案: D详解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2 =252+602 =52×(52+122)=52×132=(32+42)×132 =392+522 =BC2+CD2故可取BD=65为直径,得周长为65π,选D.2. 设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定1995年全国初中数学联赛试题答案: B详解1: 不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.详解2: 若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于[ ]1996年全国初中数学联赛试题答案: B4.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的[ ]A.内心B.外心 C.重心 D.垂心1996年全国初中数学联赛试题答案: A5.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有[ ]A.4个B.8个C.12个D.24个1996年全国初中数学联赛试题答案: C6. 在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC 的面积等于()(A)12(B)14(C)16(D)181998年全国数学联赛试卷答案: C详解: 连ED,则又因为DE是△ABC两边中点连线,所以故选C.7.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.141999年全国初中数学竞赛答案: C8.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是().A.30 B.36 C.72 D.1251999年全国初中数学竞赛答案: B9.在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( ).A .2B .3C .4D .51999年全国初中数学竞赛答案: D10. 设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A 、∠B 的关系是( )。
完整)历年全国初中数学联赛试题总汇
完整)历年全国初中数学联赛试题总汇1991年全国初中数学联合竞赛决赛试题第一试一、选择题1.设等式 $a(x-a)+a(y-a)=x-a-a-y$ 在实数范围内成立,其中 $a$,$x$,$y$ 是两两不同的实数,则 $\dfrac{3x^2+xy-y^2}{2x-xy+y}=$ (A)3;(B)$\dfrac{1}{3}$;(C)2;(D)$\dfrac{15}{33}$。
答案:(B)2.如图,$AB\parallel EF\parallel CD$,已知 $AB=20$,$CD=80$,$BC=100$,那么$EF$ 的值是(A)10;(B)12;(C)16;(D)18.答案:(C)3.方程 $x^2-x-1=0$ 的解是 $\dfrac{-1\pm\sqrt{5}}{2}$;$\dfrac{-1\pm i\sqrt{3}}{2}$ 或 $\dfrac{1\pm i\sqrt{3}}{2}$。
答案:(A)4.已知:$x=(1991-1991n)$($n$ 是自然数)。
那么 $(x-1+x^2)^n$ 的值是(A)$1991^{-1}$;(B)$-1991^{-1}$;(C)$(-1)^n1991$;(D)$(-1)^n1991^{-1}$。
答案:(B)5.若$1\times2\times3\times\cdots\times99\times100=12^nM$,其中$M$ 为自然数,$n$ 为使得等式成立的最大的自然数,则$M$ 能被(A)2 整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除。
答案:(D)6.若 $a$,$c$,$d$ 是整数,$b$ 是正整数,且满足$a+b=c$,$b+c=d$,$c+d=a$,那么 $a+b+c+d$ 的最大值是(A)$-1$;(B)$-5$;(C)$0$;(D)$1$。
答案:(B)7.如图,正方形 $OPQR$ 内接于 $\triangle ABC$。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全 ][真诚为您服务试试题希望杯”全国数学邀请赛初二第2· 2009年第20届“次· 161· [4-30]★详细简介请参考下载页]· [竞赛 2试试题届“希望杯”全国数学邀请赛初一第年第· 200920 次· 153· [4-28]详细简介请参考下载页★]· [竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第· 2009 · 76次· [4-17]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1· 2009年第20届“希望杯次· 133· [4-7]对不起,尚无简介☆]竞赛· [ 试试题全国数学邀请赛初一第1届“希望杯”20· 2009年第· 122次· [4-7]详细简介请参考下载页★]· [竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次· 44· [9-9]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初一第19· 2008年第届次· 203· [9-4]详细简介请参考下载页★]· [竞赛 1”“19· 2008年第届希望杯全国数学邀请赛初一第试试题次· 169· [9-4]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第219年第届“希望杯”· 2008 次· 156· [9-2]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 2008年第19届· 146次· [9-2]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第18· 2007年第· 101次· [9-2]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“18· 2007年第届希望杯次· 95· [9-2]详细简介请参考下载页★]竞赛· [ 试试题”全国数学邀请赛初二第2· 2006年第17届“希望杯次· 76· [9-2]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第届· 2006年第17 · 76次· [9-2]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第2希望杯· 2005年第16届“”次· 65· [9-1]详细简介请参考下载页★]· [竞赛 1试试题全国数学邀请赛初二第届· 2005年第16“希望杯”次· 52· [9-1]详细简介请参考下载页★]· [竞赛试试题全国数学邀请赛初二第希望杯”2· 2004年第15届“次· 47· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第115届“希望杯”年第· 2004 次· 38· [9-1]详细简介请参考下载页★]· [竞赛 2试试题希望杯”全国数学邀请赛初二第届· 2003年第14“次· 30· [9-1]详细简介请参考下载页★]竞赛· [ 1试试题希望杯届“”全国数学邀请赛初二第年第· 200314 · 26次· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题全国数学邀请赛初二第希望杯届年第· 200213“”· 31次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第1”年第13届“希望杯· 2002 次· 23· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第· 2001年第12届· 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第112年第届“希望杯”· 2001 · 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题2“届希望杯”全国数学邀请赛初二第11· 2000年第次· 15· [9-1]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1“· 2000年第11届希望杯次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第210届“希望杯”· 1999年第次· 13· [9-1]详细简介请参考下载页★]· [竞赛试试题1希望杯”全国数学邀请赛初二第· 1999年第10届“次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第9· 1998年第届次· 11· [8-29]详细简介请参考下载页★]· [竞赛 1”“9· 1998年第届希望杯全国数学邀请赛初二第试试题次· 10· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第28年第届“希望杯”· 1997 次· 13· [8-29]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 1997年第8届· 10次· [8-29]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第7· 1996年第· 11次· [8-29]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“7· 1996年第届希望杯次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初二第2· 1995年第6届“次· 14· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第16届“希望杯”· 1995年第次· 14· [8-29]★详细简介请参考下载页]· [竞赛 2试试题希望杯”全国数学邀请赛初二第5· 1994年第届“次· 12· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“届希望杯”全国数学邀请赛初二第· 1994年第5 · 12次· [8-29](每一、选择题 :年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题 [] Ax 1.303小题分,共分)使等式成立的的值是.是]· [竞赛试试题初二第2”年第4届“希望杯全国数学邀请赛· 1993 次· 9· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第14届“希望杯”· 1993年第次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题2希望杯”全国数学邀请赛初二第· 1992年第3届“次· 11· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第3· 1992年第届次· 9· [8-29]详细简介请参考下载页★]· [竞赛 2”“2· 1991年第届希望杯全国数学邀请赛初二第试试题· 14次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1年第· 19912届“希望杯次· 12· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第21届“希望杯”· 1990年第· 13次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1希望杯· 1990年第1届“次· 11· [8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题:“1990年第一届希望杯() 倍,那么这个角是 1.一个角等于它的余角的5分)共10]竞赛· [ 2试试题全国数学邀请赛初一第希望杯届年第· 200718“”· 94次· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初一第118届“希望杯”· 2007年第次· 42· [8-28]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初一第2· 2006年第17届“次· 41· [8-28]详细简介请参考下载页★]竞赛· [ 试试题1希望杯”全国数学邀请赛初一第“· 2006年第17届次· 43· [8-28]试第1全国数学邀请赛初一希望杯年第十七届2006“”……中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
1993年全国初中数学联赛试题解答
作者: 严镇军;尚强
出版物刊名: 中学数学教学
页码: 42-43页
主题词: 镇军 中学数学教学 分比 四点共圆 安市 整数解 二凡 牙户 韦达 同号
摘要: 今年试题普遍反映较好,难易适中,受到师生的欢迎。
根据局部抽样分析,平均分比去年提高16.20分,安徽省前200名最低分数线也比往年高出15分—20分,其中六安市一名选手得了满分(140分),另外有十名安徽各地、市选手获得了132分以上的好成绩。
下面提供的试题解答,对一试各题仅给出答案。
二试三大题的解答是严镇军、尚强同志所拟,作为对命题组提供的解答的一点补充。
今年全国初中联赛承办单位是内蒙古。
最新1991-2012年22年全国初中数学联赛试题经典全集
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12; (C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+acb 32.3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m xx x x )1(1)1(+=-+恒成立,则=++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .11=S 3S =132=S120135第二试xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值; Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23(D)21-.答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1.当x 变化时,分式1563212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D ,E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,z A.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( ) 7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
1993-2004年上海市初中数学竞赛
1993年上海市初中数学竞赛一、填空题(1 — 5每题6分,6 — 10每题8分.共70分)1.如图,EF 为正方形ABCD 的对折线,将∠A 沿DK 折叠,使它的顶点A 落在EF 的G 点.则∠DKG 的度数是_______.2.满足ab =1,bc =2,dc =3,de =4,ea =5的实数组(a ,b ,c ,d ,e )是_______.3.设有n 个数12,,,n x x x L ,它们每个数的值只能取0,1,−2三个数中的一个,且125n x x x +++=−L ,2221219n x x x +++=L ,则55512n x x x +++=L _______. 4.在△ABC 中,已知AB = 5,AC = 8,BC = 7,一直线分别交AB 、AC 于点E 、F ,AE = 3,且△AEF 与原三角形相似.则EF = _______.5.S △ABC =1,D 为BC 的中点,E 、F 分别在AC 、AB 上,且S △DEF =15,S △CDE =13.则S △DEF =_______. 6.已知道多项式110()n n n n f x a x a x a −−=+++L ,其中n 为非负整数,n a 为正整数,1n a −、2n a −、…、0a 为非负整数,且满足105n n n a a a −++++=L ,则这样的多项式共有_______个.7.设x 2−px + q = 0的二实根为a 、b ;而以a 2、b 2为根的二次方程仍是x 2−px + q = 0.则数对(p ,q )的个数是_______.8.在表达式S =1x 、2x 、3x 、4x 是1、2、3、4的一个排列,则使S 为不同实数的不同排列的种数是_______.9.一个三位数,它等于它的各位数码和的12倍.试写出所有这样的三位数______________.10.两个正数x 、y 满足0.049xy =,x y >,且55lg lg 774x y ⋅=−.则x 的整数部分是_____位数. 二、(16分)1、2、3、4、5、6每一个使用一次组成六位数abcdef ,使得三位数abc ,bcd 、cde 、def 能依次被4、5、3、11整除.求这样的六位数.三、(16分)锐角△ABC 中,已知AB =4,AC =5,BC =6,AD 、BE 、CF 分别是边BC 、CA 、AB 上的高,D 、E 、F 为垂足.求△DEF 的面积与△ABC 的面积的比值.四、(18分)假定在r 人中,消息的传递是通过电话进行的.当两个人A 和B 电话谈话时,A 把他当时所知道的一切消息全部告诉B ,而B 也把自己当时知道的一切消息全部告诉A ,设a r 表示在要使每个人都知道r 个人的消息的条件下,这r 个人之间需要打电话的最小次数.⑴ 求3a ;⑵ 求4a ;⑶ 对3r ≥,证明:12r r a a −≤+. (试题收集:李大元 录入:成俊锋)简略答案:一、1.75° 2.(3/2,2/3,3,1,4)或(−3/2,−2/3,−3,−1,−4) 3.−125 4.21/5或21/8 5.4/15 6.16 7.3 8.16 9.108 10.4二、324561 三、27/256 四、⑴ 3;⑵ 4;⑶ 略F一、填空题(共70分。
1991-2016全国初中数学联赛试题及详细解析全套
)
1 < c < 2 2
(B)0< c ≤
1 2
(C)c > 2
(D)c = 2
二、填空题 1.E是平行四边形 ABCD 中 BC 边的中点,AE 交对角线 BD 于 G,如 果△BEG 的面积是1,则平行四边形 ABCD 的面积是 .
2.已知关于 x 的一元二次方程 ax bx c 0 没有实数解.甲由于看错了二次项系数, 误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,
S1 1
7. 如图,正方形 OPQR 内接于△ABC.已知△AOR、△BOP 和△CRQ 的面积分别是 S1 1 , S 2 3 和 S 3 1 ,那么,正方形 OPQR 的 边长是( )
3
S2 3
S 3 =1
微信公众号 数学竞赛的那些事儿
(A) 2
(B) 3
(C)2
(D)3
8. 在锐角△ABC 中, AC 1 , AB c , A 60 ,△ABC 的外接圆半径 R ≤1,则( (A)
135 120 来自第二试 一、实数 x 与 y,使得 x + y,x - y,x y, 具有这样性质的数对(x , y).
x 四个数中的三个有相同的数值,求出所有 y
二、△ABC 中,AB<AC<BC,D 点在 BC 上,E 点在 BA 的延长线上,且 BD=BE=AC,△BDE 的外接圆与△ABC 的外接圆交于 F 点(如图). 求证:BF=AF+CF.
1 5 2
) (C)
1 5 1 5 或 2 2
(B)
1 5 2
1
(D)
1 5 2
4.已知: x (A) 19911
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1993年第十届全国初中数学联赛决赛试卷 第一试
一.选择题
本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.
1.多项式1612+-x x 除以12-x 的余式是
(A)1; (B)-1; (C)1-x ; (D)1+x ;
2.对于命题
Ⅰ.内角相等的圆内接五边形是正五边形.
Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是
(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.
3.设x 是实数,11++-=x x y .下列四个结论:
Ⅰ.y 没有最小值;
Ⅱ.只有一个x 使y 取到最小值;
Ⅲ.有有限多个x (不止一个)使y 取到最大值;
Ⅳ.有无穷多个x 使y 取到最小值.
其中正确的是
(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ
4.实数54321,,,,x x x x x 满足方程组
⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.
;;;;52154154
354324321321a x x x a x x x a x x x a x x x a x x x
其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是
(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;
(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.
5.不等式73)1(12+<-<-x x x 的整数解的个解
(A )等于4 (B )小于4 (C )大于5 (D )等于5
6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,
则)cos(OCB OBC ∠+∠的值是 (A)22- (B)2
2 (C)2
3 (D)2
1-. 答( )
7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那
么m :n :p 等于
(A)c
b a 1:1:1; (B)
c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .
答( )
8.13333)9
19294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+
答( )
二.填空题
1.当x 变化时,分式1
5632212++++x x x x 的最小值是___________.
2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.
3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点
等距排列,则k =____________.
4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,
连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.
第二试
一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.
二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.
三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21
,x x '',且,021>x x 021
>''x x . (1)求证:;0,0,0,021
21<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ;
(3)求c b ,所有可能的值.。