2020年广东省九年级数学中考模拟检测卷

合集下载

广东省2020届中考数学仿真模拟试卷 (含解析)

广东省2020届中考数学仿真模拟试卷 (含解析)

广东省2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.点P(−3,−5)关于x轴对称的点为P1,则P1的坐标为()A. (−3,5)B. (3,−5)C. (−3,−5)D. (3,5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.式子√1−x在实数范围内有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥−1D. x≤−16.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 407.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{12−2x<203x−6≤0的解集是()A. −4<x≤6B. x≤−4或x>2C. −4<x≤2D. 2≤x<49.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=−1.下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0.其中正确结论的个数是()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+3y)2+(x+2y)(x−2y)−2x2,其中x=2,y=−1.四、解答题(本大题共7小题,共56.0分)19.我区某校数学兴趣小组在本校学生中开展了以“垃圾分类知多少”为主题的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为四个等级:“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并根据调查所得到的结果绘制了如下不完整的统计图:根据以上信息解答下列问题:(1)求本次被调查的学生人数;(2)补全条形统计图;(3)若该校有学生1500人,请根据调查结果,估计这些学生中“比较了解”垃圾分类知识的人数.20.如图,∠A=∠D=90°,AB=CD,AC,BD相交于点E.求证:(1)△ABC≌△DCB;(2)△EBC是等腰三角形.21.设a,b,c是△ABC的三条边,关于x的方程12x2+√bx+c−12a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx−3m=0的两个根,求m的值.22.如图,⊙O是△ABC的外接圆,AC是直径,弦BD=BA,EB⊥DC,交DC的延长线于点E.(1)求证:BE是⊙O的切线;(2)当sin∠BCE=34,AB=3时,求AD的长.23.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:A解析:解:根据平面直角坐标系中对称点的规律可知,点P(−3,−5)关于x轴的对称点为P1(−3,5).故选:A.根据平面直角坐标系中对称点的规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:B解析:【分析】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.根据被开方数是非负数,可得答案.【解答】解:由√1−x在实数范围内有意义,得1−x≥0.解得x≤1,故选:B.6.答案:A解析:本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,DF=AE=12AB,再根据四边形的周长的定义计算即可得解.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=12AC=2,DF=AE=12AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:C解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式12−2x<20,得:x>−4,解不等式3x−6≤0,得:x≤2,则不等式组的解集为−4<x≤2.故选:C.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:B解析:解:∵抛物线与x轴有交点,∴△>0,∴b2−4ac>0,∴4ac−b2<0,故①正确,∵x=−2时,y>0,∴4a−2b+c>0,∴4a+c>2b,故②错误,∴对称轴x=−1,=−1,∴−b2a∴b=2a,∴y=ax2+2ax+c,∵x=1时,y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正确.故选:B.根据二次函数的性质以及图象信息,一一判断即可.本题考查二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x²+6xy+9y²+x²−4y²−2x²=6xy+5y²当x=2,y=−1时,原式=6×2×(−1)+5×(−1)²=−12+5=−7解析:本题主要考查整式的混合运算.先算乘方及乘法,再合并同类项,最后把x、y的值代入计算.19.答案:解:(1)本次被调查的学生人数是36÷18%=200(人).答:本次被调查的学生人数是200人;(2)比较了解的人数是200−40−36−4=120(人).;=900(人).(3)比较了解垃圾分类的人数是1500×120200答:这些学生中“比较了解”垃圾分类知识的人数是900人.解析:(1)根据基本了解的人数是36,所占的百分比是18%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求得比较了解的人数,从而补全直方图;(3)利用总人数1500乘以对应的百分比即可求得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:解:(1)∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中,{BC=CBAB=DC,∴Rt△ABC≌Rt△DCB(HL).(2)∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△EBC是等腰三角形.解析:本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL”可证Rt△ABC≌Rt△DCB;(2)由全等三角形的性质可得∠ACB=∠DBC,可得BE=CE,可得结论.21.答案:解:(1)∵12x2+√bx+c−12a=0有两个相等的实数根,∴△=(√b)2−4×12(c−12a)=0,整理得a+b−2c=0①,又∵3cx+2b=2a的根为x=0,∴a=b②,把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形;(2)a,b是方程x2+mx−3m=0的两个根,∴方程x2+mx−3m=0有两个相等的实数根∴△=m2−4×(−3m)=0,即m2+12m=0,∴m1=0,m2=−12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=−12.解析:(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,b的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可得到关于a,b的方程组,可求出a,b的关系式;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.22.答案:解:(1)证明:连结OB,OD,在△ABO和△DBO中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE ,∴BE CE =DE BE, ∴CE =74, ∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(x +3)元由题意得900x+3=750x ,解得x =15,经检验x =15是原方程的解.所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,由题意得:2a +10(100−a)≥1080,解得a ≥40.答:至少购进A 类玩具40个.解析:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力.(1)设B 的进价为x 元,则a 的进价是(x +3)元;根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,结合“玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答. 24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE=DE=12BD=5,AE=CE=12AC=5,∴AE=DE=CE=BE=5,作EH⊥BC,垂足为H,∴BH=CH=12BC=3,∴EH=4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。

2020年广东中考数学模拟试卷(附答案和解析)

2020年广东中考数学模拟试卷(附答案和解析)

23.如图,正方形 ABCD 的边长为 1,对角线 AC、BD 交 于点 O,E 是 BC 延长线上一点,且 AC=EC,连接 AE 交 BD 于点 P. (1)求∠DAE 的度数; (2)求 BP 的长.
第 3页 共 4页
五、解答题(三)(本大题共 2 小题,每小题 10 分,共 20 分) 24.如图,已知一次函数 y = kx+b(k ≠ 0) 的图象与 x 轴、 y 轴分别交于点 A、B 两点,且与反比例 函数 y = m (m ≠ 0) 的图象在第一象限第一象限内的部分交于点 C , CD 垂直于 x 轴于点 D ,其中
2020年广东名校中考数学学科线上一模 试卷(二)
说 明:本试卷共 4 页,满分 120 分,考试时间 90 分钟.
注意事项: 1. 选择题、填空题和解答题的答案写在答题卡上,若写在试卷上不计成绩. 2. 作图(含辅助线)和列表时用铅笔(如 2B 铅笔),要求痕迹清晰.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
九年级数学答案第 3 页(共 5 页)
即1+1√2
=
√2−BP BP
∴BP=1
┅┅┅┅┅┅┅8 分
五、解答题(三)
24.(1)答: A( - 2,0) , C ( 2, 4) ┅┅┅┅┅2 分(写对一个点的坐标得 1 分)
(2) y = x +2 , y = 8 x
┅┅┅┅┅6 分 (求对一个表达式得 2 分)
四、解答题(二)(本大题共 3 小题,每小题 8 分,共 24 分)
21.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为 1.5m2.一 位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C 是这个正方形 的一个内角. (1)请你用尺规为这位木匠在图中作出符合要求的正方形; (2)求加工出的这个正方形桌面的边长.

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷

广东省东莞市2020版九年级数学中考模拟试卷(一)(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·江岸期末) 下列式子从左到右变形正确的是()A .B .C .D .2. (2分) (2019九下·昆明模拟) 小明记录了昆明市年月份某一周每天的最高气温,如表:日期最高气温那么这周每天的最高气温的众数和中位数分别是()A . ,B . ,C . ,D . ,3. (2分)已知点P关于x轴的对称点P1的坐标是(2,3),则点P坐标是()A . (-3,-2)B . (-2,3)C . (2,-3)D . (3,-2)4. (2分)既是轴对称,又是中心对称图形的是()A . 圆B . 等腰三角形C . 梯形D . 平行四边形5. (2分)下列线段中不能组成三角形的是()A . 2,2,1B . 2,3,5C . 3,3,3D . 4,3,56. (2分) (2019九下·衡水期中) 关于x的一元二次方程有两个不相等的正实数根,则m的取值范围是()A .B . 且C .D .7. (2分)(2017·河东模拟) 若M(,y1)、N(,y2)、P(,y3)三点都在函数(k >0)的图象上,则y1、y2、y3的大小关系是()A . y2>y3>y1B . y2>y1>y3C . y3>y1>y2D . y3>y2>y18. (2分)如图,把正方体纸盒沿棱剪开,平铺在桌面上,原来与点A重合的顶点是()A . IB . JC . GD . H9. (2分) (2017九下·沂源开学考) 在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为()A .B .C .D .10. (2分) (2019九上·惠州期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A . ①④B . ②④C . ①②③D . ①②③④二、填空题 (共8题;共8分)11. (1分)绝对值相等且符号不相同的数他们互为________。

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版-CAL-FENGHAI.-(YICAI)-Company One1广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105 3.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5 10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<0.3∴最大为0.3故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=3.5×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x>﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC =S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b =﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y 与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△=;接着计算出∠AOE=120°,于是得到S扇形AO=3π,然后利用阴影ADO部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB+B1C=2+a,A2(2+a,a).1∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB+B2D=2+b,A3(2+b,b).2∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE =AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB•AD=2×=2,∵BF=2,BP=,∴S△BPF=BF•BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD ﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△==48a=16,解得:,所求抛物线的解析式为ACD=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t=0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G 横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a >,故要使满足∠MAB=75°的点M有且只有两个,则a 的取值范围为:.31。

广东2020中考数学综合模拟测试卷2(含答案)

广东2020中考数学综合模拟测试卷2(含答案)

2020 广东省初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题, 共 30分)一、选择题( 本大题共10 小题 , 每题3分,共30 分 ) 在每题列出的四个选项中, 只有一个是正确的.1. 在1,0,2,-3 这四个数中, 最大的数是( )A.1B.0C.2D.-32. 在以下交通标记图中, 既是轴对称图形, 又是中心对称图形的是( )3. 计算 3a-2a 的结果正确的选项是 ()A.1B.aC.-aD.-5a4. 把 x3-9x 分解因式 , 结果正确的选项是( )A.x(x 2-9)B.x(x-3) 2C.x(x+3) 2D.x(x+3)(x-3)5. 一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.76.一个不透明的布袋里装有7 个只有颜色不一样的球 , 此中 3 个红球 ,4 个白球 , 从布袋中随机摸出 1 个球 , 摸出的球是红球的概率为( )A. B. C. D.7.如图 , 在?ABCD中 , 以下说法必定正确的选项是 ()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC8. 若对于x 的一元二次方程x2-3x+m=0 有两个不相等的实数根, 则实数m的取值范围是( )A.m>B.m<C.m=D.m<-9. 一个等腰三角形的两边长分别为 3 和 7, 则它的周长为 ()A.17B.15C.13D.13 或 1710. 二次函数2的大概图象如下图, 对于该二次函数, 以下说法错误的是y=ax +bx+c(a ≠0)()A. 函数有最小值B. 对称轴是直线x=C.当 x< 时 ,y 随 x 的增大而减少D.当 -1<x<2 时 ,y>0第Ⅱ卷 ( 非选择题 , 共 90 分)二、填空题 ( 本大题共 6 小题 , 每题 4 分 , 共 24 分 ) 请将以下各题的正确答案填写在相应的地点上 .11. 计算 :2x 3÷x=.12. 据报导 , 截止 2013 年 12 月我国网民规模达618 000 000 人 . 将 618 000 000 用科学记数法表示为.13. 如图 , 在△ ABC中, 点 D,E 分别是 AB,AC的中点 , 若 BC=6,则 DE=.14. 如图 , 在☉ O中 , 已知半径为5, 弦 AB的长为 8, 那么圆心O到 AB的距离为.15. 不等式组的解集是.-16. 如图 , △ABC绕点 A按顺时针旋转45°获得△ AB'C', 若∠BAC=90°,AB=AC= , 则图中暗影部分的面积等于.三、解答题 ( 一 ) (本大题共3小题,每题 6分,共 18分)17. 计算 : +|-4|+(-1) -0-.18. 先化简 , 再求值 : 2 此中 x= - .·(x -1),-19. 如图 , 点 D 在△ ABC的 AB边上 , 且∠ACD=∠ A.(1)作∠ BDC的均分线 DE,交 BC于点 E( 用尺规作图法 , 保存作图印迹 , 不要求写作法 );(2)在 (1) 的条件下 , 判断直线 DE与直线 AC的地点关系 ( 不要求证明 ).四、解答题 ( 二) (本大题共 3 小题 , 每题 7 分, 共 21 分)20.如图 , 某数学兴趣小组想丈量一棵树 CD的高度 . 他们先在点 A处测得树顶 C的仰角为 30°,而后沿 AD方向前行 10 m,抵达 B 点 , 在 B 处测得树顶 C 的仰角为 60 ° (A、B、D 三点在同向来线上 ). 请你依据他们的丈量数据计算这棵树CD 的高度 ( 结果精准到0.1 m).( 参照数据:≈1.414,≈1.732)21.某商场销售的一款空调机每台的标价是1 635 元 , 在一次促销活动中 , 按标价的八折销售 ,仍可盈余9%.(1) 求这款空调机每台的进价;收益率收益售价-进价进价进价(2) 在此次促销活动中, 商场销售了这款空调机100 台 , 问盈余多少元?22. 某高校学生会发现同学们就餐时节余饭菜许多, 浪费严重 , 于是准备在校内倡议“光盘行动”, 让同学们珍惜粮食. 为了让同学们理解此次活动的重要性, 校学生会在某天午饭后, 随机检查了部分同学这餐饭菜的节余状况, 并将结果统计后绘制成了如图 1 和图 2 所示的不完好的统计图 .(1) 此次被检查的同学共有名;(2)把条形统计图 ( 图 1) 增补完好 ;(3) 校学生会经过数据剖析, 预计此次被检查的全部同学一餐浪费的食品能够供200 人食用一餐 . 据此估量 , 该校 18 000 名学生一餐浪费的食品可供多少人食用一餐.五、解答题 ( 三 ) (本大题共 3 小题,每题 9 分,共 27 分)23.如图,已知 A- ,B(-1,2) 是一次函数y=kx+b(k ≠0) 与反比率函数 y= (m≠0,x<0) 图象的两个交点 ,AC⊥ x 轴于点 C,BD⊥ y 轴于点 D.(1) 依据图象直接回答: 在第二象限内 , 当 x 取何值时 , 一次函数的值大于反比率函数的值?(2)求一次函数的分析式及 m的值 ;(3)P 是线段 AB上一点 , 连接 PC,PD,若△ PCA与△PDB的面积相等 , 求点 P 的坐标 .24.如图 , ☉ O是△ABC的外接圆 ,AC 是直径 . 过点 O作线段 OD⊥ AB 于点 D, 延伸 DO交☉ O于点P, 过点 P 作 PE⊥ AC于点 E, 作射线 DE交 BC的延伸线于点F, 连接 PF.(1) 若∠POC=60°,AC=12, 求劣弧的长(结果保存π );(2)求证 :OD=OE;(3)求证 :PF 是☉ O的切线 .25.如图 , 在△ ABC中 ,AB=AC,AD⊥ BC于点 D,BC=10cm,AD=8cm. 点 P 从点 B 出发 , 在线段 BC上以每秒 3 cm的速度向点 C匀速运动 , 与此同时 , 垂直于 AD的直线 m从底边 BC出发 , 以每秒 2 cm 的速度沿DA方向匀速平移, 分别交 AB、 AC、 AD于点 E、 F、H. 当点 P 抵达点 C 时 , 点 P 与直线 m同时停止运动. 设运动时间为t 秒(t>0).(1)当 t=2 时 , 连接 DE,DF.求证 : 四边形 AEDF是菱形 ;(2)在整个运动过程中 , 所形成的△ PEF的面积蓄在最大值 . 当△ PEF的面积最大时 , 求线段 BP 的长 ;(3)能否存在某一时刻 t, 使△ PEF是直角三角形 ?若存在 , 恳求出现在 t 的值 ; 若不存在 , 请说明原因 .答案全解全析:一、选择题1.C ∵ - 3<0<1<2,∴2最大 . 应选 C.2.C A项既不是轴对称图形 , 也不是中心对称图形, 故 A 项错误 ;B 项既不是轴对称图形 , 也不是中心对称图形 , 故 B 项错误 ;C 项既是轴对称图形, 又是中心对称图形 , 故 C项正确 ;D 项是轴对称图形 , 但不是中心对称图形,故 D项错误.应选 C.评析此题考察了轴对称图形和中心对称图形的判断, 属简单题 .3.B 利用归并同类项的法例可知3a-2a=(3-2)a=a, 应选 B.4.D x3-9x=x(x 2-9)=x(x+3)(x-3). 应选 D.5.D 设这个多边形的边数为x, 则 180×(x -2)=900, 解得 x=7, 应选 D.6.B 由于随机摸出一球的全部等可能的结果共有7 种 , 此中摸出一个红球的等可能的结果有 3 种 , 因此摸出的球是红球的概率为,应选 B.7.C 利用平行四边形的性质可知, 只有 C 项必定正确 . 应选 C.8.B ∵ 一元二次方程有两个不相等的实数根, ∴(-3) 2- 4m>0,∴m< . 应选 B.9.A ∵ 三角形为等腰三角形, 且三角形随意两边之和大于第三边, ∴三角形的三边长分别为3,7,7, ∴周长为 17. 应选 A.10.D ∵ 抛物线的张口向上, ∴函数有最小值 , 故 A项正确 ;∵抛物线与 x 轴交于 (-1,0) 、(2,0) 两点 , ∴抛物线的对称轴是直线x= , 故 B 项正确 ; ∵抛物线的张口向上 , 对称轴为直线x= , ∴当 x< 时 ,y 随 x 的增大而减少 , 故 C项正确 ;∵当 -1<x<2 时 ,y<0, 故 D 项错误 . 应选 D.评析此题考察了二次函数的图象和性质及“数形联合”思想 , 考察了学生剖析问题、解决问题的能力 , 属于较难题 .二、填空题11.答案 2x2分析2x 3÷x=2(x 3÷x)=2x 2.12. 答案 6.18 ×10 8分析618 000 8000=6.18 × 10.13.答案 3分析∵D、 E 分别是 AB、 AC的中点 , ∴ DE是△ABC的中位线 , ∴ DE=BC=3.14.答案 3分析作 OC⊥ AB 于 C, 连接 OA,则 AC= AB=4, 又 OA=5,∴OC= -=-=3.15. 答案1<x<4分析由 2x<8, 得 x<4; 由 4x-1>x+2, 得 x>1, ∴不等式组的解集为1<x<4.16. 答案-1解析设 AC'与BC 的交点为 D,B'C' 与AB 的交点为E, 则 AD=AE=AC·cos45°=1. ∵AC'=AC=2 2 2 2-1. , ∴C'D= - 1, ∴S暗影 = AE- C'D = ×1- ×(-1) =评析此题考察了等腰直角三角形的性质、三角形的面积以及图形的旋转, 属较难题 .三、解答题 ( 一) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)17.分析原式 =3+4+1-2(4 分 )=6.(6 分 )18.分析原式==2(x+1)+(x-1)(3分) =3x+1.(4分)--·(x+1)(x-1)(2分)当 x=-时,原式=3×-+1=.(6分)19.分析 (1) 作图正确 ( 实线、虚线均可 ),结论 :DE 即为所求 .(3分)( 考生没有结论, 但作图正确给满分)(2)DE ∥ AC.(6 分 )四、解答题 ( 二) (本解答题参照答案只供给一种解法,考生选择其余解法只需答案正确,相应给分 .)20.分析∵∠ CAB=30°, ∠CBD=60°,∴∠ACB=60° - 30°=30°, ∴∠ CAB=∠ACB,∴B C=AB=10.(3 分 )在 Rt △ CBD中 ,sin 60 °= ,∴CD=BC·sin 60°=10×=5≈8.7(m).答: 这棵树高约8.7 m.(7 分)21. 分析(1) 设这款空调机每台的进价是x 元 ,(1分)依据题意 , 得 1 635 × 0.8-x=9%·x,(3分)解得 x=1 200.答: 该款空调机每台的进价是 1 200 元.(5分)(2)100 ×1 200×9%=10800( 元 ).答: 商场盈余 10 800 元 .(7 分 )22. 分析 (1)1 000.(2 分 )(2) 剩少许饭菜的人数为 :1 000-(400+250+150)=200.( 补全条形统计图正确 3 分 )(5 分 )(3)×18 000=3 600( 人 ).答: 预计可供 3 600 人食用一餐 .(7分)五、解答题 ( 三) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)23. 分析(1)-4<x<-1.(2 分 )(2) 将 A - ,B(-1,2)- 分别代入 y=kx+b, 得-解得 k= ,b=.∴一次函数的分析式为y= x+ .(4分) 将 B(-1,2)代入y=中,得=2,-∴m=-2.(6分)(3)∵点 P在线段 AB上 ,∴设 P 的坐标为.(7 分)∵S PCA=S PDB,△△∴ × ×(a+4)=×1×-, 解得 a=- ,(8分)∴a+ = × - + = .∴点 P 的坐标是 - .(9 分)24.分析 (1) ∵AC 是☉ O的直径 ,∴OC= AC= ×12=6.(1分)∴劣弧的长为=2π .(3分)(2) 证明 : ∵OD⊥ AB,PE⊥ AC,∴∠ ODA=∠OEP=90°.(4分)又∵ OA=OP, ∠AOD=∠POE,∴△ AOD≌△ POE,(5 分 )∴O D=OE.(6 分 )(3) 证明 : 连接 PA.∵OD=OE,∴∠ ODE=∠OED.∵∠ POC=∠ODE+∠ OED,∴∠ POC=2∠ OED.又∵∠ POC=2∠ PAC, ∴∠PAC=∠ OED.∴PA∥ DF,(7 分 )∴∠ PAD=∠FDB.∵OD⊥AB,∴AD=BD.∵AC是☉ O的直径 ,∴∠ DBF=∠ADP=90°.∴△ PAD≌△ FDB,∴P A=FD.∴四边形 PADF是平行四边形 .(8分)∴P F∥ AD,∴∠ FPD=∠ADP=90°,即 OP⊥PF,∵OP是☉ O的半径 ,∴P F 是☉O的切线 .(9 分 )25. 分析(1) 证明 : 如图 1, 当 t=2 时 ,HD=2t=4.∵A D=8,∴HD= AD.(1 分 )∵E F⊥ AD,AD⊥BC,∴EF∥ BC,图 1 ∴E,F 分别是 AB,AC的中点 .∵A B=AC,AD⊥ BC,∴D是 BC的中点 ,∴DE∥ AC,DF∥ AB,∴四边形 AEDF是平行四边形 .(2分)又∵ AD⊥EF,∴四边形 AEDF是菱形 .(3分)图 2 (2) 如图 2, ∵EF∥BC,∴ △ AEF∽△ ABC,∴= ,∴= - ,∴E F=10- t.(4 分)∴S PEF= EF·DH=-·2t=- t 2 +10t△=- (t-2)2+10.(5分)∴当 S△PEF取最大值时 ,t=2.此时 ,BP=3t=3× 2=6(cm).(6分)(3) 存在 .①如图 3, 若∠PEF=90°,则 PE∥ AD.图 3 ∴△ BEP∽△ BAD,∴=,∴=,∴t=0.∵当 t=0 时, △ EPF不存在 ,∴t=0 不合题意 , 舍去 .(7 分 )②如图 4, 若∠EPF=90°,在 Rt△ EPF中 ,图 4 连接 PH, ∵H是 EF 的中点 ,∴PH= EF= -=5- t.2 2 2=HD+DP,在 Rt △ HDP中 , ∵ HP∴ - =(2t) 2+(5-3t) 2.解得 t=0 或 t= .由① 知 ,t=0不合题意,舍去,∴t= .(8 分)③如图 5,图 5 若∠ PFE=90 °,则PF∥ AD.∴△ CPF∽△ CDA,∴=,∴=-,解得 t=.综上所述 , 当 t=或时,△ PEF是直角三角形.(9分)。

2020年广东省中考数学模拟考试试卷(一)-2020届广东九年级数学中考总复习课件 (共23张PPT

2020年广东省中考数学模拟考试试卷(一)-2020届广东九年级数学中考总复习课件 (共23张PPT

解:(1)∵AB为⊙O的直径,∴∠C=90°. ∵将△ABC沿AB翻折后得到△ABD, ∴△ABC≌△ABD. ∴∠ADB=∠C=90°.∴点D在以AB为直径的⊙O上. (2)∵△ABC≌△ABD,∴AC=AD. ∵AB2=AC·AE,∴AB2=AD·AE,即 ∵∠BAD=∠EAB, ∴△ABD∽△AEB.∴∠ABE=∠ADB=90°. ∵AB为⊙O的直径,∴BE是⊙O的切线.
14. 反比例函数y=
的图象经过点(2,
3),则k=_____7_______.
15. 已知一个正数的两个平方根分别为2m-6和3+m, 则(-m)2 020的值为___________1_.
16.已知点P(3-m,m)在第二象限,则m的取值范 围是____m_>_3______. 17. 一张桌子可坐4人,按如图M1-3所示的方式将 桌子拼在一起,则n张桌子拼在一起可坐 ___(_2_n_+_2_)____人.
解:(1)在Rt△ABD中,AD=24 m,∠B=31°,
∴tan31°=
,即BD≈
=40(m).
在Rt△ACD中,AD=24 m,∠ACD=50°,
∴tan50°= ,即CD≈
=20(m).
∴BC=BD-CD=40-20=20(m).故B,C之间的距离为
20 m.
(2)根据题意,得20÷2=10m/s<15m/s,所以此
三、解答题(一)(本大题3小题,每小题6分,共
18分)
18. 计算:
-6sin30°-(π+2 020)0+
解:原式=4-6× -1+3=3.
19. 先化简,再求值: 其中x=2,y=
20. 如图M1-4,在∠CAD中,B为AC上一点. (1)利用尺规作图:以点B为顶点,射线BC为一 边,在∠CAD内部作∠CBE,使∠CBE=∠CAD(保 留作图痕迹,不写作法); (2)在(1)的条件下,EB与AD平行吗? 依据是什么?

2020年广东省中考数学模拟试卷

2020年广东省中考数学模拟试卷

2020中考模拟卷数学(考试时间:90分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:广东中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.-的倒数等于2A.12B.-12C.-2D.2【答案】C.1【解析】-的倒数是-2.故选C.22.神舟五号飞船与送它上天的火箭共有零部件约120000个,用科学记数法表示为A.1.2⨯104B.1.2⨯105C.1.2⨯106D.12⨯104【答案】B.【解析】由于120000有6位,所以可以确定n=6-1=5.所以120000=1.2⨯105个.故选B.3.下列计算正确的是A.x5+x5=x10B.x5g x2=x10C.(x5)5=x10D.(m2)3g m4=m10【答案】D.【解析】A、x5+x5=2x5,故错误;B、x5g x2=x7,故错误;C、(x5)5=x25,故错误;D、正确;故选D.4.如图,在e O中,∠ABC=40︒,则∠AOC=A.40°B.20°C.80°D.50°【答案】C.【解析】Q在e O中,∠ABC=40︒,∴∠AOC=2∠ABC=80︒.故选C.5.一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,摸到黄球的概率是A.23B.15C.25D.35【答案】C.【解析】根据题意可得:一袋中装有3个红球,2个黄球,共5个,任意摸出1个,摸到黄球的概率是25.故选C.6.如图为主视图方向的几何体,它的俯视图是A.B.C.D.【答案】D.【解析】从上面看可得到三个左右相邻的长方形,故选D.7.如图,已知∠1=60︒,如果CD//B E,那么∠B的度数为A.60︒B.100︒C.110D.120︒【答案】D.【解析】Q∠1=60︒,∴∠2=180︒-60︒=120︒.Q CD//B E,∴∠2=∠B=120︒.故选D.b -2 4ac - b 2 4 ⨯1⨯ (-3) - (-2)22B .2D .8.抛物线 y = x 2 - 2x - 3 的顶点坐标为A . (-1,-4)【答案】C .B . (1,4)C . (1,-4)D . (-1,4)【解析】Q a = 1 ,b = -2 , c = -3 ,∴- =- = 1 , = = -4 .故2a 2 ⨯1 4a 4 ⨯1选 C .9.一仓库管理员需要清点仓库的物品,物品全是一些大小相同的正方体箱子,他不能搬下箱子进行清点.后来,他想出了一个办法,通过观察物品的三视图求出了仓库里的存货.他所看到的三视图如图,那么仓库管理员清点出存货的个数是A .5B .6C .7D .8【答案】D .【解析】综合主视图,俯视图,左视图底层有 6 个正方体,第二层有 2 个正方体,所以仓库里的正方体箱子的个数是 8.故选 D .10.如图,直径为 10 的 e A 经过点 C(0,5) 和点 O(0,0) ,B 是 y 轴右侧 e A 优弧上一点,则 ∠OBC的正弦值为A . 134 C . 345【答案】A .【解析】连接 AC , OA ,Q 15.设 x ,x 是一元二次方程 x 2 - 3x - 2 = 0 的两个实数根,则 x 2 + 3x x + x 2 的值为__________.Q 点 C(0,5) 和点 O(0,0) ,∴OC = 5 , 直径为 10,∴ AC = OA = 5 ,∴ AC = OA = OC ,∴∆OAC1是等边三角形,∴∠OAC = 60︒ ,∴∠OBC = ∠OAC = 30︒ ,∴∠OBC 的正弦值为:21sin30︒ = .故选 A .2第Ⅱ卷二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)11.算术平方根等于它本身的数是__________.【答案】0 和 1.【解析】算术平方根等于它本身的数是 0 和 1.12.已知相似 ∆ABC 与 ∆DEF 的相似比为1:3 ,若 ∆ABC 的面积为 2 米 2 ,则 ∆DEF 的面积为__________.【答案】18 米 2 .【解析】Q 相似 ∆ABC 与 ∆DEF 的相似比为1:3 ,∴ 相似 ∆ABC 与 ∆DEF 的面积比为1:9 ,∴ S∆ABC = S ∆DEF1 2 1,即 = ,解得 S 9 S 9∆DEF∆DEF = 18 (米 2 ) .故答案为:18 米 2 .13.在函数 y = x + 3 中,自变量 x 的取值范围是__________.【答案】 x …- 3 .【解析】根据题意得: x + 3…0 ,解得: x …- 3 .14.在 Rt ∆ABC 中,若 ∠C = 90︒ , AC = 1 , BC = 2 , sin B = __________.【答案】5 .5【解析】根据勾股定理可得: AB =AC 2+ BC 2= 5 ,∴ sin B =AC 1 5= = .故答案是: AB 5 55 5.121 12 2【答案】7.【解析】由题意,得:x+x=3,x x=-2;原式=(x+x)2+x x=9-2=7.故答案为:7.1212121216.把多项式2m2n-8mn2+8n3分解因式,结果是__________.【答案】2n(m-2n)2.【解析】原式=2n(m2-4mn+4n2)=2n(m-2n)2.故答案为:2n(m-2n)2.17.观察下面的图形,它们是按一定规律排列的,依照此规律,第__________个图形共有120个★.【答案】15.【解析】通过观察,得到星的个数分别是,1,3,6,10,15,⋯,第一个图形为:1⨯(1+1)÷2=1,第二个图形为:2⨯(2+1)÷2=3,第三个图形为:3⨯(3+1)÷2=6,第四个图形为:4⨯(4+1)÷2=10,⋯,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.故答案为:15.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:21-sin45︒+(-)-1+(3-2)0.22【答案】-22-1.【解析】原式=2-=-2-1.222-2+1⎧x-y=1①19.解方程组:⎨⎩x2-y2=5②⎧y=2【答案】⎨.⎩x=3.⎧x-y=1⋯①【解析】方程组⎨⎩x2-y2=5⋯②,⎧由①得, x = 1 + y ⋯ ③,把③代入②得 (1+ y)2 - y 2 = 5 ,解得, y = 2 ,把 y = 2 代入①得, x = 3 ,∴ 原方程组的解为: ⎨ y = 2⎩ x = 3.20.将如图中 ∆ABC 作下列变化,画出相应的图形:(1)沿 y 轴负向平移 2 个单位后的△ A B C ;1 1 1(2)关于 y 轴对称的△ A B C ;2 2 2(3)以点 B 为中心,放大到原来的 2 倍的△ A B C .3 3 3【答案】作图见解析.【解析】(1)如图,△ A B C 为所作;1 1 1(2)如图,△ A B C 为所作;2 2 2(3)如图,△ A B C 为所作.3 3 3△四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分)21.如图,九年级某班同学要测量校园内旗杆的高度,在地面的 C 点处用测角器测得旗杆顶 A点的仰角 AFE 45 ,再沿直线 CB 后退12m 到 D 点,在 D 点又用测角器测得旗杆顶 A 点的仰角 AGE 30 ;已知测角器的高度为1.6m ,求旗杆 AB 的高度 ( 3 1.73,结果保留一位小数).【答案】约为 18.0 米.【解析】Q AFE 45 ,AEF 为等腰 Rt ,AE EFQ AGE 30 ,在 Rt AEG 中, GE 3AE ,又Q GE EF GF 12 ,即有 ( 3 1)AE12 ,AE 16.38, AB AE BE 16.38 1.6 17.98 18.0.答:求旗杆高度约为 18.0 米.22.阅读对话,解答问题:【答案】(1)作图见解析;(2)p(V…0)..∴p(V…0)=3=1-,2⨯=2-,3⨯=3-,⋯(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率.14【解析】(1)(a,b)对应的表格为:a123b1 2 3 4(1,1)(2,1)(3,1)(4,1)(1,2)(2,2)(3,2)(4,2)(1,3)(2,3)(3,3)(4,3)(2)Q方程x2-ax+2b=0有实数根,∴△=a2-8b….∴使a2-8b…的(a,b)有(3,1),(4,1),(4,2),1=.12423.观察下列等式:1⨯112233 223344(1)请你按照这个规律写出第四个等式__________;(2)猜想并写出第n个等式__________;【猜想】(3)证明:Q左边=n⨯;右边=n-;∴n⨯n=n-(3)证明你写出的等式的正确性.【答案】(1)4⨯44n n=4-;(2)n⨯=n-;(3)证明见解析.55n+1n+144【解析】(1)解:第四个等式4⨯=4-;55n n(2)解:猜想第n个等式:n⨯;n+1n+1n n2=n+1n+1n n(n+1)-n n2==n+1n+1n+1左边=右边,n=n-.n+1n+1五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图:在∆ABC中,∠ACB=90︒,以BC上一点O为圆心,以O B为半径的圆交AB于点M,交BC于点N.(1)求证:BA g BM=BC g BN;(2)如果CM是e O的切线,且M为AB的中点,当BN=4时,求MN的长.【答案】(1)证明见解析;(2)MN=2.【解析】(1)证明:如图1,连接MN,Q NB是e O的直径,∴∠NMB=90︒,∴∆ABC∽∆NBM,∴BA=,∴B A g BM=BC g BN;'''⎧∠ABC=∠NBM在∆ABC和∆NBM中,⎨,⎩∠ACB=∠NMBBCBN BM(2)如图2,连接MO、MN,Q∠ACB=90︒,M为AB的中点,∴MC=MB,∴∠MCB=∠B,Q CM是e O的切线,∴∠NMC=∠B,Q∠MNB=∠NCM+∠NMC,∴∠MNB=2∠B,Q BN为e O的直径,∴∠NMB=90︒,∴∠MNO=60︒,∴∆MNO是等边三角形,∴MN=2.25.在∆ABC中,∠ACB=90︒,∠ABC=30︒,将∆ABC绕顶点C顺时针旋转,旋转角为θ(0︒<θ<180︒),得到△A'B'C.(Ⅰ)如图①,当AB//CB'时,设A'B'与CB相交于点D.证明:△A'CD是等边三角形;(Ⅱ)如图②,连接AA、BB',设∆ACA和∆BCB的面积分别为S、S.求证:S:S=1:3;1212(Ⅲ)如图③,设AC的中点为E,A'B'的中点为P,AC=a,连接EP.求当θ为何值时,EP的长度最大,并写出EP的最大值(直接写出结果即可).3【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)E P=a.2【解析】(Ⅰ)证明:如图①,' Q AC = A 'C , BC = B 'C ,∴ AC BC 3 ' 'Q AB / /CB ' ,∴∠BCB ' = ∠ABC = 30︒ ,∴∠ACA = 30︒ .又Q ∠ACB = 90︒ ,∴∠A 'CD = 60︒ .又Q ∠CA 'B ' = ∠CAB = 60︒ ,∴ △ A 'CD 是等边三角形.(Ⅱ)证明:如图②,A 'C = . BCB 'C 又Q ∠ACA= ∠BCB ' ,∴∆ACA ∽∆BCB ' .Q AC = tan 30︒ = 3 ,∴ S : S = AC 2 : BC 2 = 1: 3 . 123 (Ⅲ)当 θ = 120︒ 时, EP 的长度最大, EP 的最大值为 a . 2解:如图,连接 CP ,Q ∠B ' = 30︒ , ∠ACB ' = 90︒ ,∴ A 'C = AC = A 'B ' = a , ' ' A 'B ' = a , EC = a ,∴ E P = EC + CP = a + a =当 ∆ABC 旋转到 E 、 C 、 P 三点共线时, EP 最长,此时 θ = ∠ACA = 120︒ ,1 '2 Q AC 中点为 E , A 'B ' 中点为 P , ∠ACB ' = 90︒ ∴CP = 1 1 13 a . 2 2 2 2。

广州市2020年数学中考模拟试卷3(含答案)

广州市2020年数学中考模拟试卷3(含答案)

广州市2020年九年级中考模拟试卷数学科试卷本试卷共三大题25小题,共4页,满分150分.考试时间120分钟,不使用...计算器. 注意事项: 1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.a (0a ≠)的相反数是( * ). (A) a (B) a - (C)1a(D) a 2.将如图所示的图形绕中心按逆时针方向旋转120°后可得到的图形是( * ).(A) (B) (C) (D)3.北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:°C ),则这组数据的平均数和众数分别是( * ).(A) 6,5 (B) 5.5,5 (C) 5,5 (D) 5,4 4.下列运算正确的是( * ).(A) 2233a a -= (B) 842a a a ÷= (C) ()2239a a +=+ (D) ()23639aa -=5.如图,在△ABC 中,AC=AD=DB ,∠C=70°,则∠CAB 的度数为( * ). (A) 75° (B) 70° (C) 40° (D) 35°6.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( * ).(A) 2010x x +>⎧⎨->⎩ (B)2010x x +>⎧⎨-<⎩ (C) 2010x x +<⎧⎨->⎩ (D) 2010x x +<⎧⎨-<⎩7.下列命题是真命题的是( * ).(A) 一元二次方程一定有两个实数根 (B) 对于反比例函数2y x=,y 随x 的增大而减小 (C) 有一个角是直角的四边形是矩形(D) 对角线互相平分的四边形是平行四边形第5题 第6题第2题8.在同一直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,则( * ).(A) 120k k +< (B) 120k k +> (C) 120k k < (D) 120k k > 9.某几何体的三视图如图所示,则该几何体的体积为( * ).(A) 3 (B) 33 (C) 32 (D) 62 10.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在14x -<<的范围内有解,则t 的取值范围是( * ).(A) 05t << (B) 45t -≤< (C) 40t -≤< (D) 4t ≥-二、填空题(本大题共6小题,每小题3分,共18分.)11.如图,直线a ,b 被直线c 所截,且a ∥b .若∠1=38°,则∠2= * °.12.分解因式:24a b b -= * .13.已知点P 在线段AB 的垂直平分线上,PA =4cm ,则PB = * cm .14.已知扇形的面积为3π,半径为3,则该扇形的圆心角度数为 * °. 15.如图,在4×4的正方形网格图中有△ABC ,则∠ABC 的余弦值为 * .16.如图,AB 为半圆O 的直径,AD ,BC 分别切⊙O 于A ,B 两点,CD 切⊙O 于点E ,连接OD ,OC ,下列结论:①∠DOC =90°,②AD BC AB +=,③ABCD S CD OA =梯形,④22AOD BOC BO S BC S ∆∆=,其中正确的有 * (填序号).三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)计算:(1)()20181233π-⎛⎫+-+-- ⎪⎝⎭;(2)2cos 604sin 453tan 30︒+︒-︒18.(本题满分8分)如图,在菱形ABCD 中, M ,N 分别为BC ,CD 的中点. 求证:AM=AN .第16题 第15题 第11题 第9题第18题已知221112111x x A x x x x ⎛⎫-+=-÷⎪-+--⎝⎭. (1)化简A ;(2)若2230x x --=,求A 的值.20.(本题满分10分)为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时): A :t <1,B :1≤t <1.5,C :1.5≤t <2,D :t ≥2,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了 * 名学生,请将条形统计图补充完整; (2)求表示B 等级的扇形圆心角α的度数;(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.21.(本题满分12分)如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为(0,3),点B 的坐标为(0,-4),反比例函数ky x=(0k ≠)的图象经过点C . (1)求反比例函数的解析式;(2)点P 是反比例函数在第二象限的图象上的一点,若△PBC 的面积等于正方形ABCD 的面积,求点P 的坐标.22.(本题满分12分)某商店销售一种旅游纪念品,第一周的营业额为200元,第二周该商店对纪念品打8折销售,结果销售量增加3件,营业额增加了40%. (1)求该商店第二周的营业额;(2)求第一周该种纪念品每件的销售价格.第21题已知,如图,△ABC 中,∠C =90°,E 为BC 边中点. (1)尺规作图:以AC 为直径,作⊙O ,交AB 于点D (保留作图痕迹,不需写作法).(2)连结DE ,求证:DE 为⊙O 的切线; (3)若AC=5,DE=158,求BD 的长.24.(本题满分14分)如图1,图2,△ABC 中,BF ,CE 分别为AC ,AB 边上的中线,BF ⊥CE 于点P . (1)如图1,当BC=62,∠PCB=45°时,PE= * ,AB= * ;(2)如图2,猜想2AB 、2AC 、2BC 三者之间的数量关系,并给予证明;(3)如图3,ABCD 中,点M ,N 分别在AD ,BC 上,AD=3AM ,BC =3BN ,连接AN ,BM ,CM ,AN 与BM 交于点G ,若BM ⊥CM 于点M ,AB=4,AD=36,求AN 的长.25.(本题满分14分)如图,已知抛物线()22y a x c =-+与x 轴从左到右依次交于A ,B 两点,与y 轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,-3),连接AC ,BC . (1)求该抛物线的解析式;(2)若点P 是该抛物线的对称轴上的一个动点,连接PA ,PB ,PC ,设点P 的纵坐标为h ,试探究:①当h 为何值时,PA PC -的值最大?并求出这个最大值.②在P 点的运动过程中,∠APB 能否与∠ACB 相等?若能,请求出P 点的坐标;若不能,请说明理由.第23题备用图第25题第24题图1 图2 图32020年九年级中考模拟试卷数学科参考答案一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BBCDABDDCB二、填空题:(每小题3分,共18分)题号 11 1213 14 1516 答案 142()()2121b a a +-4120255①③三、解答题:注:下面只是给出各题的一般解法,其余解法对应给相应的分数17.(本题满分10分)解:(1)原式=22+2191-+- ……………………4分=327+ ……………………5分(2)原式=2134+23223⨯⨯-⨯……………………3分 =22 ……………………5分18.(本题满分8分)证明:∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,∠B =∠D , ……………………2分 ∵M ,N 分别是BC ,CD 的中点,∴BM=12BC ,DN=12CD ,∴BM=DN . ……………………4分 在△ABM 和△ADN 中,AB AD B D BM DN ⎧⎪⎪⎩∠∠⎨===,∴△ABM ≌△ADN (SAS ) …………………7分 ∴AM=AN . ……………………8分 19.(本题满分10分)()()()21111111x x x A x x x ⎡⎤+--=-⎢⎥-+-⎢⎥⎣⎦解: ……………………3分 111111x x x x x +-⎛⎫=- ⎪--+⎝⎭ ……………………4分 111x x x x -=-+ ……………………5分 1xx =+ ……………………6分(2)由2230x x --=得13x =,21x =- ……………………8分10x +≠,1x ∴≠-331314x A x ∴===++ ……………………10分 20.(本题满分10分)解:(1)200,如图; ……………………2分 (2)∵B 等级所占的比为:30100%15%200⨯=, ∴15%36054ooα=⨯= ………………4分(3)设甲班的2名同学分别用1A ,2A 表示,乙班3名同学分别用1B ,2B ,3B 表示,随机选出两人参加座谈的树状图如下:……………………7分共有20种等可能结果,而选出2人中至少有1人来自甲班的有14种, …………9分∴所求概率为:1472010=. ……………………10分 21.(本题满分12分)解:(1)∵点A 的坐标为(0,3),点B 的坐标为(0,-4),∴AB =7 ……………1分∵四边形ABCD 为正方形,∴点C 的坐标为(7,-4) ……………………2分代入ky x=,得k =-28, ……………………4分 ∴反比例函数的解析式为28y x=-; ……………………5分(2)设点P 到BC 的距离为h .∵△PBC 的面积等于正方形ABCD 的面积, ∴12×7×h =72,解得h =14, ……………………8分 ∵点P 在第二象限,y P =h -4=10, ……………………10分此时,x P =2810-=145-, ……………………11分 ∴点P 的坐标为(145-,10). ……………………12分22.(本题满分12分)解:(1)200(140%)280⨯+= ……………………2分答:该商店第二周的营业额为280元. ……………………3分 (2)设该种纪念品第一周每件的销售价格为x 元 ……………4分依题意,列方程得28020030.8x x=+ ……………………8分 解得50x = ……………………10分经检验50x =是所列方程的解且符合题意. …………………11分 答:该种纪念品第一周每件的销售价格是50元. ……………12分23.(本题满分12分) (1)解:如图1, ……………………3分 (2)证明:如图2,连结OD ,CD ,∵AC 为直径,∴∠ADC=90°, ……………4分∵E 为BC 边中点,∴DE 为Rt △BDC 斜边BC 上的中线,∴DE=EC=BE ,∴∠1=∠2, ………………5分 ∵OC=OD ,∴∠3=∠4,∴∠ODE =∠2+∠4=∠1+∠3=∠ACB =90° ……6分 ∴OD ⊥DE ,∴DE 为⊙O 的切线; …………7分 (3)解:∵E 为BC 边中点,∴BC =2DE =154……8分 ∵AC=5 ∴AB=254………………9分 ∵∠DBC =∠CBA , ∴Rt △BDC ∽Rt △BCA, ………10分∴BD BC BC AB=,即154152544BD =, ……………11分 ∴BD=94. ………………12分24.(本题满分14分)解:(1)3,65 ………………2分(2)猜想:2225AB AC BC +=, ………………3分证明:连接EF ,∵BF ,CE 是△ABC 的中线, ∴EF 是△ABC 的中位线,∴EF ∥BC ,EF=12BC , PE PC =PF PB =12, ………………4分设 PF=m ,PE=n ,则PB=2m ,PC=2n , 在Rt △PBC 中,()()22222m n BC += ① 在Rt △PBE 中,()22222AB n m ⎛⎫+= ⎪⎝⎭② 在Rt △PCF 中,()22222AC m n ⎛⎫+= ⎪⎝⎭③由①,②,③得:2225AB AC BC += ………………7分(3)法一:在△AGM 与△NGB 中,AGM NGB AMG NBG AM NB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AGM ≌△NGB ,∴BG=MG ,AG=NG , ………………8分∴BG 是△ABN 的中线,如图1,取AB 的中点F ,连接NF 并延长交DA 的延长线于E ………………9分 同理,△AEF ≌△BNF ,∴AE=BN ,EM =2BN =NC ,∵EM ∥NC ,∴四边ENCM 是平行四边形 ………………10分 ∴EN ∥CM , ∵BM ⊥CM ,图2图1∴EN ⊥BM ,即BG ⊥FN ………………11分 ∵NF ,BG 都为△ABN 的中线,由(2)知,2225AB AN BN += ………………12分 ∵AB=4,BN =13AD=6, ∴()222456AN +=⨯,∴AN =14. ………………14分法二:如图2,作BP ⊥DA 延长线于点P ,CQ ⊥AD 于点Q ,在ABCD 中,AD=BC 易知四边形PBCQ 为矩形∴PQ=BC ∴PA=QD ………………8分 依题意:AM=BN=6,MD=26 设PA=QD=x ,PB=CQ=y , ∴PM=x+6,MQ=26-x ∵BM ⊥CM 于点M ,∠BMC=90° ∴∠BMP+∠CMQ=90° 又∠BMP+∠PBM=90° ∴∠PBM=∠CMQ又∵∠BPM=∠MQC=90° ∴△PBM ∽△QMC ∴PM PB QC QM =,即626x yy x+=- 化简得:22612y x x =-++ ① ………………10分 作AH ⊥BC 于点H ,则BH=PA=x ,AH=y , 在Rt △ABH 中,222AH AB BH =-∴22224=16y x x =-- ② ………………11分 由①②得:22612=16x x x -++- ∴263x =,2403y = ………………12分在Rt △AHN 中,AN=22+AH HN =()22+6y x-=24026+633⎛⎫- ⎪ ⎪⎝⎭=14. ………………14分25.(本题满分14分)图2解:(1)把B (3,0),C (0,-3)代入()22y a x c =-+解得:1a =-,1c = ………………2分 ∴此抛物线的解析式为()222143y x x x =--+=-+-; ………………3分(2)①∵抛物线243y x x =-+-的对称轴为直线x=2 ,∴设点P (2,h ) ………4分由三角形的三边关系可知,|PA -PC |<AC ,∴当P ,A ,C 三点共线时,|PA -PC |的值最大,为AC 的长度,∴延长CA 交直线x=2于点P ,则点P 为所求. ……5分 求得A (1,0),又C (0,-3), 则有OA =1,OC =3,∴AC =22OA OC +=10. ………………6分 设直线AC 的解析式为y kx b =+(0k ≠),则03k b b +=⎧⎨=-⎩, 解得33k b =⎧⎨=-⎩.∴直线AC 的解析式为33y x =-,…………7分∴h =3×2-3=3,∴当h=3时,|PA -PC |的值最大,最大值为10. …8分②设直线x=2与x 轴的交点为点D ,作△ABC 的外接圆⊙E 与直线x=2位于x 轴下方的部分的交点为P 1,P 1关于x 轴的对称点为P 2,则P 1、P 2均为所求的点. ………9分 1∴∠AP 1B=∠ACB ,且射线DE 上的其它点P 都不满足∠APB =∠ACB . ∵圆心E 必在AB 边的垂直平分线即直线x=2上. ∴点E 的横坐标为2.又∵OB=OC=3,BC 边的垂直平分线即直线y=-x . ∴圆心E 也在直线y=-x 上∴E (2,-2). ………………11分 在Rt △ADE 中,DE=2,AD=12AB=12(OB -OA )=12(3-1)=1, 由勾股定理得22AD DE +2212+5 ………………12分∴EP 15 ∴DP 1=DE+EP 1=5∴P 1(2,5 ………………13分 由对称性得P 2(2,5∴符合题意的点P 的坐标为P 1(2,5P 2(2,5 …………14分。

人教版九年级数学下册模拟广东省2020年中考数学试题(WORD版,有答案)

人教版九年级数学下册模拟广东省2020年中考数学试题(WORD版,有答案)

2020年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是ο100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

2020年广东省九年级中考数学模拟卷(无答案)

2020年广东省九年级中考数学模拟卷(无答案)

2020年广东中考数学模拟卷(本卷满分120分,考试时长90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.|-3|的相反数是( )A .3B .-3C .13D .-132.美国约翰斯·霍普金斯大学发布的实时统计数据显示,截至北京时间5月19日6时0分,全球累计确诊新冠肺炎病例4782539例,将4782539用科学记数法表示为( )A .4.782539×108B .4.782539×107C .4.782539×106D .4.782539×105 3.下列四组图形中,一定相似的是( )A .正方形与矩形B .正方形与菱形C .菱形与菱形D .等边三角形与等边三角形4.有5张完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一张卡片,其数字是偶数的概率为( )A .25B .35C .12D .345.16的算术平方根是( )A .±4B .4C .±2D .26.如图,DE// BC ,BE 平分∠ABC,若∠1=60°,则∠CBE 的度数为() A. 20°B. 30°C. 60°D. 70° 7.一个菱形的两条对角线的长分别是6和8,则它的周长为( )A .12B .14C .20D .248.如图,一段公路的转弯处是一段圆弧,则的长度为( ) A .3πB .6πC .9πD .12π9.已知关于x 的一元二次方程2x 2-kx +3=0有两个相等的实数根,则k 的值为( )A .±2 6B .± 6C .2或3D .2或 3 10.如右图,已知二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:① abc <0 ② 4a+2b+c >0 ③ 4ac ﹣b 2<﹣4a ④ b >c .其中错误的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共7小题,每小题4分,共28分)11.计算:(-2ab)3= .12.若一组数据 4,a ,7,8,3 的中位数是5,则这组数据的平均数是 .13.因式分解:y 3﹣4y = .14.如图,勘探队员朝一座山行走,在前后A 、B 两处测量山顶的仰角分别是30°和45°,两个测量点之间的距离是50m ,则此山的高度CD 为 m .第14题图 第15题图 第16题图15.如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC = .16.如图,在Rt △ABC 中,∠B =90°,AB =5,BC =12,将△ABC 绕点A 逆时针旋转得到△ADE ,使得点D 落在AC 上,则tan ∠ECD 的值为 .17.如图,在平面直角坐标系内,∠OA 0A 1=90°,∠A 1OA 0=60°,以OA 1为直角边向外作Rt △OA 1A 2,使∠A 2A 1O =90°,∠A 2OA 1=60°,按此方法进行下去,得到 Rt △OA 2A 3,Rt △OA 3A 4…,若点A 0的坐标是(1,0),则点A 13的横坐标是 .三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1+2 s in 60 . 19.如图,已知Rt △ABC 中,∠C=90°,请画一线段,把这个三角形分成面积相等的两部分(用尺规作图,不要求写作法、证明,保留作图痕迹).20.新冠肺炎疫情期间,线上教学的时候,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)本次抽样调查学生的人数为;(2)补全两个统计图,并求出扇形统计图中A所对应扇形圆心角的度数;(3)若该校共有1340名学生,请根据抽样调查结果估计未获得奖项的人数.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.“新型冠状病毒肺炎”是一种新发疾病,且传染性强,佩戴口罩是有效预防的重要措施之一.某药店用3000元购进A,B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同.已知A种口罩的单价是B种口罩单价的1.2倍.(1)A,B两种口罩的单价各是多少?(2)若计划用不超过7000元的资金再次购进A,B两种口罩共2600个,已知A,B两种口罩的进价不变.A种口罩最多能购进多少个?22.如图,在四边形ABCD中,∠B=90°,对角线AC平分∠BAD,AC2=AB•AD.(1)求证:AC⊥CD;(2)若点E是AD的中点,连接CE,∠AEC=130°,求∠BCD的度数.23.如图,在平面直角坐标系中,一次函数y 1=ax +b 的图象与反比例函数y 2=k x 的图象交于点A(1,2)和B(-2,m).(1)求一次函数和反比例函数的解析式;(2)过点B 作BE ∥x 轴,AD ⊥BE 于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,在△ABC 中,∠C =90°,∠ABC 的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,⊙O 是△BEF 的外接圆.(1)求证:AC 是⊙O 的切线;(2)过点E 作EH ⊥AB ,垂足为H ,求证:CD =HF ;(3)若CD =1,EH =3,求BF 及AF 长.25.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB =4,BC =6.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动.(1)当∠OAD =30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM ,MC ,当四边形OMCD 的面积为212时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请写出最大值,并求此时cos ∠OAD 的值.。

2020年广东省中考数学模拟试卷(含两套,附解析)

2020年广东省中考数学模拟试卷(含两套,附解析)

2020中考模拟卷一(含两套)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:广东中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.6的相反数是 A .16B .16-C .6-D .6【答案】C .【解析】6的相反数是6-,故选C .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .62.1810⨯ B .52.1810⨯C .621.810⨯D .521.810⨯【答案】A .【解析】将数据2180000用科学记数法表示为62.1810⨯.故选A . 3.观察下列图形,是中心对称图形的是A .B .C .D .【答案】D.【解析】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选D .4.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( ) A .75,80 B .85,85 C .80,85 D .80,75【答案】B .【解析】此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选B .5.在平面直角坐标系中,点(3,2)-所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B .【解析】点(3,2)-所在的象限在第二象限.故选B . 6.下列运算正确的是A .236a a a =gB .32a a a -=C .842a a a ÷=D =【答案】B .【解析】A 、235a a a =g ,故此选项错误;B 、32a a a -=,正确;C 、844a a a ÷=,故此选项错误;D B .7.如图,//a b ,180∠=︒,则2∠的大小是A .80︒B .90︒C .100︒D .110︒【答案】C .【解析】//a b Q ,12180∴∠+∠=︒,又180∠=︒Q ,2100∴∠=︒,故选C . 8.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=⎩B .02x y =⎧⎨=-⎩C .20x y =⎧⎨=⎩D .20x y =⎧⎨=⎩【答案】A .【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得;20x =,解得:0x =,把0x =代入①得:2y =,则方程组的解为02x y =⎧⎨=⎩,故选A .9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是A .3B .C .6D .【答案】D .【解析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知3AB AC ==,OA 平分BAC ∠,60OAB ∴∠=︒,在Rt ABO ∆中,tan OB AB OAB =∠=∴光盘的直径为,故选D .10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③240b ac ->;④0a b c -+>,其中正确的个数是A .1B .2C .3D .4【答案】D .【解析】①Q 抛物线对称轴是y 轴的右侧,0ab ∴<,Q 与y 轴交于负半轴,0c ∴<,0abc ∴>,故①正确;②0a >Q ,12bx a=-<,2b a ∴-<,20a b ∴+>,故②正确; ③Q 抛物线与x 轴有两个交点,240b ac ∴->,故③正确; ④当1x =-时,0y >,0a b c ∴-+>,故④正确.故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29a -=__________. 【答案】(3)(3)a a +-.【解析】29(3)(3)a a a -=+-.故答案为:(3)(3)a a +-. 12.不等式20190x ->的解集是__________. 【答案】2019x >. 【解析】20190x ->, 移项得,2019x >, 故答案为2019x >.13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为__________. 【答案】4610⨯.【解析】460000610=⨯,故答案为:4610⨯.14=__________. 【答案】4.【解析】2416=Q ,∴4=,故答案为4.15.一个多边形的内角和等于900︒,则这个多边形是__________边形. 【答案】七.【解析】设多边形为n 边形,由题意,得 (2)180900n -︒=g ,解得7n =, 故答案为:七. 16.观察以下一列数:3,54,79,916,1125,⋯则第20个数是__________.【答案】41400. 【解析】观察数列得:第n 个数为221n n +,则第20个数是41400,故答案为:41400. 17.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角且点E ,A ,B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8.【解析】Q 四边形ACDF 是正方形,AC AF ∴=,90CAF ∠=︒,90EAC FAB ∴∠+∠=︒, 90ABF ∠=︒Q ,90AFB FAB ∴∠+∠=︒,EAC AFB ∴∠=∠,在CAE ∆和AFB ∆中,CAE AFBAEC FBA AC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CAE AFB ∴∆≅∆,4EC AB ∴==,∴阴影部分的面积182AB CE =⨯⨯=,故答案为:8. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:20190(1)|)π-++.【解析】原式11=-.19.先化简,再求值:22212()11a a a a a a+-÷-+-,其中a . 【答案】2aa +,原式5=- 【解析】原式212[](1)(1)(1)(1)(1)a a a a a a a a a -+=-÷+-+--1(1)(1)(1)2a a a a a a +-=+-+g2aa =+,当a原式5===-20.已知平行四边形ABCD .(1)尺规作图:作BAD ∠的平分线交直线BC 于点E ,交DC 延长线于点F (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,求证:CE CF =.【答案】(1)作图见解析;(2)证明见解析. 【解析】(1)如图所示,AF 即为所求;(2)Q 四边形ABCD 是平行四边形,//AB DC ∴,//AD BC ,12∴∠=∠,34∠=∠.AF Q 平分BAD ∠,13∴∠=∠,24∴∠=∠,CE CF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分)21.坐火车从上海到娄底,高铁1329G 次列车比快车575K 次列车要少9小时,已知上海到娄底的铁路长约1260千米,1329G 的平均速度是575K 的2.5倍. (1)求575K 的平均速度;(2)高铁1329G 从上海到娄底只需几小时? 【答案】(1)84千米/小时;(2)6小时.【解析】(1)设575K 的平均速度为x 千米/小时,则1329G 的平均速度是2.5x 千米/小时, 由题意得,1260126092.5x x=+, 解得,84x =,检验:当84x =时,2.50x ≠,84x =是原方程的根,答:575K 的平均速度为84千米/小时; (2)高铁1329G 从上海到娄底需要:1260684 2.5=⨯(小时),答:高铁1329G 从上海到娄底只需6小时.22.如图,矩形ABCD 中,过对角线BD 中点O 的直线分别交AB ,CD 边于点E 、F . (1)求证:四边形BEDF 是平行四边形;(2)只需添加一个条件,即__________,可使四边形BEDF 为菱形.【答案】(1)证明见解析;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一). 【解析】(1)Q 四边形ABCD 是平行四边形,O 是BD 的中点, //AB DC ∴,OB OD =,OBE ODF ∴∠=∠,又BOE DOF ∠=∠Q ,()BOE DOF ASA ∴∆≅∆,EO FO ∴=,∴四边形BEDF 是平行四边形;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠. Q 四边形BEDF 是平行四边形,EF BD ⊥Q ,∴平行四边形BEDF 是菱形.故答案为:EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一).23.有四张正面分别标有数字1,2,3-,4-的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(,)m n 所有的可能情况;(2)求所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的概率. 【答案】(1)答案见解析;(2)13.【解析】(1)画树状图如下:则(,)m n 所有的可能情况是(1,2)(1,3)(1-,4)(2-,1)(2,3)(2-,4)(3--,1)(3-,2)(3-,4)(4--,1)(4-,2);(4,3)--.(2)所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的情况有: (1,3)(1-,4)(2-,3)(2-,4)-共4种情况,则能使一次函数y mx n =+的图象经过第一、三、四象限的概率是41123=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB 是O e 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC OB ⊥,交O e 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF PC ⊥于点F ,连接CB .(1)求证:AC 平分FAB ∠; (2)求证:2BC CE CP =g ; (3)若34CE CP =,O e 的面积为12π,求PF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7PF =. 【解析】(1)CP Q 是O e 的切线,OC CP ∴⊥, AF PC ⊥Q ,//OC AF ∴,FAC ACO ∴∠=∠, OA OC =Q ,OAC ACO ∴∠=∠, FAC OAC ∴∠=∠,即AC 平分FAB ∠;(2)证明:AB Q 是O e 的直径, 90ACB ∴∠=︒,即90CAB ABC ∠+∠=︒,EC OB ⊥Q ,90ECB ABC ∴∠+∠=︒,CAB ECB ∴∠=∠, CP Q 是O e 的切线,CAB BCP ∴∠=∠,ECB BCP ∴∠=∠, CD Q 是O e 的直径,90CBD ∴∠=︒, CEB CBP ∴∠=∠,又ECB BCP ∠=∠,CEB CBP ∴∆∆∽,∴CE CBCB CP=,即2BC CE CP =g ; (3)解:设3CE x =, Q34CE CP =,4CP x ∴=,2BC CE CP =Q g ,BC ∴=,由勾股定理得,BE ,O Q e 的面积为12π,O ∴e 的半径为AB = 90ACB ∠=︒Q ,CE AB ⊥,2BC BE AB ∴=g ,即2)=g 1x =,则3CE =,4CP =,AC Q 平分FAB ∠,AF PC ⊥,EC OB ⊥,3CF CE ∴==, 7PF CF CP ∴=+=.25.已知抛物线21()22y a x =--,顶点为A ,且经过点3(,2)2B -,点5(,2)2C .(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标.【答案】(1)21()22y x =--;(2)POE ∆的面积为115或13;(3)点Q 的坐标为5(4-,3)2或(,2)或,2).【解析】(1)把点3(,2)2B -代入21()22y a x =--,解得:1a =,∴抛物线的解析式为:21()22y x =--;(2)由21()22y x =--知1(2A ,2)-,设直线AB 解析式为:y kx b =+,代入点A ,B 的坐标, 得:122322k b k b⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--,易求(0,1)E -,7(0,)4F -,1(,0)2M -,若OPM MAF ∠=∠,//OP AF ∴,OPE FAE ∴∆∆∽,∴14334OP OE FA FE ===,∴43OP FA ===设点(,21)P t t --解得1215t =-,223t =-, POE ∆Q 的面积1||2OE t =g g ,POE ∴∆的面积为115或13. (3)若点Q 在AB 上运动,如图1,设(,21)Q a a --,则NE a =-、2QN a =-, 由翻折知2QN QN a '==-、N E NE a '==-, 由90QN E N ∠'=∠=︒易知QRN ∆'∽△N SE ',∴QR RN QN N S ES EN ''=='',即21221QR a a ES a ---===-,2QR ∴=、212a ES --=, 由NE ES NS QR +==可得2122a a ---+=,解得:54a =-,5(4Q ∴-,3)2;若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,(Q ∴,2); 若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,Q ∴2).综上,点Q 的坐标为5(4-,3)2或(,2)或2).2020中考模拟卷二数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品
2020年初三中考模拟检测
数学试卷
(考试时间:100分钟,试卷满分:120分)
一、选择题(共10小题,每小题3分,共30分)
01.实数2019的相反数是( )
A.2019 B.﹣2019 C. D.
02.式子在实数范围内有意义,则x的取值范围是( )
A.x>0 B.x≥﹣1 C.x≥1 D.x≤1
03.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( )
A.3个球都是黑球 B.3个球都是白球 C.三个球中有黑球 D.3个球中有白球04.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )
A. B. C. D.
05.如图是由5个相同的小正方体组成的几何体,该几何体的左视图是( )
A. B. C. D.
06.如图,将一副三角板(∠A=30°)按如图所示方式摆放,使得
AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
07.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,
则关于x的一元二次方程ax2+4x+c=0有实数解的概率为( )
A. B. C. D.
08.一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )
A.2π B.4π C.12π D.24π
09.2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )
A.5500×104 B.55×106 C.5.5×107 D.5.5×108
10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是( ) A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a 二、填空题(本大题共7个小题,每小题4分,共28分)
11.计算的结果是。

12.武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是。

13.计算-的结果是。

14.如图,在平行四边形ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为。

15.抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是。

16.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD
的度数为。

17.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE。

问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是。

三、解答题(一)(本大题共3小题,每小题6分,共18分)
18.计算:(2x2)3-x2•x4.
19.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.
20.先化简,再求值:
2
2
3144
()
11
a a a
a a a a
+++

---
,其中a=3。

(第14题图)(第16题图)(第17题图)
四、解答题(二)(本大题共3小题,每小题8分,共24分)
21.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:
(1) 这次共抽取名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小
为;
(2) 将条形统计图补充完整;
(3) 该校共有1500名学生,估计该校表示
“喜欢”的B类的学生大约有多少人?
22.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G。

(1) 求证:BE=AF;(2) 若AB=4,DE=1,求AG的长。

23.近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
(1) 如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2) 按照这个增长率,预计第四批公益课受益学生将达到多少万人次?五、解答题(三)(本大题共2小题,每小题10分,共20分)
24.已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN 于D、C两点.
(1) 如图1,求证:AB2=4AD•BC;
(2) 如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部
分的面积.
25.如图,一次函数)
为常数,0
,
(
1
1
1
1

+
=k
b
k
b
x
k
y的图象与反比例函数

,0
(
2
2
2
>

=x
k
x
k
y的图象交于点A(m,8)与点B(4,2)。

①求一次函数与反比例函数的解析式;
②根据图象说明,当x为何值时,0
2
1
<
-
+
x
k
b
x
k。

2020年初三中考模拟检测
数学答卷
温馨提醒:本试卷满分120分,考试时间100分钟,请仔细答题,祝你考出优异成绩。

一、 选择 题答 题区
(3×10=30分)
1.用2B 铅笔填涂;
2.修改时用塑料橡皮擦干净;
3.填涂的正确方法是■
01、[A] [B] [C] [D] 06、[A] [B] [C] [D]
02、[A] [B] [C] [D] 07、[A] [B] [C] [D]
03、[A] [B] [C] [D] 08、[A] [B] [C] [D]
04、[A] [B] [C] [D] 09、[A] [B] [C] [D]
05、[A] [B] [C] [D] 10、[A] [B] [C] [D]
二、填空题(4×7=28分)
11. , ;12. ; 13. ;14. ;15. ; 16. ;17. 。

18、(本题6分) 解:
19、(本题6分) 解:
20、(本题6分) 解:
21、(本题8分) 解:
22、(本题8分) 解:
23、(本题8分) 解:
A
D
19-1图
B C P 班别 姓名 学号 试室: ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
24、(本题10分) 解:25、(本题10分) 解:(1)
精品。

相关文档
最新文档