算法分治策略
NOIP基础算法讲解2
while(i<=mid)do begin temp[p]:=a[i];inc(p);inc(i);end while(j<=right)do begin temp[p]:=a[j];inc(p);inc(i);end for i:=left to right do a[i]:=temp[i]; end;
数据范围:n≤10^6。所有数之和不超过10^9。
例题8:快速幂
【问题】计算an mod k的值 ,其中n<=109。
方法1:朴素算法。每次乘以a,时间复杂度O(n)。 function power(a,n:longint):longint; var x:longint; begin x:=1; for i:=1 to n do x:=x*a; power:=x; end;
时间效率不尽如人意….. 问题出现在哪里呢??
方法2:分治策略
采用分治求解: ➢划分问题:把序列分成元素个数尽量相等的两半; ➢递归求解:统计i和j均在左边或者均在右边的逆序对个数; ➢合并问题:统计i在左边,但j在右边的逆序对个数。
记数列a[st]~a[ed]的逆序对数目为d(st,ed); mid=(st+ed)/2,则有:
三、分治的三步骤
①划分问题:将要解决的问题分解成若干个规模较 小的同类子问题;
②递归求解:当子问题划分得足够小时,求解出子 问题的解。
③合并问题:将子问题的解逐层合并成原问题的解。
四、分治的框架结构
procedure Divide() begin
如何应用分治算法求解问题
如何应用分治算法求解问题分治算法,英文名为Divide and Conquer Algorithm,是一种高效的算法设计策略,在计算机科学中有着广泛的应用。
该算法将一个大问题分解成多个小问题,各自独立地解决,再将结果合并起来得到最终结果。
在本文中,我们将阐述如何应用分治算法求解问题,并通过几个实例来具体说明该算法的应用。
一、分治算法的原理分治算法的核心思想是将一个大问题分解成若干个小问题来解决,然后将这些小问题的解组合起来生成大问题的解。
其具体步骤如下:1. 分解:将原问题划分成若干个规模较小的子问题。
2. 解决:递归地解决每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
分治算法的主要优点在于它可以有效地缩小问题规模,从而缩短整个算法的执行时间。
另外,该算法天然适用于并行计算,因为每个子问题都是独立求解的。
二、分治算法的应用分治算法在各种领域都有广泛应用,包括数学、自然科学、计算机科学等。
以计算机科学领域为例,分治算法常常用于解决以下类型的问题:1. 排序问题2. 查找问题3. 字符串匹配问题4. 最大子序列和问题5. 矩阵乘法问题6. 图形问题下面我们将一一讲解这些问题的分治算法实现。
1. 排序问题排序问题是在一组数据中将其按指定规律进行排列的问题。
在计算机科学中,排序算法是十分重要的一类算法。
其中,分治算法由于其高效性和可并行性被广泛应用。
常用的分治排序算法包括归并排序和快速排序。
归并排序的基本思想是将待排序元素以中心点为界分成两个序列,对每个序列进行排序,然后将两个序列合并成一个有序序列;而快速排序则利用了分割的思想,通过每次选取一个元素作为“轴点”,将数组分成小于轴点和大于轴点的两部分,对这两部分分别进行快速排序。
2. 查找问题查找问题是在一组数据中寻找某个元素的问题。
分治算法在查找问题中的应用主要体现在二分查找中。
在二分查找中,我们首先将已排序的数组分成两半,在其中一半中查找目标值。
论分治策略算法的具体实现
3 分解问题的实现
分解问题的过程主要是依据原问题的本 质将其分解。显然这个步骤中最主要的是分 析问题的本质, 找到问题的要素。 所谓 “ 问题的要素”就是影响问题的解 的内容, 是问题的本质, 是最终所建立的算法 中的参数 。 以对一个数组 a [n]排序为例: 排序本质上 是按照数组中各个元素a[i]的大小调整它们在 数组的位置, 即改变原来的下标 ; 这里就可以 得知排序问题的要素应该是元素的大小和元
r et ur nj ;
5 合并子问题的实现
这个步骤最主要注意的是 前面的 “ 分解 问题” 递归解问题” 、“ 中 是否真正的解问题了, 这个问题下面进行阐 述; 在合并的时候, 各子问题的关系即 “ 分 解问题的分界线处于什么样的地位” 例如 , “ 最接近点对问题”中, 由于处于分界线两边 (子问题之间) 的点对也有可能构成最近的距 离, 所以必须考虑。 下面仍然以对一个数组 a [n ]排序为例。 ( 1)按照元素的大小来分解: 由于在分解问题的时候, 已经对原问题(元 素的大小)进行了解, 而且问题的分界线符合原 问题的要求, 所以直接将各个子问题连接起来 就可以了, 对于例子的实际情况就是下标的连 接, 而在问题分解的过程中并没有对各个子问 题中的元素重新给出下标, 是直接利用原问题 中的下标, 所以, 可以省略。
Hale Waihona Puke func2_3(a[],Q ,left ,i,right)/ / 当 前要合 并的是a 中left 到right 的元素 lintm=left ,/ / 左半部的当 前下标 intn=right ,/ / 右半部的当 前下标 intl=left s/ / 暂存数组的当前下标 while(m< =i)&&(n< =right)
分治算法
65 97
13 76
38 49 65 97
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归 调用
49 38 65 97 76 13 27
38 49
65 97
13 76
27
38 49 65 97
题的解,自底向上逐步求出原来问题的解。
T(n)
=
n
递归的概念
由分治法产生的子问题往往是原问题的较小模式,这 就为使用递归技术提供了方便。在这种情况下,反复 应用分治手段,可以使子问题与原问题类型一致而其 规模却不断缩小,最终使子问题缩小到很容易直接求 出其解。这自然导致递归过程的产生。
直接或间接地调用自身的算法称为递归算法。用函数 自身给出定义的函数称为递归函数。
黑盒划分典型问题—合并排序
【例5】合并排序
任务描述:任意给定一包含n个整数的集合,把n个整数按升序排列。 输入:每测试用例包括两行,第一行输入整数个数,第二行输入n个整 数,数与数之间用空格隔开。最后一行包含-1,表示输入结束。 输出:每组测试数据的结果输出占一行,输出按升序排列的n个整数。 样例输入:
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归调用 自然合并排序
49 38 65 97 76 13 27
49
38 65 97
76
13 27
38 49 65 97
黑盒划分典型问题—逆序对问题
《算法分治法》课件
分治算法的步骤
分治算法的步骤还包括对问题进行归纳和分类,确定 问题的规模和复杂度,选择合适的分治策略和算法实 现方式等。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
分治算法的核心思想是将一个复杂的问题分解为若干个规模较小、相互独立、与 原问题形式相同的子问题,递归地解这些子问题,然后再将子问题的解合并,以 求得原问题的解。
分治算法的原理
分治算法的原理是利用问题的相似性,将大问题分解为小问 题,将复杂问题转化为简单问题,从而降低问题的难度,提 高解决问题的效率。
探索分治算法与其他算法(如贪心算法、动态规划等)的结合
,实现更高效的算法设计。
分治算法的理论基础研究
02
深入探讨分治算法的理论基础,为算法设计和优化提供理论支
持。
分治算法在实际问题中的应用研究
03
针对实际问题,研究分治算法的应用场景和解决方案,推动算
法的实际应用。
THANKS
感谢观看
对于可以并行处理的子问题,可以使 用多线程或分布式计算等技术进行并 行处理,进一步提高算法效率。
动态规划
动态规划是一种常用的优化技术,通 过将子问题存储在表格中并逐步更新 ,可以避免重复计算,提高算法效率 。
分治算法在实际项目中的应用案例
归并排序
归并排序是一种典型的分治算法,通过递归地将数组分解为若干个子数组,然后合并子数 组得到有序数组。在实际应用中,归并排序广泛应用于各种排序场景。
分治策略凸多边形的相交检测算法
分治策略凸多边形的相交检测算法1.引言1.1 概述分治策略凸多边形的相交检测算法是一种用于判断两个凸多边形是否相交的方法。
在计算机图形学和计算几何学中,相交检测是一个重要的问题,因为它可以应用于很多实际应用中,例如物体碰撞检测、路径规划等。
本文主要介绍了分治策略在凸多边形相交检测中的应用。
分治策略是一种将大问题划分为小问题并分别解决的方法,它可以有效地降低问题的复杂度。
在凸多边形相交检测中,我们可以将问题划分为多个子问题,然后通过递归地解决这些子问题来得到最终的结果。
凸多边形的定义与性质是分治策略凸多边形相交检测算法的基础。
凸多边形是指没有凹角的多边形,每条内部线段都包含在多边形内部。
凸多边形具有很多特性,例如任意两个顶点之间的线段都完全包含在多边形内部,任意两边不相交等。
在本文中,我们将详细介绍分治策略凸多边形相交检测算法的实现过程,并给出其正确性证明。
同时,我们还将进行算法的复杂度分析,通过对算法的时间复杂度和空间复杂度进行评估,来评判算法的效率和可行性。
总之,本文通过引言部分的概述,为读者提供了对分治策略凸多边形相交检测算法的整体认识。
接下来的正文部分将更加详细地介绍其中的关键内容和步骤。
通过阅读本文,读者将能够全面理解并应用该算法。
1.2 文章结构本文旨在介绍分治策略在凸多边形的相交检测算法中的应用。
文章分为引言、正文以及结论三个部分。
引言部分首先对文章的整体内容进行概述,介绍了本文所要解决的问题以及使用的方法。
接着,详细说明了文章的结构安排,将对分治策略和凸多边形的定义与性质进行深入探讨。
正文部分是本文的核心内容,首先详细介绍了分治策略的概念和基本原理,并阐述了其在解决凸多边形相交检测问题中的应用。
然后,对凸多边形的定义进行了详细说明,并探讨了凸多边形的一些重要性质。
通过结合分治策略和凸多边形的特性,提出了一种有效的相交检测算法。
结论部分对本文所提出的算法的有效性进行总结和评价,指出了该算法在凸多边形相交检测中的优势和适用性。
分治策略算法实验报告
分治策略算法实验报告引言分治策略是一种经典的算法设计策略,也是算法设计中最重要的思想之一。
其基本思想是将大问题划分成小的、相互独立的子问题,再将子问题合并求解,最终得到原问题的解。
本实验将通过实际例子,验证分治策略算法的有效性。
实验内容本实验选择两个经典的算法问题进行实现和验证,分别是二分查找和快速排序。
这两个问题在算法领域都有重要的应用价值,也是实践分治算法的好例子。
问题1:二分查找二分查找是一种在有序数组中查找特定元素的算法,其基本思想是将数组分为两部分,然后判断目标值在哪一部分,并且逐步缩小问题的规模。
具体实现如下:pythondef binary_search(arr, target):low = 0high = len(arr) - 1while low <= high:mid = (low + high) 2if arr[mid] == target:return midelif arr[mid] < target:low = mid + 1else:high = mid - 1return -1问题2:快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟划分将待排序序列分割成两个独立的子序列,然后递归地对子序列进行排序,最终得到有序序列。
具体实现如下:pythondef quicksort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quicksort(left) + middle + quicksort(right)实验结果为了验证分治策略算法的有效性,我们分别对上述两个问题进行了测试。
分治法实验总结
分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。
在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。
我们实现了归并排序算法。
归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。
在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。
归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。
接着,我们实现了快速排序算法。
快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。
在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。
快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。
通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。
分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。
在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。
分冶策略(讲课稿)
分治策略(Divide and Conquer)一、算法思想任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。
问题规模越小,解题所需的计算时间往往也越少,从而也越容易计算。
想解决一个较大的问题,有时是相当困难的。
分治法的思想就是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分而治之方法与软件设计的模块化方法非常相似。
为了解决一个大的问题,可以:1) 把它分成两个或多个更小的问题;2) 分别解决每个小问题;3) 把各小问题的解答组合起来,即可得到原问题的解答。
小问题通常与原问题相似,可以递归地使用分而治之策略来解决。
1、解决算法实现的同时,需要估算算法实现所需时间。
分治算法时间是这样确定的:解决子问题所需的工作总量(由子问题的个数、解决每个子问题的工作量决定)合并所有子问题所需的工作量。
2、分治法是把任意大小问题尽可能地等分成两个子问题的递归算法3、分治的具体过程:begin {开始}if ①问题不可分then ②返回问题解else begin③从原问题中划出含一半运算对象的子问题1;④递归调用分治法过程,求出解1;⑤从原问题中划出含另一半运算对象的子问题2;⑥递归调用分治法过程,求出解2;⑦将解1、解2组合成整修问题的解;end;end; {结束}二、分治策略的应用(1)二分搜索(折半查找)算法思想:将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分。
通过一次比较,将查找区间缩小一半。
折半查找是一种高效的查找方法。
它可以明显减少比较次数,提高查找效率。
但是,折半查找的先决条件是查找表中的数据元素必须有序。
算法步骤描述:step1 首先确定整个查找区间的中间位置:mid = (left + right )/ 2step2 用待查关键字值与中间位置的关键字值进行比较;●若相等,则查找成功●若大于,则在后(右)半个区域继续进行折半查找●若小于,则在前(左)半个区域继续进行折半查找Step3 对确定的缩小区域再按折半公式,重复上述步骤。
分治算法探讨分治策略与应用场景
分治算法探讨分治策略与应用场景随着计算机科学的快速发展,算法成为了解决问题的重要工具。
其中,分治算法在很多场景下展现出强大的能力,被广泛应用于各个领域。
本文将探讨分治策略的原理和常见应用场景。
一、分治策略的基本原理分治策略是一种将大问题划分为细分的子问题,并通过解决子问题来解决原始问题的思想。
其基本思路可以概括为以下三个步骤:1. 分解:将原始问题划分为若干规模较小的子问题。
2. 解决:递归地解决各个子问题。
3. 合并:将各个子问题的解合并为原始问题的解。
通过将大问题递归地划分为越来越小的子问题,最终解决各个子问题,再将子问题的解合并为原始问题的解,分治策略能够高效地解决很多复杂的问题。
二、分治策略的应用场景1. 排序算法排序是计算机科学中一个重要的问题,各种排序算法都可以使用分治策略来实现。
例如,快速排序和归并排序就是使用分治策略的经典排序算法。
在快速排序中,通过选择一个基准元素将问题划分为两个子问题,然后递归地排序子问题。
最后,再将排序好的子数组合并为原始数组的有序序列。
在归并排序中,通过将问题划分为两个子问题,递归地排序子数组。
最后,再将排序好的子数组合并为原始数组的有序序列。
归并排序的特点是稳定性好,适用于大规模数据的排序。
2. 查找问题分治策略也可以应用于查找问题。
例如,在有序数组中查找某个元素可以使用二分查找算法,该算法也采用了分治思想。
二分查找算法通过将问题划分为两个子问题,然后根据子问题的规模逐步缩小查找范围,最终找到目标元素。
这种分治思想使得二分查找具有高效性。
3. 矩阵乘法矩阵乘法是一个常见的数学运算问题。
通过分治策略,可以将矩阵乘法划分为多个小问题,并递归地解决这些小问题。
然后,再将这些小问题的解进行合并,得到原始问题的解。
分治法用于矩阵乘法算法的优化,可以减少运算量,提高计算效率。
4. 搜索问题分治策略也可以应用于搜索问题。
例如,在搜索引擎中,分治策略可以用于并行搜索,从而加快搜索速度。
算法导论答案 (4)
算法导论答案第一章:算法概述啊算法的定义算法是一系列解决问题的明确指令。
它是一个有穷步骤集,其中每个步骤或操作由确定性和可行性特征。
算法是通过将预期的输入转换为输出来解决问题的工具。
第二章:插入排序插入排序的思想插入排序是一种简单直观的排序算法,其基本思想是将待排序的序列分为已排序和未排序两部分,每次从未排序的部分中取出一个元素,并将其插入到已排序部分的正确位置,直到所有元素都被排序。
插入排序的算法实现以下是插入排序的伪代码:INSERTION-SORT(A)for j = 2 to A.lengthkey = A[j]// Insert A[j] into the sorted sequence A[1.. j-1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key插入排序的时间复杂度插入排序的时间复杂度为O(n^2),其中n是排序的元素个数。
虽然插入排序的最坏情况下的复杂度很高,但是对于小规模的数据集,插入排序是一种较快的排序算法。
第三章:分治策略分治策略的基本思想分治策略是一种解决问题的思想,它将问题的规模不断缩小,直到问题足够小而可以直接解决。
然后将子问题的解合并起来,得到原问题的解。
分治策略的应用实例一种经典的应用分治策略的算法是归并排序。
归并排序将待排序的序列划分为两个子序列,分别排序后再将两个有序子序列合并为一个有序序列。
以下是归并排序的伪代码:MERGE-SORT(A, p, r)if p < rq = floor((p + r) / 2)MERGE-SORT(A, p, q)MERGE-SORT(A, q + 1, r)MERGE(A, p, q, r)MERGE(A, p, q, r)n1 = q - p + 1n2 = r - qlet L[1..n1+1] and R[1..n2+1] be new arraysfor i = 1 to n1L[i] = A[p + i - 1]for j = 1 to n2R[j] = A[q + j]L[n1 + 1] = infinityR[n2 + 1] = infinityi = 1j = 1for k = p to rif L[i] <= R[j]A[k] = L[i]i = i + 1elseA[k] = R[j]j = j + 1分治策略的时间复杂度归并排序的时间复杂度为O(nlogn),其中n是待排序序列的长度。
strassen矩阵乘法的分治算法
strassen矩阵乘法的分治算法Strassen矩阵乘法的分治算法引言矩阵乘法是计算机科学中非常常见的操作,它在各个领域中都有广泛的应用,如图像处理、人工智能等。
然而,传统的矩阵乘法算法的时间复杂度较高,限制了其在大规模矩阵计算中的应用。
为了提高矩阵乘法的效率,Strassen矩阵乘法算法被提出,它是一种基于分治策略的算法,能够显著降低矩阵乘法的时间复杂度。
算法原理Strassen矩阵乘法算法的核心思想是将两个n×n的矩阵A和B分解为四个n/2×n/2的子矩阵,然后通过一系列的加减运算得到矩阵C的四个n/2×n/2的子矩阵。
具体的算法步骤如下:1. 将矩阵A和B分别分解为四个n/2×n/2的子矩阵:A = | A11 A12 |B = | B11 B12 || | | || A21 A22 | | B21 B22 |其中A11、A12、A21、A22和B11、B12、B21、B22分别是n/2×n/2的子矩阵。
2. 计算七个中间矩阵M1、M2、M3、M4、M5、M6、M7:M1 = (A11 + A22) × (B11 + B22)M2 = (A21 + A22) × B11M3 = A11 × (B12 - B22)M4 = A22 × (B21 - B11)M5 = (A11 + A12) × B22M6 = (A21 - A11) × (B11 + B12)M7 = (A12 - A22) × (B21 + B22)3. 根据中间矩阵M1、M2、M3、M4、M5、M6、M7计算矩阵C的四个n/2×n/2的子矩阵:C11 = M1 + M4 - M5 + M7C12 = M3 + M5C21 = M2 + M4C22 = M1 - M2 + M3 + M64. 将矩阵C的四个n/2×n/2的子矩阵合并得到最终的矩阵C:C = | C11 C12 || || C21 C22 |算法分析Strassen矩阵乘法算法的时间复杂度为O(n^log2(7)),相比传统的矩阵乘法算法的时间复杂度O(n^3),显著降低了计算的复杂度。
9分治算法
每执行一次算法的 while循环, 待搜索数 组的大小减少一半。因 此,在最坏情况下, while循环被执行了 O(logn) 次。循环体内 运算需要O(1) 时间, 因此整个算法在最坏情 况下的计算时间复杂性 为O(logn) 。
分治法的适用条件
分治法所能解决的问题一般具有以下几个特征: ● 该问题的规模缩小到一定的程度就可以容易地解决; ● 该问题可以分解为若干个规模较小的相同问题,即该 问题具有最优子结构性质 ● 利用该问题分解出的子问题的解可以合并为该问题的 解; ● 该问题所分解出的各个子问题是相互独立的,即子问 题之间不包含公共的子问题。 这条特征涉及到分治法的效率,如果各子问题是不 能否利用分治法完全取决于问题是否具有这条特征, 这条特征是应用分治法的前提,它也是大多数问题 因为问题的计算复杂性一般是随着问题规模的增加 可以满足的,此特征反映了递归思想的应用 而增加,因此大部分问题满足这个特征。 独立的,则分治法要做许多不必要的工作,重复地 如果具备了前两条特征,而不具备第三条特征,则 可以考虑贪心算法或动态规划。 解公共的子问题,此时虽然也可用分治法,但一般 用动态规划较好。
合并排序
最坏时间复杂度:O(nlogn) 平均时间复杂度:O(nlogn) 辅助空间:O(n) 稳定性:稳定
●解决算法实现的同时,需要估算算法实现所需时间。分治 算法时间是这样确定的: 解决子问题所需的工作总量(由 子问题的个数、解决 每个子问题的工作量 决定) 合并所有子问题所需的工作量
1
2
3
4
1 2
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
分治算法详解及经典例题
分治算法详解及经典例题⼀、基本概念在计算机科学中,分治法是⼀种很重要的算法。
字⾯上的解释是“分⽽治之”,就是把⼀个复杂的问题分成两个或更多的相同或相似的⼦问题,再把⼦问题分成更⼩的⼦问题……直到最后⼦问题可以简单的直接求解,原问题的解即⼦问题的解的合并。
这个技巧是很多⾼效算法的基础,如排序算法(快速排序,归并排序),傅⽴叶变换(快速傅⽴叶变换)……任何⼀个可以⽤计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越⼩,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作⼀次⽐较即可排好序。
n=3时只要作3次⽐较即可,…。
⽽当n较⼤时,问题就不那么容易处理了。
要想直接解决⼀个规模较⼤的问题,有时是相当困难的。
⼆、基本思想及策略分治法的设计思想是:将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
分治策略是:对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个⼦问题,1<k≤n,且这些⼦问题都可解并可利⽤这些⼦问题的解求出原问题的解,那么这种分治法就是可⾏的。
由分治法产⽣的⼦问题往往是原问题的较⼩模式,这就为使⽤递归技术提供了⽅便。
在这种情况下,反复应⽤分治⼿段,可以使⼦问题与原问题类型⼀致⽽其规模却不断缩⼩,最终使⼦问题缩⼩到很容易直接求出其解。
这⾃然导致递归过程的产⽣。
分治与递归像⼀对孪⽣兄弟,经常同时应⽤在算法设计之中,并由此产⽣许多⾼效算法。
三、分治法适⽤的情况分治法所能解决的问题⼀般具有以下⼏个特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
计算机五大算法
计算机五大算法计算机科学中,算法是非常重要的概念之一。
算法是指为解决特定问题而设计的一系列步骤或操作。
在计算机技术的发展过程中,人们提出了许多算法用于解决各种不同的问题。
其中,有五个算法被广泛认可为计算机领域中最重要的算法,它们分别是:贪心算法、动态规划、回溯算法、分治算法和搜索算法。
一、贪心算法贪心算法是一种基于贪心策略的算法。
它的核心思想是,在每一步选择中都采取当前状态下最优的选择,以期能够得到全局最优解。
贪心算法在解决一些最优化问题时具有较高的效率,但是由于其贪心的特性,不能保证得到的解是全局最优解。
贪心算法的经典应用包括霍夫曼编码和最小生成树算法。
二、动态规划动态规划是一种通过将原问题分解为相互依赖的子问题来求解的算法。
该算法通常用于解决最优化问题。
动态规划算法的核心思想是将问题划分为相互重叠的子问题,并通过解决子问题获得最优解。
通过构建一个动态规划表或者使用递归的方式,可以有效地计算出问题的最优解。
动态规划算法在解决字符串匹配、背包问题和最短路径等问题时被广泛使用。
三、回溯算法回溯算法是一种通过不断试错来寻找问题解的算法。
回溯算法的核心思想是通过尝试所有可能的解并在搜索过程中剪枝,以找到问题的解。
回溯算法通常通过递归的方式实现,它在解决诸如八皇后问题、数独和图的着色等问题时具有很高的效率。
四、分治算法分治算法是一种将原问题分解为相互独立的子问题来求解的算法。
该算法通常通过递归的方式实现。
分治算法的核心思想是将问题划分为规模更小的子问题,并通过解决子问题得到原问题的解。
分治算法在解决排序问题、最近点对问题和快速傅里叶变换等问题时被广泛使用。
五、搜索算法搜索算法是一种通过搜索问题空间来求解问题的算法。
搜索算法的核心思想是通过穷举所有可能的解,找到满足问题条件的解。
搜索算法的效率通常受到问题空间的大小和搜索策略的影响。
常见的搜索算法包括深度优先搜索、广度优先搜索和A*算法等。
综上所述,贪心算法、动态规划、回溯算法、分治算法和搜索算法是计算机领域中最重要的五个算法。
(算法分析设计)第2章递归与分治策略
分治法的基本思想
分治法的基本思想
将一个规模为n的问题分解为a个规模较小的子 问题,这些子问题互相独立并且与原问题相同。 通过递归地求解这些子问题,然后再将各个子问 题的解合并,就可以实现对原问题的求解。
分治法的求解过程
分治法的求解过程
表示以塔座b为辅助塔座,将塔座a 上自下而上,由大到小叠在一起的 n-1个圆盘按规则移至塔座c上并 按同样顺序叠放。
将塔座a上的圆盘移动 到塔座b上去
Hanoi塔问题的复杂性分析
n=1
移动次数T(1)=1
n=2
移动次数T(2)=3
n=3
移动次数T(3)=7
n=4
移动次数T(4)=15
divide-and-conquer(P) {
if(|P|<=n0) adhoc(P);
n0:阀值
如果问题P的规模不超过n0,说明 问题已经容易求解,不要再继续 分解。利用adhoc(P)直接求解。
divide P into smaller subinstances P1,P2,…,Pa;
for(i=1,i<=a,i++)
T ( n ) ( n lo g b a ) O ( n lo g b a ) ( n lo g b a )
T ( n ) ( n l o g b a ) ( n l o g b a l g n ) ( n l o g b a l g n )
T ( n )( n lo g b a )(f( n ) )(f( n ) )
二分搜索技术 大整数的乘法 Strassen矩阵乘法 合并排序 快速排序 线性时间选择
二分搜索技术
NOIP基础算法综合---分治与贪心
分析
• B、求方程的所有三个实根
• 所有的根的范围都在-100至100之间,且根与根之差的绝 对值>=1。因此可知:在[-100,-99]、[-99,-98]、……、[99, 100]、[100,100]这201个区间内,每个区间内至多只能 有一个根。即:除区间[100,100]外,其余区间[a,a+1], 只有当f(a)=0或f(a)·f(a+1)<0时,方程在此区间内才有解。 若f(a)=0 ,解即为a;若f(a)·f(a+1)<0 ,则可以利用A中所 述的二分法迅速出找出解。如此可求出方程的所有的解。
while(i<=mid)temp[p++]=a[i++]; while(j<=right)temp[p++]=a[j++]; for(i=left;i<=right;i++)a[i]=temp[i]; }
【变形1】逆序对数目
• 例题:求“逆序对”。 • 给定一整数数组A=(A1,A2,…An), 若i<j且Ai>Aj,
核心参考代码
void divide(double x1,double x2) { double x0,y0,y1,y2;
x0=(x1+x2)/2; y1=cal(x1);y2=cal(x2);y0=cal(x0); if(x2-x1<0.00001&&y1*y2<0)
{printf("%.4f ",(x2+x1)/2);return;} if(y1*y0<0||x0-x1>1) divide(x1,x0); if(y0*y2<0||x2-x0>1) divide(x0,x2); }
算法分析思维分析,以循环赛日程表为例
算法分析思维分析,以循环赛⽇程表为例第⼀步:分治法的简单思想在计算机科学中,分治法是⼀种很重要的算法。
字⾯上的解释是“分⽽治之”,就是把⼀个复杂的问题分成两个或更多的相同或相似的⼦问题,再把⼦问题分成更⼩的⼦问题……直到最后⼦问题可以简单的直接求解,原问题的解即⼦问题的解的合并。
这个技巧是很多⾼效算法的基础,如排序算法(,归并排序),傅⽴叶变换()等等。
任何⼀个可以⽤计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越⼩,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作⼀次⽐较即可排好序。
n=3时只要作3次⽐较即可,…。
⽽当n较⼤时,问题就不那么容易处理了。
要想直接解决⼀个规模较⼤的问题,有时是相当困难的。
分治法的设计思想是,将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
分治策略是:对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
第⼆步:分治法的理论基础如果原问题可分割成k个⼦问题,1<k≤n ,且这些⼦问题都可解并可利⽤这些⼦问题的解求出原问题的解,那么这种分治法就是可⾏的。
由分治法产⽣的⼦问题往往是原问题的较⼩模式,这就为使⽤递归技术提供了⽅便。
在这种情况下,反复应⽤分治⼿段,可以使⼦问题与原问题类型⼀致⽽其规模却不断缩⼩,最终使⼦问题缩⼩到很容易直接求出其解。
这⾃然导致递归过程的产⽣。
分治与递归像⼀对孪⽣兄弟,经常同时应⽤在算法设计之中,并由此产⽣许多⾼效算法。
2.1分治法所能解决的问题⼀般具有以下⼏个特征: 1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决 2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。