指数型函数作图

合集下载

指数函数幂函数对数函数图像

指数函数幂函数对数函数图像

指数函数幂函数对数函数图像
指数函数幂函数对数函数的图像共有三种,分别是指数函数的图像,幂函数的图像以及对数函数的图像。

指数函数的图像是一条开口向上的凸函数图像,它的图像越往右
曲线越陡峭,越往左曲线越平缓。

当 b>1 时,它的图像在 y 轴上有
一个切点,此时该函数有正值域,即真值存在于(0, +∞) 内;当
0<b≤1 时,它的图像只有一条开口向下的凸函数,此时函数只有应用
于[0, +∞) 内的负值域;当 b=1 时,函数的图像会变成一条水平线,其函数值永远为 1。

幂函数的图像也是一条开口向上的凸函数图像,但它的曲线与指
数函数的曲线不同,幂函数的曲线越往右曲线越平缓,而指数函数的
曲线越往右曲线越陡峭。

当 b>1 时,它的图像经过原点,此时函数有
正值域,即真值存在于 (-∞, +∞) 内;当0<b≤1 时,它的图像只
有一条开口向下的凸函数,此时函数只有应用于 (-∞,+∞) 内的负
值域;当 b=1 时,函数的图像会变成一条水平线,其函数值永远为 1。

对数函数的图像是一条对称的凹函数图像,它的图像不论是在 x
轴还是 y 轴上都有一个对称的分界点,它的图像的右侧部分的曲线是
越往左曲线越平缓的,而在它的图像的左侧部分的曲线则是越往左曲
线越陡峭的。

此外,对数函数的真值域是(0,+∞),此外,它的函数
值是分正负值的,即它的函数值存在于 (-∞, 0) 和(0, +∞) 两个
区间内。

第三章 第五节 指数函数 课件(共53张PPT)

第三章 第五节 指数函数 课件(共53张PPT)
解析: 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个单位 后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴 上方得到的,函数图象如图所示.
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为

指数函数的图象及性质 完整课件PPT

指数函数的图象及性质 完整课件PPT

【拓展提升】 1.处理指数函数图象问题的两个要点 (1)牢记指数函数y=ax的图象恒过定点(0,1),分布在第一和 第二象限. (2)明确影响指数函数图象特征的关键是底数.
2.底数变化对指数函数图象形状的影响 指数函数y=ax的图象如图所示,由指数函数y=ax的图象与 直线x=1相交于点(1,a)可知: (1)在y轴右侧,图象从上到下相应的底数由大变小; (2)在y轴左侧,图象从下到上相应的底数由大变小. 如图中的底数的大小关系为 0<a4<a3<1<a2<a1.
22
答案:3 或 1
22
【类题试解】已知a>0,且a≠1,若函数f(x)=2ax-4在区间
[-1,2]上的最大值为10,则a=______.
【解析】(1)若a>1,则函数y=ax在区间[-1,2]上是递增的,
当x=2时,f(x)取得最大值f(2)=2a2-4=10,
即a2=7,又a>1,∴a= 7.
【解析】>1时,函数y=ax的图象过点(0,1),分布在第一、 二象限,且从左到右是上升的. 直线y=x+a过第一、二、三象 限,与y轴的交点为(0,a),在点(0,1)的上方. A,B,C,D四 项均不符合此要求.当0<a<1时,函数y=ax的图象过点 (0,1),分布在第一、二象限,且从左到右是下降的. 直线 y=x+a过第一、二、三象限, 与y轴的交点为(0,a),在点(0,1) 和点(0,0)项符合此要求.
=af(x)定义域、值域的求法 (1)定义域 函数y=af(x)的定义域与y=f(x)的定义域相同. (2)值域 ①换元,令t=f(x); ②求t=f(x)的定义域x∈D; ③求t=f(x)的值域t∈M; ④利用y=at的单调性求y=at,t∈M的值域.

高中数学《指数函数》ppt课件

高中数学《指数函数》ppt课件

01
02
03
乘法法则
$a^m times a^n = a^{m+n}$,同底数幂相 乘,底数不变,指数相加 。
除法法则
$a^m div a^n = a^{mn}$,同底数幂相除,底 数不变,指数相减。
幂的乘方法则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
不同底数指数运算法则
常见指数函数类型及其特点
自然指数函数
幂指数函数
对数指数函数
复合指数函数
底数为e(约等于2.71828) 的指数函数,记为y=e^x。 其图像上升速度最快,常用 于描述自然增长或衰减现象

形如y=x^n(n为实数)的函 数,当n>0时图像上升,当 n<0时图像下降。特别地,当 n=1时,幂指数函数退化为线
高中数学《指数函数》ppt 课件
目录
• 指数函数基本概念与性质 • 指数函数运算规则与技巧 • 指数函数在生活中的应用举例 • 指数函数与对数函数关系探讨 • 指数方程和不等式求解技巧 • 总结回顾与拓展延伸
01 指数函数基本概 念与性质
指数函数定义及图像特点
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
在生物学领域,指数函 数和对数函数被用于描 述生物种群的增长和衰 减过程;
在物理学领域,指数函 数和对数函数被用于描 述放射性衰变等物理现 象。
05 指数方程和不等 式求解技巧
一元一次、二次指数方程求解方法
01
一元一次指数方程:形如 $a^x = b$ ($a > 0, a neq 1$)的方程。求解方法
利用对数性质将指数方程转化为代数 方程进行求解。

指数函数及图像.ppt

指数函数及图像.ppt

[规律方法] 1.求含有指数型的函数定义域时,要注意考 虑偶次根式的被开方数大于等于0,分母不为0等限制条件.
2.求含有指数式的复合函数的值域时,要结合指数函数的 单调性和定义域来考虑,不要遗漏了指数函数的值域大于0.
【活学活用 3】 求下列函数的定义域与值域:
(1)y=
;(2)y= 1-3x.
解 (1)由 x-2≥0,得 x≥2.
R.因为5-x>0,所以5-x-1>-1,
所以函数的值域为(-1,+∞)
课堂小结
1.指数函数的定义域为(-∞,+∞),值域为(0,+∞),
且f(0)=1.
2. 当a>1时,a的 值 越 大,图 象 越 靠 近y轴 ,递增速度越 快.当0<a<1时,a的值越小,图象越靠近y轴,递减的速
度越快.
历史ⅱ岳麓版第13课交通与通讯 的变化资料
”;此后十年间,航空事业获得较快发展。
筹办航空事宜

三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
二、水运与航空
1.水运 (1)1872年,
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“

指数函数对数函数与幂函数指数函数的性质与图像

指数函数对数函数与幂函数指数函数的性质与图像

指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。

指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。

a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。

当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。

02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。

常用对数:以10为底数的对数,记作lg(x)。

底数为任意正数的对数,记作log(x)。

对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。

对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。

对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。

•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

指数函数的图象和性质

指数函数的图象和性质

1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.

2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

指数函数性质图像及其规律ppt课件

指数函数性质图像及其规律ppt课件
1.4 1.4
1.121.2.2 1.2 1.2
111
1
1
0.080.8.8
sx = 2x-1(x<1) 0.8 0.8 0.060.6.6 0.6 0.6
hhhhxxxx====12121212xx-xx(-1x(--((1x1≥x1x≥≥≥111)1)))
0.040.4.4 0.4 0.4
0.020.2.2 0.2 0.2
函数值域为 {y|y>0且y≠1}
0.4t
(t 0)
6 5 4 3 2 1
1 t x 1
-4
-2
-1
2
4
6
9
⑵ y 3 5x1
解:(2) 由5x-1≥0得
x1 5
所以,所求函数定义域为
x
|
x
1 5

5x 1 0 得y≥1
所以,所求函数值域为{y|y≥1}
10
⑶ y 2x 1
解:(3)所求函数定义域为R
表达式有意义的自变量x的取值范围。
解:(1)由x-1≠0得x≠1所以,所求函数定义域为
6
{x|x≠1} 5
由 1 0 ,得y≠1
x 1
所以,所求函数值域为
4
1
3
fx = 0.4x-1
2
{y|y>0且y≠1}
1
-6
-4
-2
2
4
6
-1
-2
8
说明:对于值域的求解,可以令
考察指数函数y=
并结合图象 直观地得到:
a a
2
4
复习上节内容
指数函数的图象和性质:
在同一坐标系中分别作出如下函数的图像:

4.2.2指数函数的图象和性质(第二课时)课件-高一上学期数学人教A版【01】

4.2.2指数函数的图象和性质(第二课时)课件-高一上学期数学人教A版【01】

【变式训练】
1.函数 y=12x2-2x-3的值域为_(_0_,_1_6__]_.
解析:定义域为 R.因为 x2-2x-3=(x-1)2-4≥-4,
所以12x2-2x-3≤12-4=16. 又12x2-2x-3>0, 所以函数 y=12x2-2x-3的值域为(0,16].
题型二 指数函数的单调性及应用
角度 2 解指数不等式
(, 1)
例 3、(1)不等式 4x<42-3x 的解集是_______2_.
(2)若 a-5x>ax+7(a>0 且 a≠1),求 x 的取值范围.
(1)解析:因为
4x<42-3x,所以
x<2-3x,所以
1 x<2.
(2) 解:①当 a>1 时,因为 a5x ax7 ,且函数 y=ax 为增函数,所以-5x>x+7,解得 x<-76. ②当 0<a<1 时,因为 a5x ax7 ,且函数 y=ax 为减函数,所以-5x<x+7,解得 x>-76.

a
4
1 x
1
a
1 4x
1
恒成立,解得Fra bibliotek2a1 4x 1
1 4x 1
1,所以
a
1 2
.
题型三 指数函数性质的综合问题 例 5、已知定义在 R 上的函数 f(x)=a+4x+1 1是奇函数. (2)判断 f(x)的单调性(不需要证明); (3)若对任意的 t∈R,不等式 f(t2-2t)+f(2t2-k)<0 恒成立,求实数 k 的取值范围. (2)由(1)知 f(x)=-12+4x+1 1,故 f(x)在 R 上为减函数.
综上所述,当 a>1 时,x 的取值范围为-∞,-67;当 0<a<1 时,x 的取值范围为-76,+∞.

第二章 函数2-4指数与指数函数

第二章  函数2-4指数与指数函数



解法2:当a>0,a≠1时,y=ax是定义域上 的单调函数,因此其最值在x∈[0,1]的两个 端点得到,于是必有1+a=3,∴a=2. 答案:B 点评:指数函数的最值问题一般都是用单调 性解决.
(理)函数y=ax(a>0,且a≠1)在[1,2]上的最大值比最 a 小值大 ,则a的值是________. 2 解析:当a>1时,y=ax在[1,2]上递增,

( B.2ab>2b D.log2(ab)<-2
)
[答案] D [解析] 易知y=2x在R上单调递增, y=log2x在R+上单调递增, 故2ab<2a,2ab<2b,
1 log2(ab)<log222=-2,故选D.
4x+1 2.(2010· 重庆理,5)函数f(x)= x 的图象 ( 2 A.关于原点对称 B.关于直线y=x对称 C.关于x轴对称 D.关于y轴对称
0<y<1
x<0 y>1


误区警示 1.忽视底数a>1与0<a<1时性质的区别及函 数的值域致误. 2.比较幂值大小时,要注意区分底数相同 还是指数相等.是用指数函数的单调性,还 是用幂函数的单调性或指数函数的图象解 决.要注意图象的应用,还应注意中间量0、 1等的运用.指数函数的图象在第一象限内 底大图高(逆时针方向底数依次变大).
[例1]
化简: 4 1 3=________; a-1
(1)(1-a) 3
(2) xy2· xy-1· xy=________; (3)0.25
-0.5
1 1 +27- -6250.25=________. 3
答案:(1)- a-1 (2)xy

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

4.2 指数函数-(新教材人教版必修第一册)(70张PPT)

类型三:指数函数的图象及应用
典例示范
【例 5】在如图所示的图象中,二次函数 y=ax2+bx+c 与函数
y=bax 的图象可能是(
)
A 解析:根据图中二次函数的图象可知 c=0, ∴二次函数 y=ax2+bx.∵ba>0, ∴二次函数的对称轴 x=-2ba<0,排除 B,D. 对于 A,C,都有 0<ba<1,∴-21<-2ba<0,C 不符合.故选 A.
定向训练
1.不等式 a2x-7>a4x-1(0<a<1)的解集为_(_-__3_,__+__∞_)__.
2.比较下列各组数的大小.
(1)1.52.5 和 1.53.2;
(2)0.6-1.2 和 0.6-1.5;
(3)1.70.2 和 0.92.1;
(4)a1.1 与 a0.3(a>0,且 a≠1).
类题通法
1.利用指数型函数的单调性解不等式,需将不等式两边都凑成 底数相同的指数式.
2.解不等式 af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调 性,要养成判断底数取值范围的习惯.若底数不确定,就需进行分
类讨论,即 af(x)>ag(x)⇔ffxx> <ggxx, ,a0> <1a, <1.
数学(人教版)
必修第一册
第四章 指数函数与对数函数
4.2 指数函数
第一 阶段
课前自学质疑
必备知识 深化预习
1.指数函数的概念 一般地,函数_y_=__a_x_ (a>0,且 a≠1)叫做指数函数,其中__指__数__x_ 是自变量,定义域是 R.
2.指数函数 y=ax(a>0,且 a≠1)的图象和性质
【例 2】指数函数 f(x)=(2b-3)(1-a)x,若 f(2)=9,求 a,b 的 值.

指数函数的图象和性质

指数函数的图象和性质

《4.2.2 指数函数的图象和性质》一、学习目标1.掌握指数函数的图象和性质.2.学会利用指数函数的图象和性质求函数的定义域、值域.3.掌握指数型函数的单调区间的求法及单调性的判断.4.能借助指数函数的性质比较大小.5.会解简单的指数方程、不等式.二、思维导图三、导学指导与检测当x <0时,当x <0时,单调性在R 上是在R 上是1.函数y =(3-1)x在R 上是________函数.(填“增”“减”) 2.函数y =2-x的图象是________.(填序号)3.函数f (x )=⎝ ⎛⎭⎪⎫131-x 的定义域为________.4.函数f (x )=2x +3的值域为________.比较幂的大小四、巩固诊断1.函数y =2x -1的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞)D .(0,+∞)2.已知函数f (x )=4+a x +1的图象经过定点P ,则点P 的坐标是( ) A .(-1,5) B .(-1,4) C .(0,4) D .(4,0) 3.函数y =a |x |(a >1)的图象是( )4.函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4)D .(0,4)5.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )6.已知a =2312⎛⎫⎪⎝⎭,b =2-1.5,c =1312⎛⎫ ⎪⎝⎭,则下列关系中正确的是( ) A .c <a <b B .a <b <c C .b <a <c D .b <c <a7.若函数f (x )=(1-2a )x 在实数集R 上是减函数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫-∞,12D.⎝ ⎛⎭⎪⎫-12,12 8.已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1D .0<a <19.函数f (x )=⎩⎨⎧-x +3a ,x <0,a x,x ≥0(a >0,且a ≠1)是R 上的减函数,则a 的取值范围是________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:指数型函数作图
题型一:平移
1、2-2=1-x y
①x y 2=经过怎样的变换可以得到2-2=1-x y ?
②画出函数2-2=1-x y 的图像.(保留作图痕迹)
题型二:对称
1、与函数()x e x f =的图像关于x 轴对称的函数()=x g . 在同一直角坐标系中分别画出他们的图像.
2、若函数()x f 的图像向左平移1个单位后与x e y =的图像关于y 轴对称,则()x f 的解析式为 .
在同一直角坐标系中分别画出他们的图像.
题型三:加绝对值
1、画出函数1-2=x y 的图像.
2、画出函数1-=x e y 的图像.
作 业
1、3+2•4
1=-x y ①12x y ⎛⎫= ⎪⎝⎭经过怎样的变换可以得到3+2•41=-x y ?
②画出函数3+2•4
1=-x y 的图像.(保留作图痕迹)
2、把函数()x f 的图像向左、向下分别平移2个单位得到x y 2=的图像,求函数()x f 的解析式.
3、画出函数x e y =的图像.
4、画出函数1--=x e y 的图像.。

相关文档
最新文档