北京市海淀区2013-2014高三上学期期中考试数学理含答案
2013-2014海淀第一学期高二期末数学试题理课及答案
海淀区高二年级第一学期期末练习数学(理科)2014.01一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)抛物线22y x =的准线方程是 ( ) (A ) 12x =(B )12y = (C )12x =- (D )12y =-(2)若直线10x ay ++=与直线20x y ++=平行,则实数a = ( )(A )12-(B )2- (C )12 (D )2(3)在四面体O ABC -中,点P 为棱BC 的中点. 设OA = a , OB = b ,OC =c ,那么向量AP用基底{,,}a b c 可表示为( )(A )111222-+a +b c(B )1122-+a +b c (C )1122+a +b c(D )111222+a +b c(4)已知直线l ,平面α.则“l α^”是“$直线m αÌ,l m ^”的 ( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)若方程22(2)1mx m y +-=表示焦点在x 轴上的椭圆,则实数m 的取值范围是( ) (A )(1,)+∞ (B )(0,2)(C )(1,2)(D )(0,1)(6)已知命题:p 椭圆的离心率(0,1)e ∈,命题:q 与抛物线只有一个公共点的直线是此抛物线的切线,那么 ( )(A )p q ∧是真命题 (B )()p q ∧⌝是真命题 (C )()p q ⌝∨是真命题 (D )p q ∨是假命题(7)若焦距为4的双曲线的两条渐近线互相垂直,则此双曲线的实轴长为 ( ) (A )(B ) 4 (C )(D ) 2(8)如图所示,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .则下列命题中假命题...是 ( ) OABCP F ED 1C 1B 1A 1DCBA(A )存在点E ,使得11A C //平面1BED F (B )存在点E ,使得1B D ⊥平面1BED F (C )对于任意的点E ,平面11AC D ⊥平面1BED F (D )对于任意的点E ,四棱锥11B BED F -的体积均不变二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)在空间直角坐标系中,已知(2,1,3)=-a ,(4,2,)x =-b .若^a b ,则x = . (10)过点(1,1)且与圆2220x x y -+=相切的直线方程是 .(11)已知抛物线C :24y x =,O 为坐标原点,F 为C 的焦点,P 是C 上一点. 若OPF ∆是等腰三角形,则PO = .(12)已知点12,F F 是双曲线C 的两个焦点,过点2F 的直线交双曲线C 的一支于,A B 两点,若1ABF ∆为等边三角形,则双曲线C 的离心率为 .(13)如图所示,已知点P 是正方体1111ABCD A B C D -的棱11A D 上的一个动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值是 .(14)曲线C 是平面内与定点(2,0)F 和定直线2x =-的距离的积等于4的点的轨迹.给出下列四个结论: ①曲线C 过坐标原点; ②曲线C 关于x 轴对称; ③曲线C 与y 轴有3个交点;④若点M 在曲线C 上,则MF的最小值为1). 其中,所有正确结论的序号是___________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共10分)在平面直角坐标系xOy 中,已知点 (4 0)A ,,动点M 在y 轴上的正射影为点N ,且满足直线MO NA ⊥. (Ⅰ)求动点M 的轨迹C 的方程; (Ⅱ)当π6MOA ∠=时,求直线NA 的方程.1A(16)(本小题共11分)已知椭圆C :22312x y +=,直线20x y --=交椭圆C 于,A B 两点. (Ⅰ)求椭圆C 的焦点坐标及长轴长; (Ⅱ)求以线段AB 为直径的圆的方程.(17)(本小题共11分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PB BC ⊥,PD DC ⊥,且PC =(Ⅰ)求证:PA ⊥平面ABCD ;(Ⅱ)求二面角B PD C --的余弦值;(Ⅲ)棱PD 上是否存在一点E ,使直线EC 与平面BCD 所成的角是30 ?若存在,求PE 的长;若不存在,请说明理由.(18)(本小题共12分)已知椭圆M :22221(0)x y a b a b +=>>经过如下五个点中的三个点:1(1,)2P --,2(0,1)P,31(,22P,4P ,5(1,1)P . (Ⅰ)求椭圆M 的方程;(Ⅱ)设点A 为椭圆M 的左顶点,, B C 为椭圆M 上不同于点A 的两点,若原点在ABC ∆的外部,且ABC ∆为直角三角形,求ABC ∆面积的最大值.AB CDP海淀区高二年级第一学期期末练习数学(理科)参考答案及评分标准2014.01 一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分.(9)103(10)10y-=(11)32或1(12(13(14)①②④注:(11)题少一个答案扣2分.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分10分)解:(Ⅰ)设(,)M x y,则(0,)N y,(,)OM x y=,(4,)NA y=-.……………………2分因为直线MO NA⊥,所以240OM NA x y⋅=-=,即24y x=. ………………………4分所以动点M的轨迹C的方程为24y x=(0x≠). ………………………5分(Ⅱ)当π6MOA∠=时,因为MO NA⊥,所以π3NAO∠=.所以直线AN的倾斜角为π3或2π3.当直线AN的倾斜角为π3时,直线NAy--=;……………8分当直线AN的倾斜角为2π3时,直线NA0y+-=.…………10分(16)(本小题满分11分)解:(Ⅰ)原方程等价于221412x y+=.由方程可知:212a=,24b=,2228c a b=-=,c=……………………3分所以椭圆C的焦点坐标为(0,,(0,-,长轴长2a为……………5分(Ⅱ)由2231220x yx y⎧+=⎨--=⎩,,可得:220x x--=.解得:2x=或1x=-.所以 点,A B 的坐标分别为(2,0),(1,3)--. ………………………7分 所以 ,A B 中点坐标为13(,)22-,||AB ==……………9分所以 以线段AB 为直径的圆的圆心坐标为13(,)22-,半径为2. 所以 以线段AB 为直径的圆的方程为22139()()222x y -++=. …………………11分 (17)(本小题满分11分)(Ⅰ)证明:在正方形ABCD 中,CD AD ⊥.因为CD PD ⊥,AD PD D = ,所以 CD ⊥平面PAD . ………………………1分 因为 PA ⊂平面PAD ,所以 CD PA ⊥. ………………………2分 同理,BC PA ⊥. 因为 BC CD C = ,所以 PA ⊥平面ABCD . ………………………3分 (Ⅱ)解:连接AC ,由(Ⅰ)知PA ⊥平面ABCD .因为 AC ⊂平面ABCD ,所以 PA AC ⊥. ………………………4分 因为PC =AC =,所以 1PA =.分别以AD ,AB ,AP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 由题意可得:(0,1,0)B ,(1,0,0)D ,(1,1,0)C ,(0,0,1)P .所以 (0,1,0)DC = ,(1,0,1)DP =- ,(1,1,0)BD =- ,(0,1,1)BP =-.设平面PDC 的一个法向量(,,)x y z =n ,则00DC DP ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0,0.y x z =⎧⎨-+=⎩令1x =,得1z =. 所以 (1,0,1)=n . 同理可求:平面PDB 的一个法向量(1,1,1)=m . ………………………6分所以cos ,⋅<>===n m n m |n ||m |.所以 二面角B PD C --………………………8分 (Ⅲ)存在.理由如下:若棱PD 上存在点E 满足条件,设(,0,)PE PD λλλ==-,[0,1]λ∈.所以 (1,1,1)(,0,)(1,1,1)EC PC PE λλλλ=-=---=--.…………………9分因为 平面BCD 的一个法向量为(0,0,1)AP =.所以|cos ,|EC APEC AP EC AP⋅<>==令1sin 30,2==解得:1λ=经检验1[0,1]2λ=-∈. 所以 棱PD 上存在点E ,使直线EC 与平面BCD 所成的角是30 ,此时PE 的长为1. ………………………11分(18)(本小题满分12分)解:(Ⅰ)由22222222222222221222(1)1112a b a b a b a b ⎛⎛⎫⎛⎛⎫- ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭+<+=+<+知,31(,)22P 和5(1,1)P 不在椭圆M 上,即椭圆M经过1(1,2P --,2(0,1)P,4(1,2P . 于是222,1a b ==.所以 椭圆M 的方程为:2212x y +=. ………………………2分 (Ⅱ)①当90A ∠=︒时,设直线:BC x ty m =+,由2222,,x y x ty m ⎧+=⎨=+⎩得222(2)2(2)0t y tmy m +++-=.设1122(,),(,)B x y C x y ,则2216880m t ∆=-+>,12221222,22. 2tm y y t m y y t ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以AB AC k k ===1==-.于是3m =-,此时21616809t ∆=-+>,所以直线:3BC x ty =-.因为12216902y y t =-<+,故线段BC 与x轴相交于(3M -,即原点在线段AM 的延长线上,即原点在ABC ∆的外部,符合题设. ………………………6分所以12121||||||23ABC S AM y y y y ∆=⋅-=-====89.当0t =时取到最大值89. ………………………9分 ②当90A ∠≠︒时,不妨设90B ∠=︒.设直线:0)AB x ty t =≠,由2222,x y x ty ⎧+=⎪⎨=⎪⎩得22(2)0t y +-=.所以 0y =或y =.所以B ,由AB BC ⊥,可得直线:BC y tx =-+.由223222,,2x y y tx t ⎧+=⎪⎨=-+⎪+⎩得22222328(1)(2)(21)02t t t t y y t +++--=+.所以 222228(1)0(2)(21)B C t t y y t t +=-<++. 所以 线段BC 与x轴相交于22(,0)2N t +. 显然原点在线段AN 上,即原点在ABC ∆的内部,不符合题设. 综上所述,所求的ABC ∆面积的最大值为89. ……………………12分 注:对于其它正确解法,相应给分.。
2013-2014学年度上学期高三第十次月考--数学理
2013—2014学年度上学期高三一轮复习数学(理)单元验收试题(10)【新课标】命题范围:计数原理、二项式定理、概率与统计 说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1. (2013年大纲版数学(理))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168 2.(2013年山东数学(理)试题)用0,1,……,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279 3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( )A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件 4.(2013年安徽数学(理)试题)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 5.(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π- D .4π6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A .越大B .越小C .无法判断D .以上都不对7.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A.30%B.10%C.3%D.不能确定 8.(2013年重庆数学(理)试题)以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)甲组 乙组 9 0 9x 2 1 5y 8 7424已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,89.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0C .12 D .110.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .4π B .22π- C .6π D .44π-11.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 12.(2013年高考湖北卷(理)如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X ,则X 的均值为()E X =( )A .126125B .65C .168125D .75第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。
北京市海淀区2013-2014学年高二下学期期中考试数学理试题 扫描版含答案
海淀区高二年级第二学期期中练习数学(理科)参考答案及评分标准 2014.04一. 选择题:本大题共8小题,每小题4分,共32分.(8)讲评提示:考察函数ex . 二.填空题:本大题共6小题,每小题4分,共24分. (9)(2,)+ (10)4π (11)16(12)2(13)111111()2321n n n +++++<+∈-N* ,12k + (注:每空2分)(14)20(,0)a b (注:回答出20(,0)a b 给4分;答案为0(,0)ab b 或20(,0)b b 或22(,0)2a bb +给3分;其它答案酌情给1~2分;未作答,给0分)三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分10分)证明:(Ⅰ)连接AC 交BD 于点O ,连接OE . 在矩形ABCD 中,AO OC =. 因为 AE EP =,所以 OE ∥PC . ………………………2分 因为 PC Ë平面BDE ,OE Ì平面BDE , 所以 PC ∥平面BDE . ………………………5分 (Ⅱ)在矩形ABCD 中,BC CD ^. 因为 PD BC ^,CDPD D =,PD Ì平面PDC ,DC Ì平面PDC ,所以 BC ^平面PDC . ………………………8分 因为 PC Ì平面PDC ,所以 BC PC ^.OAEBCDP即 PBC ∆是直角三角形. ………………………10分(16)(本小题满分11分)解:(Ⅰ)因为 ()332f x ax x =++,所以 2'()33f x ax =+. ………………………2分 因为 函数()f x 的一个极值点是1, 所以 '(1)330f a =+=.解得:1a =-. ………………………4分 经检验,1a =-满足题意. 所以 (2)0,'(2)9f f ==-.所以曲线()y f x =在点(2,(2))f 处的切线方程是9(2)y x =--,即9180x y +-=. ………………………6分 (Ⅱ)由(Ⅰ)知:2'()33f x x =-+.令'()0f x =,得 121,1x x =-=. ………………………7分 当x 在[2,3]-上变化时,()'(),f x f x 的变化情况如下表………………………10分 所以 函数()f x 在[2,3]-上的最大值为4,最小值为-16. ………………………11分(17)(本小题满分12分) 解:(Ⅰ)因为()e a xg x x -=,x ∈R ,所以'()(1)ea xg x x -=-. ………………………2分令'()0g x =,得1x =.当x 变化时,()g x 和'()g x 的变化情况如下:故()g x 的单调递减区间为;单调递增区间为. ………………………5分 (Ⅱ)因为 ()e a x h x x -=+, 所以 '()1ea xh x -=-. ………………………6分令'()0h x =,得x a =.当x 变化时,()h x 和'()h x 的变化情况如下:即()h x 的单调递增区间为;单调递减区间为. ………………………8分 所以()h x 的最小值为()1h a a =+.①当10a +>,即1a >-时,函数()h x 不存在零点.②当10a +=,即1a =-时,函数()h x 有一个零点. ………………………10分 ③当10a +<,即1a <-时,(0)e 0ah =>, 下证:(2)0h a >.令()e 2x m x x =-,则'()e 2x m x =-. 解'()e 20x m x =-=得ln 2x =.当ln 2x >时,'()0m x >,所以 函数()m x 在[)ln 2,+∞上是增函数. 取1ln 2x a =->>,得:ln2()e 2e 2ln 222ln 20a m a a --=+>-=->. 所以 (2)e 2()0a h a a m a -=+=->.结合函数()h x 的单调性可知,此时函数()h x 有两个零点.综上,当1a >-时,函数()h x 不存在零点;当1a =-时,函数()h x 有一个零点;当1a <-时,函数()h x 有两个零点. ………………………12分 (18)(本小题满分11分) (Ⅰ)解:(1)不是,因为线段12A B 与线段12A A 不垂直;(2)不是,因为线段23B B 与线段23A A 不垂直. ………………………2分(Ⅱ)命题“对任意n ∈N 且2n >,总存在一条折线12n C A A A ---:有共轭折线”是真命题.理由如下:当n 为奇数时,不妨令21,2,3,4,n k k =-=,取折线1221k C A A A ----:.其中(,)(1,2,,21)i i i A a b i k =-,满足211(1,2,,21),0(1,2,,),i i a i i k b i k -=-=-==21(1,2,,1)i b i k ==-.则折线C 的共轭折线为折线C 关于x 轴对称的折线.如图所示.当n 为偶数时,不妨令2,2,3,4,n k k ==,取折线122k C A A A ---:.其中(,)(1,2,,2)i i i A a b i k =,满足22121(1,2,,21),2,0(1,2,,),1(1,2,,)i k i i a i i k a k b i k b i k -=-=-=====.折线C的共轭折线为折线122'k C B B B ---:.其中(,)(1,2,,2)i i i B x y i k =满足22212211(1,2,,23),21,21,2,0(1,2,,1),i k k k i x i i k x k x k x k y i k ---=-=-=-=+===-2222121(1,2,,2),3,1,1i k k k y i k y y y --=-=-=-=-=.如图所示. ………………………7分注:本题答案不唯一.(Ⅲ)证明:假设折线1234B B B B ---是题设中折线C 的一条共轭折线(其中11B A =,44B A =),设1(,)t t t t B B x y += (1,2,3t =),显然,t t x y 为整数. 则由11t t t t B B A A ++⊥,得:11223312312330,30,30,9,1. x yx yx yx x xy y y+=⎧⎪-=⎪⎪+=⎨⎪++=⎪⎪++=⎩①②③④⑤由①②③式得11223,,.3333 y x y x y x=-⎧⎪=⎨⎪=-⎩这与⑤式矛盾,因此,折线C无共轭折线. ………………………11分注:对于其它正确解法,相应给分.。
北京市海淀区2024届高三上学期期中考试数学含答案
2023北京海淀高三(上)期中数 学2023.11本试卷共6页,150分,考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}2A x x =<,{}1,2B =,则A B =(A)(),2−∞ (B) (2],−∞ (C){}1(D){}1,2(2)若复数z 满足2i 1iz ⋅=+,则z = (A)1i −− (B) 1i −+ (C) 1i −(D) 1i +(3)下列函数中,既是偶函数又在区间()0,+∞ 上单调递增的是 (A)ln y x = (B)3y x = (C)tan y x =(D)2x y =(4)已知向量a ,b 满足)1(2a =,,12()b −=−, ,则a b ⋅= (A)-5 (B)0 (C)5(D)7(5)设等差数列{}n a 的前n 项和为n S ,且515S =,则24·a a 的最大值为 (A)94(B)3 (C)9(D)36(6)设4log 6a =,2log 3b =,32c =,则 (A)a b c >> (B)c b a >> (C)b a c >>(D)b c a >>(7)“sin tan 0θθ+>”是“θ为第一或第三象限角”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件(8)在ABC ∆中,sin sin 2B A =,2c a =,则|(A)B ∠为直角 (B) B ∠为钝角 (C) C ∠为直角(D) C ∠为钝角(9)古典吉他的示意图如图所示.0A ,B 分别是上弦枕、下弦枕,121(9)i i A =⋅⋅⋅,,是第i 品丝.记i a 为i A 与1i A −的距离,i L 为i A 与0A 的距离,且满足1L i i X L aM−−=,i =1,2,…,19,其中L X 为弦长(0A 与B 的距离),M 为大于1的常数,并规定00L =.则 (A)数列1219,,,a a a ⋅⋅⋅是等差数列,且公差为2LX M− (B)数列1219,,,a a a ⋅⋅⋅是等比数列,且公比为1M M − (C)数列1219,,,L L L ⋅⋅⋅是等比数列,且公比为21M M − (D)数列1219,,,L L L ⋅⋅⋅是等差数列,且公差为2(1)LM X M −(10)在等腰直角三角形ABC 中,AB =2,M 为斜边BC 的中点,以M 为圆心,MA 为半径作AC ̂,点P 在线段BC 上,点Q 在AC ̂上,则AP MQ + 的取值范围是(A)[0(B)[02+,(C)[2(D)2[−+第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
2014年高考理科数学全国卷2(含详细答案)
数学试卷 第1页(共42页) 数学试卷 第2页(共42页) 数学试卷 第3页(共42页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|(1)4,}M x x x =-<∈R ,{1,0,1,2,3}N =-,则MN = ( )A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3} 2.设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S .已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l ⊥n ,l α⊄,l β⊄,则( )A .αβ∥且l α∥B .αβ∥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中的2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-6.执行如图的程序框图,如果输入的10N =,则输出的S = ( ) A .11112310++++B .11112!310++++!!C .11112311++++ D .11112311++++!!!7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为 ( )8.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b a c >>C .a c b >>D .a b c >>9.已知0a >,x ,y 满足约束条件1,3,(3).x x y y a x ⎧⎪+⎨⎪-⎩≥≤≥若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线C :22(0)y px p =>的焦点为F ,点M 在C 上,||5MF =.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-C .21(1,]23-D .11[,)32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.15.设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=________. 16.等差数列{}n a 的前n 项和为n S .已知100S =,1525S =,则n nS 的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)ABC △在内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC △面积的最大值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共42页)数学试卷 第5页(共42页) 数学试卷 第6页(共42页)18.(本小题满分12分)如图,直棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1BC ∥平面1A CD ; (Ⅱ)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的频率),利润T 的数学期望.20.(本小题满分12分) 平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线30x y +-=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AD ⊥,求四边形ABCD 面积的最大值.21.(本小题满分12分)已知函数()e ln()xf x x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明:()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按做的第一题积分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.0,M N={1,的公共元素,即可确定出两集合的交集.3/ 14;;110⨯⨯,110!S++,从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,【考点】循环结构的程序框图.【解析】如图所示,该四面体在空间直角坐标系O-xyz的图象为下图:则它在平面zOx上的投影即正视,故选A.4225/ 14.直线2267 / 14轴建立平面直角坐标系,如图所示,则点A 的坐标为,则1(),2AE =,2(2,BD =-2AE BD =.82为坐标原点,CA的方向为轴正方向,建立如图所示的空间直角坐标系C-xyz.)1,1,0,E,(1,1,0CD=,(0,2,1CE=,12,0,2(CA=设11,(,n x y z=是平面A1CD10,0,n CDn CA⎧=⎪⎨=⎪⎩即10,+20.z=⎧⎨=⎩可取1,(,11n=--同理,设m是平面10,0,m CEm CA⎧=⎪⎨=⎪⎩可取2,1(,m=-3cos,3||||n mm nn m<>==,故6,3m n<>=D-A1C-E的正弦值为3(步骤4)为坐标原点,CA的方向为,11,(,n x y z=CD的法向量,同理,设3,3||||n mm nn m<>==,故6sin,3m n<>=9/ 14108|||AB=96..(步骤5)代入直线可解得C.设CD即可得到关于|||【考点】椭圆的方程、椭圆的简单几何性质、点差法的应用和直线与椭圆的位置关系.11/ 14=DB BA DB213 / 143DB D DA B =(步骤3)2DB BA DB =【考点】弦切角,圆内接四边形的性质.【答案】(1)x y ⎧⎨⎩22x y +=。
北京市2014届高三理科数学一轮复习试题选编31:几何证明(.
北京市2014届高三理科数学一轮复习试题选编31:几何证明一、选择题1 .(北京市海淀区2013届高三上学期期末考试数学理试题如图,PC 与圆O 相切于点C ,直线PO 交圆O 于,A B 两点,弦CD 垂直AB 于E . 则下面结论中,错误..的结论是( A .BEC ∆∽DEA ∆ B .ACE ACP ∠=∠C .2DE OE EP =⋅D .2PC PA AB =⋅2 .(顺义区2013届高三第一次统练数学理科如图,AC AB ,分别与圆O 相切于点ADE C B ,,是⊙O 的割线,连接CE BE BD CD ,,,.则(A .DE AD AB ⋅=2B .CE AC DE CD ⋅=⋅ C .CE BD CD BE ⋅=⋅ D .CD BD AE AD ⋅=⋅3 .(2012北京理5.如图.90=∠ACB ,AB CD ⊥于点D ,以BD 为直径的圆与BC 交于点E .则(A .DB AD CB CE ⋅=⋅ B .AB AD CB CE ⋅=⋅C .2CD AB AD =⋅ D .2CD CB CE =⋅4 .(北京市石景山区2013届高三一模数学理试题如图,直线AM 与圆相切于点M , ABC 与ADE 是圆的两条割线,且AD BD ⊥,连接EC MD ,.则下面结论中,错误..的结论是 ( A .90=∠ECAB .DBA DMA CEM ∠+∠=∠C .AE AD AM ⋅=2D .BC AB AE AD ⋅=⋅5 .(北京市东城区普通校2013届高三3月联考数学(理试题如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =, 2PB =,则PC 的长是(A .3B.C .2D6 .(2011年高考(北京理如图,,,AD AE BC 分别于圆O 切于点,,D E F ,延长AF 与圆O 交于点G ,给出下列三个结论:①AD AE AB BC CA +=++;②AF AG AD AE ⋅=⋅; ③AFB ∆∽ADG ∆,其中正确的结论的序号是 ( A .①② B .②③ C .①③ D .①②③BABCOP7 .(2013北京房山二模数学理科试题及答案如图,,,,A B C D 是⊙O 上的四个点,过点B 的切线与DC 的延长线交于点E .若110BCD ︒∠=,则DBE ∠= (A .75︒B .70︒C .60︒D .55︒二、填空题D C B PAO9. (2013北京丰台二模数学理科试题及答案如图,已知⊙O 的弦AB 交半径OC 于点D ,若4=AD ,3=BD ,4=OC ,则CD 的长为______.19.(海淀区北师特学校13届高三第四次月考理如图,BC 是半径为2的圆O 的直径,点P 在BC 的延长线上,PA 是圆O 的切线,点A 在直径BC 上的射影是OC 的中点,则ABP ∠= ;PB PC ⋅= .14. (2013北京朝阳二模数学理科如图,PC 切圆O 于点C ,割线PAB 经过圆心O ,,4=PC 8=PB ,则=∠COP tan _______,△OBC 的面积是_________.F26.(2013届北京丰台区一模理科如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点F E ,.若21PF PD =+=,则⊙O的半径为 ;EFD ∠= .27.(2013北京高考数学(理如图,AB 为圆O 的直径,PA 为圆O 的切线, PB 与圆O相交于D.若3=PA ,916PD DB =::,则PD =_________;AB =___________.(20题图等22. (2013北京昌平二模数学理科圆O 于点A ,AC 为圆北京市2014届高三理科数学一轮复习试题选编31:几何证明参考答案一、选择题 1. 【答案】D解:由切割线定理可知2PC PA PB =⋅,所以D 错误,所以选D.2. 答案C 由切线长定理知2AB AD AE =⋅,所以A 错误.选C.3. 【解析】在ACB ∆中,∠ACB=90º,CD ⊥AB 于点D,所以DB AD CD ∙=2,由切割线定理的CB CE CD ∙=2,所以CE ·CB=AD ·DB.【答案】A 4. D 5. B6. 【答案】A【命题立意】本题考查了平面几何问题,圆以及圆的切线问题的研究,通过圆的切线所具有的性质反映出平面几何中的转化思想以及三角形的相似关系.【解析】因为,,AD AE BC 都是圆的切线,所以B D B E=,CE CF =,所以A B B C C A A++=+++,所以①正确;因为,,AD AE BC 都是圆的切线,所以AD AE =,由切割线定理得2AF AG AD AD AE ⋅==⋅,所以②正确; 由切线定理知ACD BDF BFD ∠=∠=∠,ABF BDF BFD ∠=∠+∠,所以③错误,选择A. 7. B二、填空题8. 2459. 2; 11. 【答案】5【解析】取BD 的中点,连结OM ,则O M B D ⊥,因为8BD =,所以4,549DM MB AM ===+=,所以22290819OM AO AM =-=-=,所以半径5OB ====,即5OC =。
北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:立体几何(含答案)
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:立体几何一、选择题1 .(2013届北京大兴区一模理科)已知平面βα,,直线nm,,下列命题中不.正确的是()A.若α⊥m,β⊥m,则α∥βB.若m∥n,α⊥m,则α⊥nC.若m∥α,n=βα ,则m∥nD.若α⊥m,β⊂m,则βα⊥.2 .(2013届北京海滨一模理科)设123,,l l l为空间中三条互相平行且两两间的距离分别为4,5,6的直线.给出下列三个结论:①i iA l∃∈(1,2,3)i=,使得123A A A∆是直角三角形;②i iA l∃∈(1,2,3)i=,使得123A A A∆是等边三角形;③三条直线上存在四点(1,2,3,4)iA i=,使得四面体1234A A A A为在一个顶点处的三条棱两两互相垂直的四面体.其中,所有正确结论的序号是()A.①B.①②C.①③D.②③3 .(2013届北京市延庆县一模数学理)一四面体的三视图如图所示,则该四面体四个面中最大的面积是()A.2B.22C.3D.324 .(2013届北京西城区一模理科)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.6B.12(7题图)轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分6 .(2013届房山区一模理科数学)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A.B.8C.D.837 .(2013届门头沟区一模理科)一个几何体的三视图如右图所示,则该几何体的体积是()A.21B.13C.65D.18 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()A.B.C.D.9 .(北京市东城区普通校2013届高三3月联考数学(理)试题)平面α∥平面β的一个充分条件是()A.存在一条直线a aααβ,∥,∥B.存在一条直线a a aαβ⊂,,∥C.存在两条平行直线a b a b a bαββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a b a bαββα⊂⊂,,,,∥,∥10.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的半径为1()A.43πB.2πC.83πD.103π正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图主视图左视图俯视图11.(北京市西城区2013届高三上学期期末考试数学理科试题)某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )A.B.C.D.12.(北京市通州区2013届高三上学期期末考试理科数学试题 )一个几何体的三视图如图所示,该几何 体的表面积是( )A.16+B.12+C.8+D.4+13.(北京市丰台区2013届高三上学期期末考试 数学理试题 )如图,正(主)视图 侧(左)视图俯视图直角三角形,则该三棱锥的四个面的面积中最大的是()A B.C.1 D.214.(北京市昌平区2013届高三上学期期末考试数学理试题)已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的全面积为()A.10+B.10+.14+D.14+15.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为()A B C.34D.116.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A BC D -中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 ( )A .124 B .112C .16D .1217.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ18.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .38B .4C .2D .3419.(北京市房山区2013届高三上学期期末考试数学理试题 )若正三棱柱的三视图如图所示,该三棱柱的表面积是( )A.C.6+二、填空题20.(2013届北京丰台区一模理科)某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是_______.21.(北京市东城区2013届高三上学期期末考试数学理科试题)一个几何体的三视图如图所示,则该几何体的表面积为 .22.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为_________.23.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -表面上运动,且PA r =(0r <<),记点P 的轨迹的长度为()f r ,则1()2f =______________;关于r 的方程()f r k =的解的个数可以为________.(填上所有可能的值). 三、解答题24.(2013届北京大兴区一模理科)如图,直三棱柱ABC —A 1B 1C 1中,ABC D 是等边三角形,D 是BC 的中点.(Ⅰ)求证:A 1B //平面ADC 1;(Ⅱ)若AB=BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.25.(2013届北京丰台区一模理科)如图,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ∥MD ,且NB=1,MD=2;(Ⅰ)求证:AM ∥平面BCN;(Ⅱ)求AN 与平面MNC 所成角的正弦值;(Ⅲ)E 为直线MN 上一点,且平面ADE ⊥平面MNC ,求MEMN的值..26.(2013届北京海滨一模理科)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4PA AB ==,120CDA ∠= ,点N 在线段PB 上,且PN =(Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ; (Ⅲ)求二面角A PC B --的余弦值.ABCD P -的底面27.(2013届北京市延庆县一模数学理)如图,四棱锥ABCD 为菱形, 60=∠ABC ,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD (Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值;(Ⅲ)在侧棱PC 上存在一点M ,使得二面角C BD M --的大小为 60,求CPCM的值.28.(2013届北京西城区一模理科)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ?证明你的结论.29.(2013届东城区一模理科)如图,已知ACDE 是直角梯形,且//ED AC ,平面ACDE ⊥平面ABC ,90BAC ACD ∠=∠=︒,AB AC AE ==2=,12ED AB =, P 是BC 的中点. (Ⅰ)求证://DP 平面EAB ;(Ⅱ)求平面EBD 与平面ABC 所成锐二面角大小的余弦值.30.(2013届房山区一模理科数学)在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,112BC CD AD ===,PA PD =,E F ,为AD PC,的中点.(Ⅰ)求证:P A //平面BEF ;(Ⅱ)若PC 与AB 所成角为45︒,求PE 的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.31.(2013届门头沟区一模理科)在等腰梯形ABCD 中,//AD BC ,12AD BC =,60ABC ∠= ,N 是BC 的中点.将梯形ABCD 绕AB 旋转90 ,得到梯形ABC D ''(如图).(Ⅰ)求证:AC ⊥平面ABC '; (Ⅱ)求证://C N '平面AD D '; (Ⅲ)求二面角A C N C '--的余弦值.DFECBAPADD 'C '32.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )(本小题满分13分) 在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点.(1)求证:PC AD ⊥;(2)求证://FG 平面BCP ;(3)线段AD 上是否存在一点R ,使得平面⊥BPR 平面PCB ,若存在,求出AR 的长;若不存在,请说明理由.33.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知几何体A —BCED 的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角 三角形,正视图为直角梯形. (Ⅰ)求此几何体的体积V 的大小;(Ⅱ)求异面直线DE 与AB 所成角的余弦值; (Ⅲ)试探究在棱DE 上是否存在点Q ,使得 AQ ⊥BQ ,若存在,求出DQ 的长,不存在说明理由.侧视图俯视图正视图F G P D CB A34.(北京市东城区2013届高三上学期期末考试数学理科试题)如图,在菱形ABCD 中,60DAB ∠=,E 是AB的中点, MA ⊥平面ABCD ,且在矩形ADNM中,2AD =,7AM =. (Ⅰ)求证:AC ⊥BN ;(Ⅱ)求证:AN // 平面MEC ; (Ⅲ)求二面角M EC D --的大小.学)如35.(北京市海淀区北师特学校2013届高三第四次月考理科数图所示,正方形D D AA 11与矩形ABCD 所在平面互相垂直,22==AD AB ,点E 为AB 的中点。
【解析版】北京市西城区2014届高三上学期期末考试试题(数学 理
北京市西城区2013 — 2014学年度第一学期期末试卷 高三数学(理科) 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B = ( )(A )(0,1) (B )(0,1] (C )(1,2) (D )[1,2)2.已知复数z 满足2i=1i z +,那么z 的虚部为( )(A )1- (B )i - (C ) (D )3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. 若3a =,2b =,1cos()3A B +=,则c =( )(A )4 (B(C )3 (D4.执行如图所示的程序框图,输出的S值为()(A)34(B)45(C)56(D)5.已知圆22:(1)(1)1C x y++-=与x轴切于A点,与y轴切于B点,设劣弧»AB的中点为M,则过点M的圆C的切线方程是()(A)2y x=+-(B)1y x=+-(C)2y x=-+(D)1y x=+-6.若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b < (C )0a b << (D )0b a <<7..定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( )(A )116-(B ) 18- (C ) 14-(D )8.如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)【答案】D 【解析】试题分析:棱长为,故体对角线1BD =6,根据对称性,只需研究[1,3]x ∈,函数()y f x =的值域,连接11,,AB B C AC ,则1BD ⊥面1AB C ,此时2BP =,当1BP =时,截面周长为截面1AB C 周长的一半,即,当3BP =时,即当截面过体对角线1BD 中点时,此时截面为正六边形,其顶点为个棱的中点,如图所示,截面周长为.,所以函数()y f x =的值域为.考点:1、直线和平面垂直的判定;2、截面周长. 第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.【答案】4 【解析】试题分析:=1,3(3OA AB =- (),,k-3),因为OA AB ⊥ ,故0OA AB ⋅= ,即-3+3(k-3)=0,解得4k =.考点:1、向量的坐标运算;2、向量垂直.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++= ______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示, 那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13.如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点.若2PA =,3BC =,则PB =______;ACAB =______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v .(1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.考点:1、映射的概念;2、不等式组表示的平面区域.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=[π,π]α∈-,求α的值;(Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分) 以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示. (Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.甲组 乙组 891 a822考点:1、平均数;2、古典概型;3、离散型随机变量的分布列和期望. 17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60=∠BAD ,四边形BDEF是矩形,平面BDEF ⊥平面ABCD ,BF=3, H 是CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. 因为 ED BD D = ,所以AC ⊥平面BDEF .(Ⅲ)解:由(Ⅱ),得13()22BH =- ,(2,0,0)DB =.设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n即111130,20,x z x ⎧-++=⎪⎨=⎪⎩令11z =,得(0,=n . 由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则1cos ,2ED ED ED⋅<>===-n n n . 由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60.考点:1、直线和平面垂直的判定定理;2、直线和平面所成的角;3、二面角. 18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R .(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.【答案】(Ⅰ)()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)求导得,()(1)e x f x x a '=++,因为0x e >,所以'()0f x >的解集为(1,)a --+∞,即单调递增区间;'()0f x <的解集为(,1)a -∞--,即单调递减区间;(Ⅱ)函数2()x a g x xe x -=-,令()0g x =,得()0x ax e x --=,显然0x =是一个零点,记()e x a F x x -=-,求导得()e 1x a F x -'=-,易知(,)x a ∈-∞时()F x 递减;(,)x a ∈+∞时()F x 递增,故()F x 的最小值min ()()1F x F a a==-,又1a <,故10a ->,即()0F x >,所以函数()g x 的零点个数1个.试题解析:(Ⅰ)解:因为()()e x f x x a =+,x ∈R ,所以()(1)e xf x x a '=++.令()0f x '=,得1x a =--.当x 变化时,()f x 和()f x '的变化情况如下:故()f x的单调减区间为(,1)a-∞--;单调增区间为(1,)a--+∞.19.(本小题满分14分)已知,A B是抛物线2:W y x=上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB AC⊥,过,B C两点分别作W的切线,记两切线的交点为D,求OD的最小值.【答案】(Ⅰ)34k;【解析】考点:1、直线的方程;2、直线和抛物线的位置关系;3、导数的几何意义.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T .(Ⅰ)若114,2a q ==,求n T ;(Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<.(Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.【答案】(Ⅰ),6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥;(Ⅱ)答案详见解析;(Ⅲ)答案详见解析.(Ⅱ)证明:因为201421()n T n n =+≤,所以113b T ==,120142(2)n n n b T T n -=-=≤≤.因为[] n nb a=,所以1[3,4)a∈,2014[2,3)(2) na n∈≤≤.由21aqa=,得1q<.因为201220142[2,3)a a q=∈,所以20122223qa>≥,所以2012213q<<,即120122()13q<<.考点:1、等比数列的通项公式;2、数列前n项和;3、充要条件.。
2013-2014学年度第一学期高三年级期末质量调查数学试卷(理)含答案
2013-2014学年度第一学期高三年级期末质量调查数学试卷(理)第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名,准考号、科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么P(A B )P(A)P(B )=+如果事件A ,B 相互对立,那么P(AB )P(A)P(B )=球的表面积公式24S R π=球的体积公式343V R π= 其中R 表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合22123234*l {x ||x |,x N },P {,},Q {,,}=-≤∈==,则l (P Q )= ð( )(A){1,4} (B ){2,3}(C){1} (D ){4}2、在复平面内,复数33z cos i sin =-(i 是虚数单位)对应的点位于( )(A )第一象限 (B)第二象限 (C)第三象限 (D)第四象限3、设a ,b ∈R ,那么“1a b>”是“a>b>0”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4、阅读右面的程序框图,运行相应的程序,则输出S 的值为( ) (A) 18 (B) 14 (C) 12(D)1 5、已知正项数列{n a }中,22212111222n n n a ,a ,a a a (n )+-===+≥,则9a 等于( )(A) 25(B) (C)4 (D)56、已知函数2f (x )x cos x =-,则06005f (.),f (),f (.)-的大小关系是( )(A )00605f ()f (.)f (.)<<- (B) 00506f ()f (.)f (.)<-<(C) 06050f (.)f (.)f ()<-< (D) 05006f (.)f ()f (.)-<<7、设点P 是椭圆22195x y +=上的一点,点M 、N 分别是两圆:2221(x )y ++=和2221(x )y -+=上的点,则的最小值、最大值分别为( )(A)6,8 (B)2,6(C)4,8 (D)8,128、已知函数2100x (x )f (x )log x(x )+≤⎧=⎨>⎩,则函数[]1y f f (x )=+的零点个数是( ) (A) 4 (B) 3 (C) 2 (D) 1第Ⅱ卷注意事项:1.答卷前将密封线内的项目及座位号填写清楚。
2014届北京市海淀区高三第二学期期中考试理科数学试题(含答案解析)
uuur EA
.
-----------------------------------6
分
设平面 ADC 的法向量为 n = (x, y, z) ,则
uuur
n
⋅
DC uuur
=
0,
n ⋅ AD = 0.
3x + y = 0,
即
y
−
3z = 0.
令 z = 1,则 y = 3, x = 1,所以 n = (1, 3, −1) .------------------------------------8 分
= sin π t cos π + cos π t sin π − sin π t
33
33 3
------------------------------7 分
= − 1 sin π t + 3 cos π t 23 2 3
= −sin( π t − π) 33
------------------------------8 分 ------------------------------10 分
z A1
如图,以 E 为坐标原点,分别以 EF , ED, EA 所在直线
为 x 轴, y 轴, z 轴,建立空间直角坐标系 E − xyz
Dy E
--------------------------4DC = AD = 2 ,则 BE = ED =1.
由图 1 条件计算得, AE = 3 , BC = 2 3 , BF = 3 3
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
2014.4
9. 96 10. 1 6
11. 2
12. 3
2013-2014期末海淀高三数学(理科)(含答案纯word)
海淀区高三年级第一学期期末练习数学(理科) 2014.01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数i(i 1)+等于A. 1i +B. 1i --C. 1i -D.1i -+2.设非零实数,a b 满足a b <,则下列不等式中一定成立的是 A.11a b> B.2ab b < C. 0a b +> D.0a b -< 3.下列极坐标方程表示圆的是 A. 1ρ= B. 2πθ=C.sin 1ρθ=D.(sin cos )1ρθθ+=4.阅读如右图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为 A. 3B. 5 C. 10D. 165. 322x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为A. 12B. 12-C.6D. 6-6.若实数,x y 满足条件20,0,3,x y x y y +-≥⎧⎪-≤⎨⎪≤⎩则34z x y =-的最大值是 A.13- B. 3- C.1- D.17.已知椭圆C :22143x y +=的左、右焦点分别为12,F F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅的最大值为A.32 B.233 C.94D. 154 开始结束输入n 输出n i =0n 是奇数n =3n +1i<3i =i +12n n =是是否否8.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有 A.50种B.51种C.140种D.141种二、填空题:本大题共6小题,每小题5分,共30分。
2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版
2014届高考数学(理)一轮复习单元测试第十一章算法框图s 及推理与证明一、选择题(本大题共12小题,每小题5分,共60分.) 1、, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .612.(2013年高考某某卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+3.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n 与(x +y )n 类比,则有(x +y )n =x n +y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz ) 4、(2013高考某某理)设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈5、古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
2013-2014学年度上学期期中考试(高二数学)理科
2013-2014学年度上学期期中考试高二数学试题(理)时间:2013.10 分值:150分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分1.点Q (3,4,5)是空间直角坐标系Oxyz 内一点,则Q 关于x 轴对称点的坐标( ) A.(3,-4,5) B.(-3,4,5) C.(3,-4,-5) D.(-3,-4,-5)2.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是( ) A. 4 B.13132 C. 26135 D. 26137 3.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数A. 246B.321C.431D. 250 4.下列程序运行的结果是 ( )A. 1, 2 ,3B. 2, 3, 1C. 2, 3, 2D. 3, 2, 15.有四个游戏盘面积相等,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )6.为了解某社区居民有无收看“2008北京奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x 人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x 为( ) A .90 B .120 C .180 D .2007.若如图所示的框图所给程序运行的结果20102011S =,那么判断框中可以填入的关于实数k 的判断条件应是( ) A.2010k< B.2009k <(第7题图)8.阅读下边的程序框图,若输入的n 是100 ) A .2550,2500 B .2550,2550 C .2500,2500 D .2500,2550 9. 若实数,x y 满足24,012222--=+--+x y y x y x 则的取值范围为( ). A.]34,0[ B.),34[+∞ C.]34,(--∞ D.)0,34[-10.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中}{6,5,4,3,2,1,∈b a ,若1≤-b a ,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( ) A.94B.92 C.187 D.91 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分..11.A ,B ,C 三种零件,其中B 种零件300个,C 种零件200个,采用分层抽样方法抽取一个容 量为45的样本,A 种零件被抽取20个,C 种零件被抽取10个,三种零件总共有___ 个。
2013北京市海淀区高三二模理科数学Word版含答案
海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0Ax x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞ 2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q+的值为A .3B .2C .3或2-D .3或3- 3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为 A.m a nB.n a mC.2m a nD.2n a m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形A B C D 中,“λ∃∈R ,使得,A B D C A D B Cλλ==”是“四边形A B C D为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为 A.32 B. 36 C. 42 D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x=的焦点,设双曲线C 与该抛物线的一个交点为A ,若12A F F ∆是以1A F 为底边的等腰三角形,则双曲线C 的离心率为B.1+1+D.2+俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n Tna a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值B.若m={}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线c o s 2ρθ=的距离为_______. 10.已知1211ln,sin,222ab c -===,则,,a b c 按照从.大到小...排列为______. 11.直线1l 过点(2,0)-且倾斜角为30 ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____. 12.在A B C ∆中,30,45,A B a ∠=∠==,则_____;b=C _____.A B S ∆=13.正方体1111A B C D A B C D -的棱长为1,若动点P 在线段1B D 上运动,则DC A P⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W .(I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数c o s 2()1π()4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形A B C D 中,90A B CD A B ∠=∠=,30C A B∠=,2B C =,4AD =. 把D A C∆沿对角线A C 折起到P A C ∆的位置,如图2所示,使得点P 在平面A B C 上的正投影H 恰好落在线段A C 上,连接P B ,点,E F 分别为线段,P A A B 的中点. (I) 求证:平面//E F H 平面P B C ; (II)求直线H E 与平面P H B 所成角的正弦值;(III)在棱P A 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218.(本小题满分13分)已知函数()exf x =,点(,0)A a 为一定点,直线()xt t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记A M N ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b ab+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段A B 的垂直平分线经过点1(0,)2-,求A O B ∆(O 为原点)面积的最大值.20.(本小题满分13分) 设A 是由mn⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值; (Ⅲ)对由mn⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2 和与每列的各数之和均为非负整数?请说明理由.22221212a a a a aaa a------海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )因为πsin ()04x-≠所以ππ,4xk -≠Zk ∈ ……………………2分所以函数的定义域为π{|π+,4xx k ≠Z }k ∈ ……………………4分(II )因为22c o s sin ()1sin c o s x x f x x x-=-- ……………………6分= 1+(c os sin )x x +π= 1()4x ++……………………8分又sin y x=的单调递增区间为ππ(2π,2π)22k k -+,Z k ∈令 πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ……………………11分又注意到ππ+,4xk ≠9. 2 10.c b a >>11.12.2213.[0,1]14.②③;2-所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- …………………6分 ξ的分布列为…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p pξ=⨯+⨯--+-⨯+-⨯2.590%145p =-- …………………11分所以当 1.61450p ->时,即8725p<…………………12分所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分17.解:(I )因为点P 在平面A B C 上的正投影H 恰好落在线段A C 上所以P H ⊥平面A B C ,所以P H ⊥A C …………………1分因为在直角梯形A B C D 中,90A B CD A B ∠=∠=,30C A B∠=,2B C =,4AD =所以4A C =,60C A B ∠=,所以A D C ∆是等边三角形,所以H 是A C 中点, …………………2分所以//H E P C …………………3分 同理可证//E F P B 又,H EE F E C P P B P==所以//E F H P B C 平面P B C …………………5分 (II )在平面A B C 内过H 作A C 的垂线如图建立空间直角坐标系,则(0,2,0)A -,(0,0,P ,0)B …………………6分因为(0,E -,(0,H E =-设平面P H B 的法向量为(,,)nx y z =因为0)H B =,(0,0,H P =所以有00H Bn H Pn ⎧⋅=⎪⎨⋅=⎪⎩,即00y z +==⎪⎩,令x =则3,y =- 所以3,0)n =-…………………8分c o s ,4||||n H E n H E n H E ⋅<>===⋅…………………10分所以直线H E与平面P H所成角的正弦值为4…………………11分(III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形P H A 中,122E H P E E A P A ====, (13)分在直角三角形P H B 中,点4,P B =122E F P B ==所以点E到四个点,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e2tS t t a =-,其中t a ≠ …………………2分当0a =,1()||e 2tS t t =,其中0t ≠ 当0t >时,1()e2tS t t =,1'()(1)e2tS t t =+, 所以'(S t >,所以()S t 在(0,)+∞上递增, …………………4分当0t <时,1()e2tS t t =-,1'()(1)e2tS t t =-+,令1'()(1)e 02tS t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02tS t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞- ()S t 的单调递增区间为(1,0)-(II )因为1()||e2tS t t a =-,其中t a ≠当2a >,[0,2]t ∈时,1()()e2tS t a t =-因为0[0,2]t ∃∈,使得0()eS t ≥,所以()S t 在[0,2]上的最大值一定大于等于e 1'()[(1)]e2tS t t a =---,令'S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02tS t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e2S a =-令21(2)e e2a -≥ ,解得22ea ≥+ ,所以3a ≥…………………10分当12a -<时,即3a <时1'()[(1)]e 02tS t t a =--->对(0,1)t a ∈-成立,()S t 单调递增 1'()[(1)]e 02t S t t a =---<对(1,2)t a∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e2a S a --=令11(1)ee2a S a --=≥ ,解得ln 22a ≥+所以la+≤…………………12分综上所述,ln 22a+≤…………………13分19.解:(I)因为椭圆:M 22221(0)x y a b ab+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点, 所以,1a b ==,椭圆M的方程为2213xy+= …………………4分(II)设1122(,),(,),A x y B x y 因为A B 的垂直平分线通过点1(0,)2-, 显然直线A B有斜率,当直线A B 的斜率为0时,则A B 的垂直平分线为y 轴,则1212,x x y y =-=所以111111=|2|||||||||2A OB S x y x y x ∆====2211(3)322x x +-≤=,所以2A OB S ∆≤1||2x =时,A O B S ∆2………………6分当直线A B 的斜率不为0时,则设A B 的方程为y k x t=+所以2213y k x t x y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x k t t +++-=当224(933)0kt ∆=+->, 即2231k t +>①方程有两个不同的解 又122631k t x x k-+=+,1223231x x k t k+-=+ …………………9分所以122231y y t k+=+,又1212112202y y x x k ++=-+-,化简得到2314k t+=②代入①,得到04t <<…………………10分又原点到直线的距离为d =12|||A B x x =-=所以1=||||2A OB S A B d ∆=化简得到=A OB S ∆…………………12分因为04t <<,所以当2t =时,即k =A O B S ∆2综上,A O B∆面积的最大值为2…………………14分20.(I )解:法1:42123712371237211211211-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237211211211--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237211211211----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a aaaa-----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数,所以12a ≤或52a≥当12a≤时,则接下来只能操作第一行,22221212a a a a aaaa------此时每列之和分别为2222,22,22,2a a a a---必有2220a-≥,解得0,1a =-当52a≥时,则接下来操作第二行22221212a a a a a a a a------ 此时第4列和为负,不符合题意. …………………6分② 如果首先操作第一行22221212a a a a aaa a-----则每一列之和分别为22a -,222a-,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数, 所以此时必须有2220a-≥,即11a -≤≤,所以0a =或1a =-经检验,0a =或1a =-符合要求 综上:0a =-…………………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
北京市海淀区高三上期中考试数学试题(理)含答案
海淀区高三年级第一学期期中练习数学(理科) .11本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,则集合中元素的个数为A.1 B.2 C.3 D.42.下列函数中为偶函数的是3.在△ABC中,的值为A.1 B.-1 C.12D.-124.数列的前n项和为,则的值为A.1 B.3 C.5 D.65.已知函数,下列结论错误的是A. B.函数的图象关于直线x=0对称C.的最小正周期为 D.的值域为6.“x>0 ”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.如图,点O为坐标原点,点A(1,1).若函数且)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足8. 已知函数函数.若函数恰好有2个不同零点,则实数a 的取值范围是二、填空题(共6小题,每小题5分,共30分) 9.10.在△AB C 中,角A ,B ,C 的对边分别为a ,b ,c .若 c =4,则11.已知等差数列的公差,且39108a a a a +=-.若n a =0 ,则n =12.已知向量,点A (3,0) ,点B 为直线y =2x 上的一个动点.若AB a ,则点B 的坐标为 . 13.已知函数,若的图象向左平移个单位所得的图象与的图象向右平移个单位所得的图象重合,则的最小值为 14.对于数列,都有为常数)成立,则称数列具有性质. ⑴ 若数列的通项公式为,且具有性质,则t 的最大值为 ;⑵ 若数列的通项公式为,且具有性质,则实数a 的取值范围是三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分) 已知等比数列的公比,其n 前项和为(Ⅰ)求公比q 和a 5的值; (Ⅱ)求证:16.(本小题满分13分)已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期和单调递增区间.17.(本小题满分13分)如图,在四边形ABCD中,AB=8,BC=3,CD=5,(Ⅰ)求BD的长;(Ⅱ)求证:18.(本小题满分13分)已知函数,曲线在点(0,1)处的切线为l(Ⅰ)若直线l的斜率为-3,求函数的单调区间;(Ⅱ)若函数是区间[-2,a]上的单调函数,求a的取值范围.19.(本小题满分14分)已知由整数组成的数列各项均不为0,其前n项和为,且(Ⅰ)求的值;(Ⅱ)求的通项公式;(Ⅲ)若=15时,Sn取得最小值,求a的值.20.(本小题满分14分)已知x为实数,用表示不超过x的最大整数,例如对于函数f(x),若存在,使得,则称函数函数.(Ⅰ)判断函数是否是函数;(只需写出结论)(Ⅱ)设函数f(x)是定义R在上的周期函数,其最小正周期为T,若f(x)不是函数,求T的最小值.(Ⅲ)若函数是函数,求a的取值范围.海淀区高三年级第一学期期中练习参考答案 数 学 (理科) .11阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
北京市海淀区2014年高三二模数学(理)含答案
海淀区高三年级第二学期期末练习数学(理科) 2014.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.sin(150)-的值为A .12-B .12C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为A. 0a ∃≤,有e 1a≤成立B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立D. 0a ∃>,有e 1a≤成立3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为 A.-2 B.16 C.-2或8D.-2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为A .1D. 25.已知(,)P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t =A.ππ30sin()30122t -+ B.ππ30sin()3062t -+ C.ππ30sin()3262t -+D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4)B. (,2)-∞C. (2,)+∞D.(4,)+∞8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N1D分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有 A.0条 B.1条 C.2条 D.无数条二、填空题:本大题共6小题,每小题5分,共30分. 9.满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1)ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13.已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A .①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)在锐角ABC ∆中,a A =且b .(Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F //平面AEG .(Ⅰ)求1CGCC 的值;(Ⅱ)求证:1EG A C ⊥;(Ⅲ)求二面角1A AG E --的余弦值.17.(本小题满分13分) 主视图俯视图1某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X ).18.(本小题满分13分)已知函数()()sin cos ,(0,)f x x a x x x π=-+∈.(Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间.19.(本小题满分14分)已知椭圆G(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程; (Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =.(Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值; (Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.海淀区高三年级第二学期期末练习参考答案数学(理科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列 C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列 D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->; ③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是 ( )A .①③B .①④C .②③D .②④二、填空题3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(n i i i i ,,,,321⋅⋅⋅)(n 是不小于3的正整数),若对任意的q p ,∈{n ,,⋅⋅⋅3,2,1},当q p <时有q p i i >,则称q p i i ,是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1) 2 4(3题图)6 .(2013朝阳二模数学理科)数列{21}n-的前n 项1,3,7,,21n - 组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为m a x {,,}m i n {,a b ca tbc a b =⋅,}bc ca .(ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.8 .(海淀区北师特学校13届高三第四次月考理科)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = . 9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25 填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列; ②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ .三、解答题13.(海淀区2013届高三上学期期中练习数学(理))已知数集12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立. (Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.15.(西城区2013届高三上学期期末考试数学理科)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥ 满足1||1(1,2,,1)k k a a k n +-==- ,则称n A 为E 数列.记12()n n S A a a a =+++ (Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明: E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013丰台二模数学理科)已知等差数列{}n a 的通项公式为23-=n a n ,等比数列{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈ {},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c .(Ⅰ)求数列{}n b 的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.nS18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|kk k S xx τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值;(Ⅱ)求()S τ的最大值; (Ⅲ)求使()S τ达到最大值的所有排列τ的个数.19.(顺义13届高三第一次统练理科)已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y的图像上.(I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围20.(丰台区2013届高三上学期期末理 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(海淀区2013届高三上学期期末理科)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(石景山区2013届高三上学期期末理)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(朝阳区2013届高三上学期期中考试(理))给定一个n 项的实数列12,,,(N)n a a a n *∈ ,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c --- ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;(Ⅲ)对于数列231,2,3,,nn ,是否存在“1n -次归零变换”?请说明理由.24.(2013届丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++= ;② 1231n a a a a ++++= . (Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n = ,试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(昌平区2013届高三上学期期末理)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤= ,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理))已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线21=x 上,且.(1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c .(Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由; (Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.22221212a a a a a a a a ------31.(东城区2013届高三上学期期末考试数学理科)已知实数组成的数组123(,,,,)n x x x x 满足条件:①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值; (Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥ ,且1n a a >(2)n ≥,求证:111()2ni in i a xa a =≤-∑.32.(东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。
北京市海淀区2014届高三上学期期中考试 文科数学 Word版含答案
海淀区高三年级第一学期期中练习数学(文科) 2013.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{1,0,1,2}A =-,{|1}B x x =≥,则A B = ( B ) A. {2}B. {1,2}C. {1,2}-D. {1,1,2}-2. 下列函数中,为奇函数的是( D )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()sin f x x =3. 已知向量(1,2),(,1)m =-=-a b ,且//a b ,则实数m 的值为( C ) A. 2- B. 12-C.12D. 24.“π6α=”是“1sin 2α=”的(A ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件5. 已知数列{}n a 的前n 项和为n S ,且*1110,3()n n a a a n +=-=+∈N ,则n S 取最小值时,n 的值是(B )A. 3B. 4C. 5D. 66.若函数tan ,0,()2(1)1,0x x f x a x x π⎧-<<⎪=⎨⎪-+≥⎩在π(,)2-+∞上单调递增,则实数a 的取值范围( A )A. (0,1]B. (0,1)C. [1,)+∞D. (0,)+∞7.若函数()sin f x x kx =-存在极值,则实数k 的取值范围是( A ) A. (1,1)-B. [0,1)C. (1,)+∞D. (,1)-∞-8.已知点(1,0)B ,P 是函数e x y =图象上不同于(0,1)A 的一点.有如下结论: ①存在点P 使得ABP ∆是等腰三角形; ②存在点P 使得ABP ∆是锐角三角形;③存在点P 使得ABP ∆是直角三角形. 其中,正确的结论的个数为( B ) A. 0B.1C. 2D. 3二、填空题:本大题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第一学期期中练习数学(理科) 2013.11一、 选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D.{2}2.下列函数中,值域为(0,)+∞的函数是( C ) A. ()f x x =B. ()ln f x x =C. ()2x f x =D.()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B ) A.55B.55-C.255D.255-4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C ) A. 2-B. 12-C.12D. 25.若a ∈R ,则“2a a >”是“1a >”的(B ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)n n a n =-,则数列的前n 项和n S 的最小值是(B ) A. 3SB. 4SC. 5SD. 6S7.已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为(D ) A. 2[,0)3- B.[1,0)- C.[2,3) D. (0,)+∞8.已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:①π是()f x 的一个周期; ②()f x 的图象关于直线x 4π=对称; ③()f x 在(,0)2π-上单调递减.其中,正确结论的个数为(C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。
9.10(21)d x x +=⎰___________.210. 已知数列{}n a 为等比数列,若13245,10a a a a +=+=,则公比q =____________.2 11. 已知23log 5,23,log 2b a c ===,则,,a b c 的大小关系为____________. a b c >>12.函数π()2sin()(0,||)2f x x =+><ωϕωϕ的图象如图所示,则ω=______________,ϕ=__________.2π3,π613.已知ABC ∆是正三角形,若AC AB λ=-a 与向量AC 的夹角大于90,则实数λ的取值范围是__________.2λ>14.定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,()1|2|f x x =--;②(3)3()f x f x =.设关于x 的函数()()F x f x a =-的零点从小到大依次为12,,,,n x x x .若1a =,则123x x x ++=;若(1,3)a ∈,则122n x x x +++=________________.答案:14;6(31)n -三、解答题: 本大题共6小题,共80分。
解答应写出文字说明, 演算步骤或证明过程。
15.(本小题满分13分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,60A =,32,b c =332ABC S ∆=. (Ⅰ)求b 的值;(Ⅱ)求sin B 的值.解:(Ⅰ)由60A =和332ABC S ∆=可得133sin 6022bc =, ---------------------------2分所以6bc =, --------------------------------------3分又32,b c =所以2,3b c ==. ------------------------------------5分(Ⅱ)因为2,3b c ==,60A =,xyO31由余弦定理2222cos a b c bc A =+-可得 ------------------------------------7分2222367a =+-=,即7a =. ------------------------------------9分由正弦定理sin sin a bA B=可得------------------------------------11分 72sin sin 60B =,------------------------------------12分 所以21sin 7B =.------------------------------------13分 16. (本小题满分14分)已知函数2π()3cos42cos (2)14f x x x =-++. (I )求()f x 的最小正周期;(II )求()f x 在区间ππ[,]64-上的取值范围.解:(I )π()3cos4cos(4)2f x x x =-+------------------------------------2分3cos4sin 4x x =+------------------------------------4分π2sin(4)3x =+------------------------------------6分()f x 最小正周期为πT 2=,------------------------------------8分(II )因为ππ64x -≤≤,所以ππ4π4333x -≤+≤-----------------------------------10分所以3πsin(4)123x -≤+≤-----------------------------------12分 所以π32sin(4)23x -≤+≤, -----------------------------------13分所以()f x 取值范围为[3,2]-. ------------------------------------14分 17.(本小题满分13分)如图,已知点(11,0)A ,直线(111)x t t =-<<与函数1y x =+的图象交于点P ,与x 轴交于点H ,记APH ∆的面积为()f t . (I )求函数()f t 的解析式; (II )求函数()f t 的最大值.解:(I )由已知11,1AH t PH t =-=+ -------------------------------------1分xyH AOP所以APH ∆的面积为1()(11)1,1112f t t t t =-+-<<. ---------------------4分 (II )解法1. 111'()1(11)2221f t t t t =-++⨯-⨯+ 3(3)41t t -=+ -------------------------------------7分由'()0f t =得3t =, -------------------------------------8分 函数()f t 与'()f t 在定义域上的情况下表:t(1,3)-3 (3,11)'()f t + 0 -()f t↗极大值↘-----------------------------------12分所以当3t =时,函数()f t 取得最大值8. ------------------------------------13分 解法2.由211()(11)1(11)(1),11122f t t t t t t =-+=-+-<< 设2()(11)(1),111g t t t t =-+-<<, -------------------------------------6分 则2'()2(11)(1)(11)(11)(1122)3(3)(11)g t t t t t t t t t =--++-=--++=--.-------7分 函数()g t 与'()g t 在定义域上的情况下表:t(1,3)-3 (3,11)'()g t + 0 -()g t↗极大值↘------------------------------------11分所以当3t =时,函数()g t 取得最大值, -----------------------------------12分 所以当3t =时,函数()f t 取得最大值1(3)82g =.------------------------------------13分18.(本小题满分13分)已知数列{}n a 满足:①20a >;②对于任意正整数,p q 都有2p q p q a a +⋅=成立. (I )求1a 的值;(II )求数列{}n a 的通项公式;(III )若2(1)n n b a =+,求数列{}n b 的前n 项和.解:(I )由②可得2112a a ⋅=,3122a a ⋅= -------------------------------2分由①可得12a =. -------------------------------3分(II )由②可得112n n a a +⋅=, ------------------------------6分所以数列{}n a 的通项公式2n n a =. ------------------------------7分 (III )由(II )可得21(1)421n n n n b a +=+=++,易得1{4},{2}n n +分别为公比是4和2的等比数列,------------------------------8分由等比数列求和公式可得124(14)4(12)1(416)214123n n n n n S n n ++--=++=-++--.--13分19.(本小题满分14分)已知函数2()2(1)2ln (0)f x x a x a x a =-++>.(I )当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(II )求()f x 的单调区间;(III )若()0f x ≤在区间[1,e]上恒成立,求实数a 的取值范围.解:(I )因为1a =,2()42ln f x x x x =-+,所以2242'()(0)x x f x x x-+=>, ------------------------------1分 (1)3f =-,'(1)0f =, ------------------------------3分 所以切线方程为3y =-. ------------------------------4分(II )222(1)22(1)()'()(0)x a x a x x a f x x x x-++--==>, ----------------------------5分 由'()0f x =得12,1x a x ==, ------------------------------6分 当01a <<时,在(0,)x a ∈或(1,)x ∈+∞时'()0f x >,在(,1)x a ∈时'()0f x <,所以()f x 的单调增区间是(0,)a 和(1,)+∞,单调减区间是(,1)a ; ---------------7分 当1a =时,在(0,)x ∈+∞时'()0f x ≥,所以()f x 的单调增区间是(0,)+∞;-----8分 当1a >时,在(0,1)x ∈或(,)x a ∈+∞时'()0f x >,在(1,)x a ∈时'()0f x <.所以()f x 的单调增区间是(0,1)和(,)a +∞,单调减区间是(1,)a . ---------------10分(III )由(II )可知()f x 在区间[1,e]上只可能有极小值点,所以()f x 在区间[1,e]上的最大值在区间的端点处取到,-------------------------12分即有(1)12(1)0f a =-+≤且2(e)e 2(1)e 20f a a =-++≤,解得2e 2e2e 2a -≥-. ---------------------14分20.(本小题满分13分)已知数列{}n a 的首项1,a a =其中*a ∈N ,*1*,3,,31,3,.nn n nn a a l l a a a l l +⎧=∈⎪=⎨⎪+≠∈⎩N N 令集合*{|,}n A x x a n ==∈N .(I )若4a 是数列{}n a 中首次为1的项,请写出所有这样数列的前三项;(II )求证:{1,2,3}A ⊆;(III )当2014a ≤时,求集合A 中元素个数()Card A 的最大值.解:(I )27,9,3;8,9,3;6,2,3. --------------------------------------3分 (II )若k a 被3除余1,则由已知可得11k k a a +=+,2312,(2)3k k k k a a a a ++=+=+;若k a 被3除余2,则由已知可得11k k a a +=+,21(1)3k k a a +=+,31(1)13k k a a +≤++;若k a 被3除余0,则由已知可得113k k a a +=,3123k k a a +≤+; 所以3123k k a a +≤+,所以312(2)(3)33k k k k k a a a a a +-≥-+=- 所以,对于数列{}n a 中的任意一项k a ,“若3k a >,则3k k a a +>”. 因为*k a ∈N ,所以31k k a a +-≥.所以数列{}n a 中必存在某一项3m a ≤(否则会与上述结论矛盾!)若3m a =,则121,2m m a a ++==;若2m a =,则123,1m m a a ++==,若1m a =,则122,3m m a a ++==, 由递推关系易得{1,2,3}A ⊆. ---------------------------------------8分(III )集合A 中元素个数()Card A 的最大值为21.由已知递推关系可推得数列{}n a 满足:当{1,2,3}m a ∈时,总有3n n a a +=成立,其中,1,2,n m m m =++.下面考虑当12014a a =≤时,数列{}n a 中大于3的各项:按逆序排列各项,构成的数列记为{}n b ,由(I )可得16b =或9, 由(II )的证明过程可知数列{}n b 的项满足:3n n b b +>,且当n b 是3的倍数时,若使3n n b b +-最小,需使2112n n n b b b ++=-=-,所以,满足3n n b b +-最小的数列{}n b 中,34b =或7,且33332k k b b +=-,所以33(1)13(1)k k b b +-=-,所以数列3{1}k b -是首项为41-或71-的公比为3的等比数列, 所以131(41)3k k b --=-⨯或131(71)3k k b --=-⨯,即331k k b =+或3231k k b =⨯+, 因为67320143<<,所以,当2014a ≤时,k 的最大值是6,所以118a b =,所以集合A 重元素个数()Card A 的最大值为21.---------------13分。