机翼及叶栅理论

合集下载

流体动力学及叶栅理论.

流体动力学及叶栅理论.

流体动力学及叶栅理论课程小结《流体动力学及叶栅理论》下篇课程主要包括流体动力学和叶栅理论两部分。

其中流体动力学的主要内容是:流体力学性质及概念、流体运动的基本方程、平面有势流动、势流叠加、旋涡理论等。

叶栅理论主要内容是:机翼及翼型特性、茹科夫斯基翼型、薄翼绕流及有限机翼理论、叶栅及叶栅特性方程、平面叶栅绕流求解方法等。

一、流体动力学流体力学是研究流体平衡和运动的规律以及它与固体间的相互作用的科学。

流体力学性质及概念:包括流体的流动性和粘滞性(相互运动时的内摩擦力产生的)、迹线(流体为团运动的轨迹线)、流线(指某时刻t时,连接流场中各点流体微团运动方向的光滑曲线)、微团分析(流体微团具有平移、旋转及变形的特征)等。

流体运动的基本方程:包括连续性方程、动量方程与动量矩方程、纳维-斯托克斯方程、欧拉方程(粘度为零的方程)、能量方程等。

平面有势流动:包括均匀流(流动过程中运动要素不随坐标位置(流程)而变化)、平面源、汇(与平面源的流向相反)、点涡(环流)、偶极子等基本概念,速度势函数和流函数,简单平面势流、偶极流、有环量绕流和无环量绕流(两者相差一个点窝)等。

势流叠加:包括源流和均匀流叠加、等强度源和汇流与直线流叠加、偶极流、圆柱绕流、汇流和环流的叠加、以及其他由两种或两种或以上的基本势流叠加等。

旋涡理论:包括涡线、涡管、涡束、涡通量(旋涡强度)等基本概念,开尔文-汤姆逊定理、斯托克斯定理(当封闭周线内有涡束时,则沿封闭轴线的速度环量等于该封闭周线内所有涡束的涡通量之和),亥姆兹定理(包括第一定律、第二定律和第三定律),二元旋涡内外压力分布等。

二、叶栅理论1、机翼及翼型机翼的外形以椭圆形状最为有利,但由于制造上的困难难,实际多采用与椭圆相近的形状。

翼型指的是顺着来流方向切下来的剖面。

翼型通常都具有流线型外形,头部圆滑,尾巴尖瘦,背(上弧)稍拱曲,腹(下弧)的形状则有凹的、凸的、半凹半凸的及平的。

机翼几何参数:机翼翼展b、机翼面积A、平均翼弦lm(A/b)、展翼比 (b/lm)、翼弦l、翼型厚度d(最大的叫翼型最大厚度dmax)、翼型弯度f、前、后缘圆角半径。

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析摘要轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。

本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告目录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的工作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三角形 (5)2.4能量方程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运行工况及调节5.1轴流式风机的运行工况及确定 (11)5.2轴流式风机的非稳定运行工况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联工作的“抢风”现象 (13)5.3轴流式风机的运行工况调节 (14)5.3.1风机入口节流调节 (14)5.3.2风机出口节流调节 (14)5.3.3入口静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验目的 (15)6.2实验装置与实验原理 (15)6.2.1用比托静压管测定质量流量6.2.2风机进口压力6.2.3风机出口压力6.2.4风机压力6.2.5容积流量计算6.2.6风机空气功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考文献 (30)主要符号pa-------------------------------------------------------------------------------当地大气压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm∆----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机入口全压()p a psg2----------------------------------------------------------------------------风机出口全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()minrL------------------------------------------------------------------------------平衡电机力臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。

流体动力学及叶栅理论课程作业—河海大学

流体动力学及叶栅理论课程作业—河海大学

流体动力学及叶栅理论(下篇)一、课程内容小结1.机翼及翼型特性机翼的几何特性:翼型几何参数(翼弦、翼型厚度、翼型弯度、前、后缘圆角半径和后缘角),机翼几何参数(机翼翼展、机翼面积、平均翼弦、展弦比)。

机翼的气动力特性:机翼与绕流流体相互作用的力学特性,叫做机翼的气动力特性。

机翼绕流:正问题和反问题。

机翼分类:无限翼展机翼和有限翼展机翼。

翼型绕流的实验结果:介绍翼型气动方性能,随冲角及翼型几何形状变化的实验结果。

冲角对翼型气动力性能的影响翼型的升力和助力:升、阻力系数曲线,升、阻力极曲线。

压力沿翼型表面的分布:工程上不仅很重视翼型上的总作用力,而且对压力沿翼型表面如何分布也很关心,特别是在水利机械中,压力沿叶片的分布情况,关系到叶轮汽蚀性能的好坏。

翼型几何形状对动力性能的影响:弯度的影响,厚度的影响,前缘抬高度的影响,表面粗糙度的影响,雷诺数的影响。

常见翼型:NACA四位数字翼型,NACA五位数字翼族,以及其他翼型。

2.茹可夫斯基翼型对于翼型绕流的理论分析,分别介绍翼型绕流的保角变换与点奇点分布两种解法。

茹可夫斯基变换变换图解。

变换图形:圆心在原点的圆,圆心在坐标轴上的圆,圆心在第二象限的圆。

圆柱绕流。

圆柱绕流的来流速度。

圆柱绕流的来流环量。

绕流翼型流动的复势绕翼型流动的速度场。

翼型气动力特性。

翼型上的作用力:在理想流体的条件下,翼型将不受阻力,翼型上只作用者升力。

升力的大小,可以类似于圆柱绕流那样求出,结果也和圆柱绕流时一样。

升力系数。

3.薄翼绕流及有限翼展机翼理论当流体绕流翼型时,由于翼型的存在产生对来流的扰动,改变了来流的性态。

它一方面使流动顺翼型表面偏折,并形成一条流线;另一方面使流速值在翼型两侧产生跃变,出现了速度差和压力差,并进而产生了升力。

由于翼型对来流的扰动的作用,可以用沿翼型适当分布的涡、源(奇点)来代替,把这种计算绕翼型流场的方法,称为奇点分布法。

薄翼绕流。

薄翼绕流的特点:翼型厚度很薄,翼型中弧线微弯,在小冲角之下被绕流。

第三章 泵与风机的叶轮理论

第三章  泵与风机的叶轮理论

g

(u 2 u1 ) 2g
说明
式中 u 1 u 2----叶轮叶片进口、出口处的圆周速度 上式表明:当离心式泵与风机旋转叶轮外缘封闭, 即相当于出口阀门关闭,流体在流道内不流动时,单 位重量流体在叶轮出口与进口处的压力能差与叶轮旋 转角速度的平方成正比,与叶轮内、外直径有关。 即叶轮尺寸一定,旋转角速度增大,或叶轮内径 一定,外径增大,叶轮出口与进口处的流体压力能差 也增大。
返回
第五节 轴流式泵与风机的叶轮理论 特点(与离心式相比较) 翼型及叶栅 翼型及叶栅的空气动力特性 能量方程式
特点(与离心式相比较)
性能:流量大、扬程(全压)低。多用于大 型机组的循环水泵、送风机、引风机等。 调节:采用动叶调节,变工况由叶片对流体 作用的升力对流体做功。 流动方向:流体沿轴向进入并流出叶轮。 结构:结构简单,尺寸小,重量轻。
轴流叶轮中由于流体沿相同半径的流面流动所以流面进出口的圆周速度相同u叶轮进出口过流断面面积相等对不可压缩流体进出口的轴向速度相同能量方程式叶片式式泵与风机的能量方程式也适用于轴流式所不同的是叶轮进出口处圆周速度轴面速度相cotcotcotcotu故流体在轴流叶轮中获得的能量远小于离心式这就是轴流式泵与风机的扬程全压远低于离心式的原因
制作者:赵小燕
第三章 泵与风机的叶轮理论
第一节 第二节 第三节 第四节 第五节 流体在离心式封闭叶轮中获能分析 流体在叶轮中的运动及速度三角形 叶片式泵与风机的基本方程式 离心式叶轮的叶片型式 轴流式泵与风机的叶轮理论
第一节 流体在封闭式叶轮中的获能分析
泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片对流 体做功,从而使流体获得压力能及动能。因此,叶轮是 实现机械能转换为流体能量的主要部件。

翼型与叶栅理论..

翼型与叶栅理论..

故在 b 处:
d d W 1 2 v 01 e 2 i( ) 2 i 2 R ie i( ) i 0
解得:
2R v0sin()
有时称 ( ) 为绝对攻角
二元机翼中:
CL
FL
b

v
2 0
2
对于儒可夫斯基翼型:
b 4R
故升力系数为:
C Lv024 R R v 0v s0 2 in /(2 )()
非定常速度的演化-旋转框架下
Ry vx
此为作用在叶型上的力之两个坐标分量,合力大小为:
R Rx2Ry2 v
由于:
R w w y w x w x w y 0
可见两者相垂直,合力方向为将 w 逆环量方向转90度。
如果令两叶片间距无穷大,而环量不变,此时叶型受力?
等价平板叶栅 栅距相同,但叶型不同的两个叶栅,如果对无论怎样的来流,二栅中
2) 同一叶型单独绕流和置于叶栅中在同一攻角下被绕流时,其动力 特性也不同。加速叶栅中叶型,其升力系数大于单独叶型的升力系 数,但减速叶栅中叶型升力系数恒小于单独叶型的升力系数。
离心泵及内流图例
绝对速度分布的变化
压强分布的变化
初始场的非定常模拟
某一时刻的流动
非定常速度的演化-固定框架下
对控制线内流体列出沿坐标方向动量方程
(p' p'')tRx q(wx'' wx' )
Ry q(w'y' w'y)
(a)
由连续性方程得:
qwx' t wx''t 从而: wx' wx'' wx
代入方程(a): Rx (p' p'')t

叶栅理论 PPT

叶栅理论 PPT

第二节 翼型受力及等价平板翼栅
一、栅中流动
oxy
讨 论 叶 栅 流 动 时 选 用 随 叶 片 一 起 流 动 的 坐 标 系 , 设 栅 前 无 穷 远 处 来 流 速 度 为 w1(w1x, w1y) ,栅 后 无 穷 远 处 的 流 速 w 2(w 2x, w 2y) 。由 于 叶 栅 对 流 场 的 作 用,通常栅前、栅后的速度大小和方向都会发生变化,使二者不相等。
2. 空 间 叶 栅 流 经 叶 栅 流 道 的 流 动 是 空 间 流 动 。如 :混 流 式 水 轮 机 、水 泵 、风 机 的 叶 轮 。
3. 直 列 叶 栅 流面上列线成一无限长直线,为直列叶栅,如:轴流式叶轮叶栅。 4. 环 列 叶 栅 流面上列线为圆周线,为环列叶栅。如:离心式叶轮叶栅为环列叶栅。 5. 不 动 叶 栅 叶栅本身不运动为不动叶栅。如:导叶。 6. 运 动 叶 栅 叶栅本身运动,为运动叶栅。又可以分为移动和转动叶栅。
( 3)
z1
p1 g
w
2 1
2g
z2
p2 g
w
2 2
2g
( 4)
z1
z2,
w
2 1
w
2 1x
w
2 1y

w
2 2
w
2 2
x
w
2 2
y


w1x
w 2x ,








得:
p1
p2
1 2
(
w
2 2y
w
2 1y
)
( 5)
Rx,Ry可 表 示 为 :
R
x

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析轴流式风机的性能测试及分析摘要轴流式风机在⽕⼒发电⼚及当今社会中得到了⾮常⼴泛的运⽤。

本⽂介绍了轴流式风机的⼯作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运⾏⼯况的确定及调节⽅⾯的知识,并通过实验结果分析了轴流式风机⼯作的特点及调节⽅法。

关键词:轴流式风机、性能、⼯况调节、测试报告⽬录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的⼯作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三⾓形 (5)2.4能量⽅程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运⾏⼯况及调节5.1轴流式风机的运⾏⼯况及确定 (11)5.2轴流式风机的⾮稳定运⾏⼯况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联⼯作的“抢风”现象 (13)5.3轴流式风机的运⾏⼯况调节 (14)5.3.1风机⼊⼝节流调节 (14)5.3.2风机出⼝节流调节 (14)5.3.3⼊⼝静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验⽬的 (15)6.2实验装置与实验原理 (15)6.2.1⽤⽐托静压管测定质量流量6.2.2风机进⼝压⼒6.2.3风机出⼝压⼒6.2.4风机压⼒6.2.5容积流量计算6.2.6风机空⽓功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考⽂献 (30)主要符号pa-------------------------------------------------------------------------------当地⼤⽓压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机⼊⼝全压()p a psg2----------------------------------------------------------------------------风机出⼝全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()minrL------------------------------------------------------------------------------平衡电机⼒臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的⼀种动⼒设备其主要作⽤是提⾼⽓体能量并输送⽓体。

02 第二节 机翼与叶栅的升力理论

02 第二节 机翼与叶栅的升力理论
ρ ——介质密度;
w∞ ——翼型前后无穷远处未受翼型影响的来流速度。 ▲说明
△如果介质是实际流体,则 F 力的大小与式(6-37)所计算的值有所偏差。
3、升力和阻力 ▲F 力可以看作是垂直于 w∞ 的升力 Fy 和平行于 w∞ 的阻力 Fx 的合力,如图 6-11 所示。
6-2
▲攻角 △来流 w∞ 与翼弦的夹角 α 称为攻角,如图 6-11 所示。
Fy
=
ρ mtw∞z ∆wu cos λ sin(b ∞ + λ)
b
(6 − 47)
由式(6-43)和式(6-47)可得
cy
l t
=
2 cos l sin 2 β ∞ ∆wu sin(β ∞ + l)w∞z
(6 − 48)
根据三角恒等式,上式还可以写成
cy
λ t
=
2∆wu w∞z
sin β ∞ 1 + tan λ / tan β ∞
参数。 ◇其倒数 t/l 称相对栅距。
翼型安放角——翼弦与列线方向之夹角 βb。 进口安放角——翼型前缘点中线的切线与圆周方向之夹角 βb1。 出口安放角——翼型后缘点中线的切线与圆周方向之夹角 βb2。 翼型弯曲角——θ=βb2-βb1。
⑵ 叶栅的动力特性 ▲叶栅绕流如图 6-17 所示。
▲说明 △叶栅绕流与孤立翼型绕流不同,由于栅中翼型有无穷多,因此对流场的扰 动可以传播到无穷远的地方,这样流场中就不再有未受扰动的流动速度 w∞,栅前 栅后足够远处的速度 w1 和 w2 的大小和方向都是不同的。
⑵ 平面直列叶栅 ▲ 圆柱面沿母线割开后,可以展开在平面上。 ▲圆柱面和各叶片相交,其截面(翼型剖面或翼型)在平面上构成一组叶栅。如 图:

机翼理论

机翼理论
压力沿翼型表面的分布 工程上不仅重视翼型上的总作用力,而且对压力沿翼型表面的分布也很 关心,特别是在水力机械中,压力沿叶片的分布情况,关系到叶轮汽蚀性能 的好坏。 ,压力系数 压力大小常以未受扰动的无穷远来流压力 p∞ 为标准(或参照) 的计算公式: C p =
p p∞ 1 2 ρv∞ 2
′ ′ θ1′′ θ 2′ = 2(υ1′′ υ2′)
′ ′ ′ ′ 将υ2 = 0 ,υ2′ = 2π ,θ 2 = 0 ,θ 2′ = 2π 代入,得: θ1′ θ1′′ = 0 (近似值)
平面过 = c 的平滑曲线经变换为在z 平面上过 z = 2 c 的夹角近似
为零的曲线,即夹角近似为零的夹角。
力增加很快,在达到临界攻角以后增加更快。
3)升力系数Cl 与阻力系数Cd 关系曲线 Cl ~ Cd 这一曲线亦称极曲线,以Cd 为横坐标,C 为纵坐标,对应每一个攻角α ,
l
有一对 Cl 、Cd ,在图上可画一点,同时标上相应角度α ,连接所有点,即成极 曲线。
用途:a)对任一冲角,可得出Cl 、Cd ; b)原点和曲线上任取一点连直线,直线长度代表该冲角下的合力系 数, CR =
dz ) 角度。 d
dz 倍, d
3.流动奇点的强度在保角变换中的变化 流动奇点:点源、点汇、点涡等,流动奇点作保角变换时其强度保持 不变。 以上 3 点汇总: 若已知 平面上绕物体流动的复势,则可通过一解析函数 z = f ( ) 将W ( ) d 变换为W ( z ) , 这一变换时复速度为V ( z ) = V ( ) , 两平面上流动奇点强度
L ,这就是要求机翼采用适当的 D
机翼迎向来流的最前边缘叫机翼前缘,背向来流的边缘称机翼后缘,机 翼的左右两端称为翼梢。 机翼顺着来流方向切下来的剖面称为翼型,翼型通常都具有流线型外 形,头部圆滑、尾部尖瘦、上弧稍拱曲,下弧形状则有凹、凸、平的。 机翼的几个主要参数有: 1.机翼面积 S :它是机翼的俯视平面正投影面积; 2.机翼翼展 l : 3.翼弦 b : 机翼两梢之间的距离称为翼展; 前后缘连线的长度;

流体动力学及叶栅理论

流体动力学及叶栅理论

CR
R 1 2 v l 2
式中 R 为合力,而且此直线与横轴夹角就等于合力与来流的夹角; (3)上述直线斜率为
Cy Cx FY FX

即为在该点冲角下工作时的翼型升阻比;

(4)通过极曲线很容易确定翼型的最佳冲角——与ε最大值对应的冲角。过原点作极曲线的切线,其 切点所对应的冲角,就是最佳冲角。
5
5.2 翼型绕流的实验结果
在这一节里,介绍翼型气动方性能,随冲角及翼型几何形状变化的实验结果。
5.2.1 冲角对翼型气动力性能的影响
5.2.1.1 翼型的升力与阻力 在单翼型绕流情况下,由于沿翼展取为单位长,从而机翼面积:
A l 1 l
升、阻力公式(5-1)对翼型可写成:
2 v
FY C y FX C x
2

第5章
5.1 概 述
机翼及翼型特性
机翼一词,最早出现于航空工程,指的是飞机翅膀。如今它可用以泛指相对于流体运动的各种升 力装置。因此,流体机械中的工作轮叶片也可视为一个机翼。
5.1.1 机翼的几何特性
工程上引用机翼主要是为了获取升力,但由于在流体中运动的物体,不可避免地会遭受到流体阻 力的作用,因此对机翼性能的要求,首先就是尽可能大的升力 Fy 和尽量小的阻力 Fx,也就是希望具有 这就要求机翼采取适当的几何形状, 图 5-1 是一个低速机翼的一般外形图。 最佳的、 阻力比值ε=Fy/Fx。
f max
xf f max , xf l l
像厚度一样,这些相对值习惯上常用百分数表示:
f max xf
f max 100% l xf l 100%
(4)前、后缘圆角半径和后缘角 翼型前,后缘的曲率半径,叫做翼型的圆角半径,分别以 RL、RT 记之。它们的相对值 RL=RL/l、

流体力学与流体机械——第10章(机翼与叶栅理论6-7)

流体力学与流体机械——第10章(机翼与叶栅理论6-7)
任何叶栅都存在它等价的叶栅,且等价叶 栅的叶型可以任意。特别是任何叶栅都能找 到与它等价的平板叶栅。
满足条件:
(1)平板叶栅与原叶栅的栅距t相等;
(2)安放角等于原叶栅的无环量绕流角β0(即
零升力方向);
升力系数
(3)弦长满足:b (Clz / Cl )bz
五、叶栅绕流问题的解法
叶栅绕流的求解分为正命题和反命题。
基本思想是应用保角变换,把给定的叶栅平面 变换到某一辅助平面,使在辅助平面上的绕流 是已知的或容易求解的。这样,在叶栅平面上 的流动就可以逆变换关系求出。
3. 奇点法 用来解任意叶栅正、反命题的现代方法之一。 其实质是在有势流场中置入的点源系与点涡 系替代叶栅中的翼型,以确定流场受叶栅干 扰后的流动。
第六节 叶栅及叶栅特征方程
叶片式水力机械的转轮、导叶轮都由若干 个相同的叶片或翼型按相互等距离排列组 成,叶片或翼型之间将彼此相互影响。 按 照一定规律排列起来而又相互影响的叶片 或翼型的组合,叫做翼栅或叶栅。
叶栅理论的目的在于寻找叶栅与流体之间 相互作用的运动学和动力学规律,以及影 响这些规律的各种因素,是叶片式水力机 械水动力学计算的理论基础。
v1xv2 y 'v2 xv1 y '
v1xv2 y 'v2 xv1 y '
引入新的系数i0
i0
m 1 K
式(3)可写成
v y '' Kv y '(1 K )i0v x (4)
上式两端同时乘以列线长度2πr, r为展 开成平面叶栅的圆柱流面的半径,有
2rv y '' 2rKv y '2r(1 K )i0v x
4. 安放角 翼型的弦线与列线之间的夹角称为安放角, 用βs表示。中弧线在前缘点处的切线与列 线的夹角叫进口安放角,用βs1表示。同样可 定义出口安放角βs2 。

轴流式风机性能曲线解析

轴流式风机性能曲线解析

轴流式风机的性能摘要轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。

本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告目录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的工作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三角形 (5)2.4能量方程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运行工况及调节5.1轴流式风机的运行工况及确定 (11)5.2轴流式风机的非稳定运行工况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联工作的“抢风”现象 (13)5.3轴流式风机的运行工况调节 (14)5.3.1风机入口节流调节 (14)5.3.2风机出口节流调节 (14)5.3.3入口静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验目的 (15)6.2实验装置与实验原理 (15)6.2.1用比托静压管测定质量流量6.2.2风机进口压力6.2.3风机出口压力6.2.4风机压力6.2.5容积流量计算6.2.6风机空气功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考文献 (30)主要符号pa-------------------------------------------------------------------------------当地大气压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm∆----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机入口全压()p a psg2----------------------------------------------------------------------------风机出口全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()m inrL------------------------------------------------------------------------------平衡电机力臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。

第四章叶栅理论

第四章叶栅理论

第四章 叶栅理论 §4—1 概 论把按照一定规律排列起来的相同机翼之系列,叫做翼栅。

翼栅问题是单个机翼问题的推广。

翼栅理论在工程上得到广泛应用,特别是在叶片式流体机械方面。

因此,翼栅常被称为叶栅,组成它的机翼也就叫做叶片了。

一、叶栅几何参数表征一个叶栅的几何特征的参数,叫做叶栅的几何参数。

叶栅的几何参数主要有下列几个:(一)列线栅中诸叶片上各相应点的联结线,称为叶栅的列线。

通常都以叶片前后缘点的联线表示之。

实际上所遇到的列线,其形状有两种:一为无限长直线;另(见图4一1)。

(二)栅轴垂直于列线的直线叫栅轴。

但对圆周列线的叶栅,把旋转轴定义为其栅轴。

有些文献中,把上述列线叫做栅轴,而不再引用列线这一名词。

(三)叶型叶片与过列线的流面交截出来的剖面形,叫叶栅的叶型。

其一几何参数见翼型。

图4—1直列叶栅与环列叶栅(四)栅距列线上二相邻的相应点间的线段长度,叫叶栅的栅距或栅隔,用字母t 记之。

对圆列线叶栅,不引用此参数,而用角距nπ2(n ——叶片数)代替它。

(五)安放角叶型的弦与列线间之夹角e β,称为叶型在叶栅中之安放角。

叶型中线在前、后缘之切线与列线之夹角'e β、''e β分别叫作叶型的进、出口安放角。

对圆列线叶栅,只引用后二个参数。

(六)疏密度栅中叶型弦长l 与栅距t 之比值t l /,叫做叶栅的疏密度。

而把其倒数l t /,称为相对栅距。

圆列线叶栅不引用此参数。

二、叶栅分类在工程实际当中所遇到叶栅多种多样,为便于分析和讨论问题,可以给这些叶型加以分 类。

但从不同角度又可得出不同的分类,这里仅就水力机械中常用到的分类法,介绍两种。

(一)根据绕流流面分类叶栅1.平面叶栅如能将绕叶栅液流分成若干等厚度流层,这些流层本身为平面或这些流层虽为曲而,但若沿流线切开后,能铺展成一平面者,称这类叶栅为平面叶栅。

绕这类叶栅的流动为平面流动。

例如水轮机的导叶叶栅,低比速水轮机和水泵的转轮叶栅等,绕流这些叶栅的流面本身就是平面;而轴流式水轮机、水泵和风机等转轮叶栅之流面,虽为圆柱面,但顺流线切开后可展成平面。

江苏大学流体力学2020年考研专业课初试大纲

江苏大学流体力学2020年考研专业课初试大纲
全国硕士研究生入学统一考试 流体力学考试大纲
I 考查目标
流体力学是工科类众多专业的重要的专业基础课程。目的是科学、公平、有效地测试 考生是否具备攻读相关专业硕士所必须的基本素质、一般能力和培养潜能,以利用选拔具 有发展潜力的优秀人才入学,为国家的经济建设培养具有较强分析与解决实际问题能力的 高层次、应用型、复合型的动力工程及工程热物理等各专业的高技术水平人才。考试测试 考生掌握流体力学的基本概念、基本理论的扎实程度,考查考生能熟练运用这些概念与理 论分析解决现实生产中流体力学相关问题的能力。
2.三角形量水堰的流量 Q 与堰上水头 H 及重力加速度 g 有关,试用量纲分析法确定
Q f (H , g) 的关系式。
3.用直径 d 6cm 的虹吸管从水箱中引水,虹吸管最高点距水面 h 1m ,试求不产
生空化的最大流量为多少?(水的饱和蒸汽压取为 2340Pa)。
4. 流动参数中流速的测量方法、原理、计算公式并图示(不少于 5 种)。 5.绘出一个雷诺实验装置示意图,简述实验方法、实验的观察结果。以及实验所得到
两者的主要区别是:粘性切应力的存在和物体表面的粘附条件(无滑移条件)。
2.有旋流动、无旋流动 流体微团存在角速度,即
0
,称为有旋流动,若 Leabharlann 0则称为无旋流动。
流体微团的转动角速度
1
v
,若流场中某处
0
,就表明位于该点处的流体
2
微团会绕着通过该点的瞬时轴作旋转运动,称为有旋运动。若
0
,则位于该点处的流
IV. 题型示例及参考答案
一、 名称解释(要求用文字、数学、图示三种形式同时描述,5×7=35 分) 理想流体与实际流体、有旋流动与无旋流动、层流与湍流、文丘里管与拉瓦尔管、 流线与涡线、 流量与涡通量、边界层与层流底层。

第四章叶栅理论

第四章叶栅理论

第四章 叶栅理论 §4—1 概 论把按照一定规律排列起来的相同机翼之系列,叫做翼栅。

翼栅问题是单个机翼问题的推广。

翼栅理论在工程上得到广泛应用,特别是在叶片式流体机械方面。

因此,翼栅常被称为叶栅,组成它的机翼也就叫做叶片了。

一、叶栅几何参数表征一个叶栅的几何特征的参数,叫做叶栅的几何参数。

叶栅的几何参数主要有下列几个:(一)列线栅中诸叶片上各相应点的联结线,称为叶栅的列线。

通常都以叶片前后缘点的联线表示之。

实际上所遇到的列线,其形状有两种:一为无限长直线;另(见图4一1)。

(二)栅轴垂直于列线的直线叫栅轴。

但对圆周列线的叶栅,把旋转轴定义为其栅轴。

有些文献中,把上述列线叫做栅轴,而不再引用列线这一名词。

(三)叶型叶片与过列线的流面交截出来的剖面形,叫叶栅的叶型。

其一几何参数见翼型。

图4—1直列叶栅与环列叶栅(四)栅距列线上二相邻的相应点间的线段长度,叫叶栅的栅距或栅隔,用字母t 记之。

对圆列线叶栅,不引用此参数,而用角距nπ2(n ——叶片数)代替它。

(五)安放角叶型的弦与列线间之夹角e β,称为叶型在叶栅中之安放角。

叶型中线在前、后缘之切线与列线之夹角'e β、''e β分别叫作叶型的进、出口安放角。

对圆列线叶栅,只引用后二个参数。

(六)疏密度栅中叶型弦长l 与栅距t 之比值t l /,叫做叶栅的疏密度。

而把其倒数l t /,称为相对栅距。

圆列线叶栅不引用此参数。

二、叶栅分类在工程实际当中所遇到叶栅多种多样,为便于分析和讨论问题,可以给这些叶型加以分 类。

但从不同角度又可得出不同的分类,这里仅就水力机械中常用到的分类法,介绍两种。

(一)根据绕流流面分类叶栅1.平面叶栅如能将绕叶栅液流分成若干等厚度流层,这些流层本身为平面或这些流层虽为曲而,但若沿流线切开后,能铺展成一平面者,称这类叶栅为平面叶栅。

绕这类叶栅的流动为平面流动。

例如水轮机的导叶叶栅,低比速水轮机和水泵的转轮叶栅等,绕流这些叶栅的流面本身就是平面;而轴流式水轮机、水泵和风机等转轮叶栅之流面,虽为圆柱面,但顺流线切开后可展成平面。

叶栅理论

叶栅理论
Γ2 = K Γ1 + (1 K ) i0 q + (1 K ) 2π r 2ω
Rx , Ry 用 wmx , wmy 表示为: Rx = ρwmy ( w2 y w1 y ) t Ry = ρ wmx ( w2 y w1 y ) t
(7)
下面求绕翼型的环量(设法将式(7)表示成 R = ρ wmΓ 的形式)
Γ = ∫ABCDA wS ds = ∫AB wS ds + ∫BC wS ds + ∫CD wS ds + ∫DA wS ds
1 2 p1 p2 = ρ ( w2 y w12y ) 2
(5)
Rx , Ry 可表示为:
1 2 Rx = ρ ( w2 y w12y ) t 2 Ry = ρ wx ( w2 y w1 y ) t
(6)
现定义一个平均流速
1 wm = ( w1 + w2 ) 2
分量形式为:
1 wmx = ( w1x + w2 x ) = wx 2 1 wmy = ( wy1 + w2 y ) 2
t 叶栅中两相邻翼型上相应点的的距离叫栅距,常用 表示。对环列叶栅不引用 2π 这一参数,而用角距 ( n 表示叶片数)替代。
n
5.安放角 。 叶型的弦和列线的夹角 β S ,称为安放角(叶型的安放角) 叶型的中线在前后缘的切线与列线的夹角 β S 1 、 β S 2 称为进出口安放角。 对环列叶栅,只定义进出口安放角。 6.稠密度 弦长 b 与栅距 t 之比 叫做叶栅的稠密度,把它的倒数称为相对叶栅,对环列 叶栅不引用这一参数。 二、叶栅分类 根据水力机械常用分类方法,介绍如下: 1.平面叶栅 流经叶栅流道的流动是平面流动,如:水轮机导叶叶栅、低比转数水泵、 水轮机转轮叶栅。 对轴流式水泵、水轮机、风机等转轮叶栅可展成平面,即将圆柱面展成平 面,则也可称为平面叶栅。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3) 平面上圆心位于坐标原点,半径 a>c的
圆变换为 z 平面上长半轴为a+c2/a(位于实轴), 短半轴为 a-c2/a 的椭圆。
如来流成a角(图示),则 平面上绕流复位势
W ( ) ( ei a2 ei )
1.5.P1
第五节 奇点分布法
两种问题:
1、正问题:已知翼型几何特性,求可以替代 的奇点分布,用叠加法求出流动复位势和气动性能。
1.7.P1
第七节 亚声速机翼
亚声速机翼绕流指绕流任何位置均有 M a 1 。
对于来流为 Ma Ma Ma 为临界马赫数。
此时称为亚声速机翼。 本节讨论须考虑流体的可压缩性。
亚声速机翼的阻力由粘性阻力和诱导阻力两者构成。
1.8.P1
第八节 跨声速机翼
图示跨声速
机翼,在A点达 到声速,A点后 流动继续膨胀,
2、反问题:要获取一定特性的流场,求取相
应机翼的几何特性。
一、薄翼的简化气动模型
图示为一小弯度小厚度翼
型被小攻角来流绕流。简化为
无厚中弧线绕流。
薄翼的机动模型
1.6.P1
第六节 有限翼展机翼概述
一、有限翼展机翼的翼端效应及其气动模型 本节讨论流动特点、升力计算及其特有的“诱导 阻力”计算。 (一)翼端效应 图示,当绕流有限 翼展时,有向上绕流的 趋势,越接近翼端越明 显,称为翼端效应。
一、机翼与翼型的几何参数 由机翼的平面形状图可看出,主要几何参数有
a) S l
b br
b) S l
c)
S
l0
l 机翼的平面形状
b
bt
b
面积 S 翼弦 b 翼展 l
平均几何翼弦
ba s / l
尘削比
bt / br
1.2.P2
机翼分为无限翼展机翼(二元机翼)和有限
翼展机翼(三元机翼)。 二、翼型的几何参数
超声速机翼的常用翼型
超声速翼型的阻力系数总是大于 Cd平板 。
2.1.P1
第二章 叶栅理论基础
第一节 叶栅概述
叶栅(翼栅)——叶片的组合。 目的:计算转动流体机械的流体动力力矩和功率。 一、叶栅的主要类型 按流体流经叶栅流道的流动分为: 平面叶栅:流体流经叶栅流道的流动是平面 流动。如:轴流涡轮机械(见图)的转轮和导叶、 径向式水轮机、水泵、压缩机的转轮和导叶等。
作保角变换时,二平面上的点涡、点源强度有
关系
z
qz q
即奇点强度保持不变。
二、儒可夫斯基变换
变换函数
z c2
式中:c —— 正、实常数。
1.4.P5
(一)变换特点
1) 平面上无穷远点和原点都变换成 z 平面
上的无穷远点。
2) 平面上圆心在坐标原点,半径为 c 的圆
周变换成 z 平面上实轴上长为 4c 的线段。
1.4.P1
第四节 保角变换法、 儒可夫斯基变换
一、保角变换法解平面势流
可以利用解析的复变函数 z f ( ) 将 平面上
的圆域变换为 z 平面上的实用域,如图。
y
dZ
Cz
d C
o vz z
x
o
v
复平面的保角变换
其流动可作相应变换以求解。
1.4.P4
(三)流动奇点强度在保角变换中的变化
Cd
0
15
0
Cm
翼型的气动力系数曲线
1.3.P3
由图可见:Cl max 约为1.5,对应 约为15°;
15近似为一直线;0 0 : 5。
(4)阻力系数、阻力系数曲线
阻力系数
Cd
1
D
2b
2
阻力系数曲线 Cd Cd ( )
0 附近 Cd 最小。
(5)升阻比 Cl Cd
滑翔系数 Cd Cl
二、叶栅的主要几何参数
叶栅的几何参数
(1)列线 叶栅中各翼型相应点连线。依其 形状可将叶栅分为直列叶栅和环列叶栅。
1.3.P4
(6)前缘气动力矩、力矩系数和力矩系数曲线
前缘气动力矩 M0: 总气动力 R
缘点形成的力矩。
力矩系数
Cm0
1
M0
2b2
2
L2 D2 对前
力矩系数曲线 Cm0 Cm0 (a)
(7)压力中心 S : R 与翼弦交点。
其位置 xs , xs xs b 。
(8)焦点:攻角改变时气动力对该点的力矩不变。
y
LR
气动翼弦
0
o
D
s
x
, v
xs b
作用于型上的气动力
零升力攻角 0:攻角为某一负值 0时,升力
为零。
(2)气动翼弦(空气动力翼弦):过后缘零升力 来流方向的直线。
1.3.P2
(3) 升力系数、升力系数曲线
升力系数
Cl
1
L
2b
2
升力系数曲线 Cl Cl ( )
Cm , Cd , Cl
Cl
相对位置 x :x
f
f
xf
/ b。
(4)厚度 t :翼弦垂线被翼型轮廓截得的最大厚
度。
1.2.P4
相对厚度 t t / b
位置 xt
相对位置
x t
xt / b
(5)前后缘圆角半径 r1 , r2
前后缘圆角半径相对值
r l
rl
/b
r t
rt
/b
1.3.P1
第三节 翼型的空气动力特性
(1)攻角 :翼弦与来流夹角。
流速继续增大,
Ma Macr
Ma 1
A
S
跨声速翼型流动
压强减少。如果过膨胀,在 S 点处会形成激波,
其后变成亚声速。
AS超声速区压强下降很多,增大了升力。激 波后压强突跃,会形成波阻。
1.9.P1
第九节 超声速机翼
超声速流动中翼型的扰动以马赫波的形式向下 游传播,马赫锥前流体不受扰动。
为避免在翼型前缘出现正激波波阻,前缘都具 有尖劈形状,而后缘应是尖状,且翼型一般都很薄, 如图示。
一般机翼翼型如图示:
y
t
f
rl
xt
xf
b
中弧线
rt
x
翼弦
翼型及其几何参数
1.2.P3
其几何参数主要有:
(1)翼弦 b :过前后缘圆心连线被截的长度。
(2)中弧线(骨线或中线) :轮廓线内切圆圆心 连线。
(3)弯度 f :图示坐标中,中弧线的 ymax 。
相对弯度 f : f f / b
弯度位置x f :ymax 的 x 位置
2.1.P3
空间叶栅:流体流经叶栅流道的流动是空间流
动。如:混流式水轮机转轮叶栅。
平面叶栅又可分为直列和环列叶栅,依运动与
否亦可分为运动叶栅和固定叶栅。
分析时常将坐标系固定在叶栅上,视流动为定
常流动,其进出口速度为
w1
u
1
w2
u
2
其中 w ——相对速度
——绝对速度
u ——牵连速度
2.1.P4
1.1.P1
第一章 机翼理论基础
第一节 机翼升力原理
机翼升力可由儒可夫斯基升力公式计算,即:
L
其阻力由边界层理论知由摩擦阻力和压差阻力 Γ
两者构成。
机翼的翼型 和位置产生一定的环量 与来流叠加产生升力
失速状态:绕流气流分离和旋涡加大使环量大大 减小,致使升力完全消失。
1.2.P1
第二节 机翼与翼型的几何参数
相关文档
最新文档