材料的选用及其热处理 前后的组织分析
碳钢的热处理及组织性能分析实验
碳钢的热处理及组织性能分析实验一、实验目的1. 掌握钢的退火、正火、淬火、回火工艺。
2. 分析含碳量,加热温度、冷却速度、回火温度对碳钢性能的影响。
3.了解碳钢热处理后的基本组织。
二、实验原理1.热处理工艺通常由加热、保温、冷却三个阶段组成。
退火:将钢加热到一定温度,保温一段时间后缓慢冷却,如炉冷。
正火:将钢加热到某一临界温度以上,保温后在空气中冷却。
淬火:将钢加热到某一临界温度以上,保温后快速冷却,如淬入水或油里。
回火:将淬火后的钢再加热到A线以下某一温度后冷却。
12.热处理温度的选择亚共析钢:淬火、正火、退火的加热温度在Ac以上30~50℃。
3共析钢,过共析钢:淬火、退火的加热温度,在Ac1以上30~50℃;正火加热温度在Acm以上30~50℃。
亚共析钢和过共析钢的淬火,退火温度范围不同(见图1),这是由于如果亚共析钢的淬火温度过低,在Ac1以上30~50℃,这时钢的组织是铁素体和马氏体,使钢件上出现软点。
而过共析钢在两相区加热后淬火得到的组织是马氏体和渗碳体。
由于渗碳体本身硬度很高,不会影响钢的硬度;相反如果过共析钢加热到奥氏体单相区淬火,得到的组织是马氏体和大量的残余奥氏体,硬度反而要下降。
图1淬火加热温度范围过共析钢在退火时若加热到奥氏体单相区,冷却时将在晶介析出网状渗碳体,使钢的塑性,冲击韧性降低。
所以过共析钢退火加热温度不能过高。
过共析钢的正火主要是为了消除已经形成的网状渗碳体,只是加热到Acm 线以上才能使网状渗碳体全部溶入奥氏体,由于正火的冷却速度较快,网状渗碳体来不及析出而被消除。
回火温度是根据零件所要求的机械性能确定的,通常将回火分为低温、中温、高温回火:低温回火:(150~250℃)所得的组织为回火马氏体,硬度约为HRC60,目的是降低淬火后的应力,减少钢的脆性,但保持钢的高硬度,这种回火常用于切削刀具和量具。
中温回火;(350~500℃)所得组织为回火屈氏体,硬度约为HRC40,目的是获得高的弹性极限,同时有较好的韧性,主要用于中高碳钢弹簧的热处理。
钢的热处理及热处理后的显微组织观察实验报告
钢的热处理及热处理后的显微组织观察实验报告罗毅晗2014011673一、实验目的(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。
(2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。
(3)观察碳钢热处理后的显微组织。
二、概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理的基本操作有退火、正火、淬火、回火等。
进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。
三、实验内容显微组织观察45钢860℃气冷索氏体+铁素体45钢860℃油冷马氏体+屈氏体45钢860℃水冷马氏体45钢860℃水冷+600℃回火回火索氏体T12钢760℃球化退火球化体T12钢780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体T12钢1100℃水冷粗大马氏体+残余奥氏体四、实验分析1.火温度而言,淬火温度越高,硬度越高。
但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。
2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。
3.火温度而言,回火温度越高,硬度越低。
图像:分析原因:①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。
②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。
因此,硬度大小为:空冷>炉冷>水冷>油冷。
③高温回火生成回火索氏体,中温回火生成回火屈氏体,低温回火生成回火马氏体+残余奥氏体。
硬度大小为:回火马氏体>回火屈氏体>回火索氏体。
因此,回火温度越低,生成产物硬度就越高。
五、思考题(1)45钢的热处理时850℃水淬+550℃回火,即淬火+高温回火(调质处理)。
生成物是回火索氏体。
45钢广泛用于制造齿轮、轴类件、连杆、螺栓等工件。
金属材料的热处理工艺与组织性能评估方法
金属材料的热处理工艺与组织性能评估方法热处理工艺是金属材料加工过程中的重要环节,它可以改变材料的组织结构和性能。
通过合理的热处理工艺,可以使金属材料达到理想的性能要求。
同时,对于热处理后材料的组织性能进行评估也是非常重要的,可以为材料的应用提供参考。
一、热处理工艺的分类和作用热处理工艺可以分为退火、淬火、正火等不同类型。
退火是将材料加热至一定温度,然后缓慢冷却,以减缓材料的内部应力和改变晶粒结构。
淬火是将材料迅速冷却至室温或稍高温度,以使材料获得高硬度和良好的耐磨性。
正火是在加热材料至一定温度,然后通过保温时间和冷却速率控制材料的硬度和韧性。
不同的热处理工艺对材料的组织结构和性能有不同的影响。
例如,退火可以消除材料内部的应力和缺陷,提高材料的可塑性和延展性。
淬火可以使晶粒细化,提高材料的硬度和强度。
正火则可以使材料同时具备较高的强度和韧性。
因此,在进行金属材料的热处理之前,我们需要根据具体的材料要求选择适当的热处理工艺。
二、组织性能的评估方法1. 显微组织观察显微组织观察是评估金属材料热处理后组织性能的一种常用方法。
通过光学显微镜或电子显微镜等工具观察材料的晶粒大小、晶界、位错等结构特征,可以判断材料的晶粒细度、晶界清晰度以及存在的缺陷等情况。
这些细节可以为进一步分析材料的性能提供依据。
2. 硬度测试硬度测试是评估材料硬度和强度的一种常用方法。
通过在材料表面施加一定的载荷,然后测量载荷下材料表面的凹陷深度或使用显微镜观察硬度印记的大小,可以计算出材料的硬度数值。
不同的热处理工艺会对材料硬度产生不同的影响,因此硬度测试可以用来评估热处理工艺的有效性。
3. 拉伸性能测试拉伸性能测试是评估材料强度和延展性的一种重要方法。
通过在金属试样上施加拉伸载荷,测量试样在拉伸过程中的变化,可以得到材料的屈服强度、抗拉强度和延伸率等性能指标。
通过比较不同热处理后的试样的拉伸性能,可以评估热处理工艺对材料性能的影响。
紧固件材料热处理后的组织分析
紧固件材料热处理后的组织分析摘要:紧固件材料经过热处理后会改变内部组织结构,以此有效提升其使用性能、结构寿命。
本文对实际生产中典型紧固件材料钛合金、高温合金、铝合金、合金钢进行了热处理后合格金相组织与缺陷组织的分析汇总。
对研究材料组织与性能、优化热处理工艺参数及提升产品质量具有指导意义。
关键词:紧固件;热处理状态;组织紧固件是应用广泛的连接用机械零件,90%以上的紧固件都使用金属材料,每种材料都具有其特有性能属性。
若想得到性能优良的紧固件,一般材料会经过热处理优化。
热处理是研究金属材料性能成分组织之间关系最常用的工艺方法,它可有效改变零件内部组织结构,让紧固件产品获得更优异的使用性能,达到高的质量和使用寿命[1]。
实际生产中不同热处理制度下材料的组织改变最明显,在工艺参数变化不大的范围内,组织可能由合格变为不达标,所以分辨清晰合格的材料组织对提升紧固件性能、热处理工艺优化及产品质量提升具有指导意义。
一钛合金组织分析钛合金具有低密度、高比强度、耐高温、抗腐蚀等优异的综合性能,是紧固件领域的最主要材料之一。
最常用的为α、α+β型,在室温稳定状态由α相及β相所组成,β相占比10%~50%。
可热处理强化。
TC4(Ti-6Al-4V)、TC16在国内紧固件行业应用最广泛。
可以在退火状态下使用,也可经固溶时效强化后使用。
(一)合格组织a图退火态组织为白色等轴初生α相+少量晶间β相(等轴组织)。
b图固溶处理会得到马氏体型α’相,次生针状α相、并含有少量残留的β相;时效过程中α’相和β相都分解成α+β相,故最终组织为等轴初生α相+含针状α相的β转变基体(双态组织)。
(二)缺陷组织钛合金在热处理过程中,最常见的组织缺陷情况为表面污染、过热及过烧。
a 图为钛合金热处理后组织表面被氧化或受污染,表现为α相层密集分布,变为硬脆相,影响使用性能。
针对紧固件而言,若出现b图网篮组织则为过热状态。
网篮组织为变形的β转变基体+板条状α相,有断续晶界α、或连续晶界α、或有大块α,不含有等轴α相。
钢的热处理组织分析判断方法
钢的热处理组织分析判断方法钢的热处理组织分析判断方法金属的热处理是否合格,重要的判断是金相组织,下面将简要介绍热处理的分析判断方法,有不对的地方请大家指正。
一、观察方法:1.观察组织组成物和种类钢热处理后,根据热处理种类和材料的不一样,组织组成物可能是一种或多种。
如马氏体,马氏体+残余奥氏体,单一珠光体,单一奥氏体,铁素体+珠光体,铁素体+马氏体+碳化物等等。
金相观察时,首先要判断被观察组织中有几种组织组成物,是单一组成物,还是两种或多种组成物。
在组织组成物中,某一组成物可以是单一相,如铁素体或奥氏体等单相;也可以是两相或多相混合组成或化合物,如珠光体是铁素体与渗碳体的机械混合物,各种碳化物等。
不同的组成物有不同的形态特征,利用这些特征可以快速的识别:不同的组成物受溶液浸蚀的程度不同,使得其在金相显微镜下具有不同的明暗程度或不同的色彩差;不同组成物形成的先后顺序不一样,其形态也不一样,最先形成的总是从奥氏体晶界开始形核;各组成物形成的原理不一样,形态也有差异。
通过这些就可以判别被观察物的组成种类。
大多数情况下,能够观察到几种不同明暗程度或几种形态不同的部份,就可以判定有几种组成物。
2.观察形态组织组成物的形态是我们判别组成物的极其重要的依据之一。
一些特定组织具有极显著的特征,如典型的珠光体具有层片状(或称指纹状)特征,一看就知道是珠光体;羽毛状物是上贝氏体。
白色的块状物不是铁素体就是奥氏体或碳化物,黑色针状物不是马氏体就是下贝氏体,沿晶分布的白色块状或针状肯定是铁素体或碳化物(渗碳体)两者之一等等。
要观察组织物是片状、针状、块状、颗粒状、条状、网状或者是其它什么形状。
有时,还要精细观察是单一相还是复合相。
在观察中要注意试样的浸蚀程度,只有合理的浸蚀,各种组织才会正确的显现出来,同时,制样也很关键,错误的制样可能导致对组成物的错误判断。
由于制样和浸蚀问题,导致的判断错误在新手中屡见不鲜。
在观察中还要注意,对于观察到的白色或黑色物,不要轻易就认为是一种组成物。
材料的热处理与组织性能研究
材料的热处理与组织性能研究材料的热处理是指通过改变材料的组织结构和性能来满足特定需求的工艺过程。
热处理可以通过改变材料的晶格结构、晶界状态、凝固组织和析出相等方式来实现。
本文将探讨热处理对材料组织性能的影响以及研究方法。
1. 热处理对材料的影响热处理可以显著改变材料的力学性能、物理性能和化学性能等方面。
以下是热处理对材料的几个主要影响方面:1.1 晶格结构变化热处理过程中,材料的晶格结构会发生变化。
例如,在加热过程中,材料的晶格会发生晶体结构的相变,从而改变其晶体结构的形态和晶粒的大小。
1.2 凝固组织的变化热处理可以改变材料的凝固组织。
例如,在淬火过程中,由于迅速冷却,材料的凝固组织中会形成较多的马氏体,从而显著提高材料的硬度和强度。
1.3 析出相的生成热处理还可以促使材料中的固溶体中析出相的生成。
通过合理的热处理工艺,可以控制析出相的类型和分布,从而调节材料的硬度、韧性和耐蚀性等性能。
2. 热处理研究方法为了深入了解材料热处理对组织性能的影响,科学家们采用了多种研究方法,以下是几种常见的方法:2.1 金相显微镜观察金相显微镜是研究材料组织的重要工具之一。
通过金相显微镜可以观察材料的晶格结构、晶粒大小、凝固组织和析出相等变化,从而分析热处理对材料组织的影响。
2.2 热力学分析热力学分析是研究材料相变和物理性能变化的有效方法。
热处理过程是一个热力学平衡过程,通过测量材料的相变温度和相变热等参数,可以研究材料在不同温度下的相变行为,从而揭示热处理对材料性能的影响机理。
2.3 机械性能测试热处理对材料力学性能的影响可以通过机械性能测试进行评估。
例如,可以通过硬度测试、拉伸试验和冲击试验等方法来评估材料的硬度、强度和韧性等性能指标。
2.4 微观组织分析通过电子显微镜、透射电子显微镜和扫描电镜等高分辨率仪器,可以对材料的微观结构进行详细观察和分析。
这些分析方法可以揭示材料的晶格缺陷、晶界状态和相变过程等细微变化,从而深入了解热处理对材料的影响。
40Cr钢的热处理及组织分析
毕业设计(论文)——40Cr钢的热处理及分析专业: 金属材料与热处理技术班级: 金材二班姓名:向星学号:0903140205指导教师:苏光浩武汉工程职业技术学院二零一二年二月摘要随着中国经济的高速发展对模具工业提出了越来越高的要求,因而模具材料选择及其热处理工艺的选择已在模具制造业中引起广泛的重视。
模具热处理是保证模具性能的重要工艺过程。
它对模具的制造精度,模具的强度,模具的制造成本,模具的工作寿命有着直接的影响。
本文在分析模具材料和40Cr钢热处理及金相实验基础上,根据模具的选材条件、试样的材料性质,以及40Cr的热处理工艺和金相组织综合分析,根据实际制订出合理的热处理工艺,并根据实验得出数据进行分析。
这样,能使模具达到良好的使用性能和寿命要求的。
同时,满足经济性要求,降低成本。
关键词:模具材料;热处理;热处理工艺;金相组织;目录前言 (3)第一章绪论 (4)1.1模具制造概况 (4)1.2我国模具的发展与现状 (4)1.3模具选材 (5)1.4合金元素对钢性能的影响 (7)1.5实验目的及意义 (9)1.6研究方案技术路线 (10)第二章 40Cr钢的热处理研究分析 (11)2.1 钢的热处理概况 (11)2.2 40Cr钢的热处理 (12)2.2.1 40Cr钢特性 (13)2.2.2 40Cr钢的物理性能 (14)2.2.3 40Cr钢的化学成分 (14)2.2.4 40Cr钢的调质处理 (15)2.2.5 40Gr热处理实验过程 (15)2.3 热处理实验小结 (24)第三章实验总结 (31)4.1 热处理实验总结 (31)4.2 合金元素对钢的影响分析 (34)谢词 (37)参考文献 (38)前言在国家推动经济体制改革、市场经济和国际接轨的形势下,我国模具制造企业和热处理企业像雨后春笋般的涌现。
而模具制造、热处理技术和使用水平的高低是衡量一个国家工业水平的标志,它在基础工业中占有重要地位。
热处理后组织分析
碳钢热处理后的组织(金相分析)一、概述碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。
铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。
C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。
在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。
1、共析钢等温冷却时的显微组织共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。
2、共析钢连续冷却时的显微组织为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。
例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。
图1 图23、亚共析钢和过共析钢连续冷却时的显微组织亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图2所示。
当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。
随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。
因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。
当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。
热处理中的材料选择与应用技术
热处理中的材料选择与应用技术热处理是在材料制备过程中不可或缺的一环,可以帮助改善材料的性能。
热处理中的材料选择和应用技术对于材料的性能提升至关重要。
本文将从材料的选择和应用技术两个方面来探讨热处理中的材料选择与应用技术。
一、材料选择在热处理的过程中,材料的选择至关重要,直接影响到材料的性能。
根据所需要的性能要求选择不同的材料。
1.1 钢材钢材是最常见的材料之一,广泛应用于机械、建筑等领域。
钢材的热处理通常包括退火、正火、淬火和回火等工艺。
在钢材的选择过程中需要注意材料的化学成分、机械性能和耐热性能等,并且需要根据使用条件选择相应的热处理工艺。
1.2 铝合金铝合金是一种轻质、高强度的材料,广泛应用于航空、汽车、电子等领域。
铝合金的热处理通常包括固溶处理、时效处理等工艺。
同样地,在铝合金的选择过程中需要注意其化学成分、机械性能和耐热性能等,并且需要根据使用条件选择相应的热处理工艺。
1.3 铜材铜材是一种优良的导电材料,广泛应用于电子、通讯等领域。
铜材的热处理通常包括退火、固溶处理等工艺。
同样地,在铜材的选择过程中需要注意其化学成分、机械性能和耐热性能等,并且需要根据使用条件选择相应的热处理工艺。
二、应用技术除了材料的选择,热处理中的应用技术同样对材料的性能提升至关重要。
2.1 热处理工艺参数选择热处理工艺参数的选择对热处理结果有非常大的影响。
在热处理前需要根据材料的性质和使用条件来选择合适的热处理工艺参数以实现所需要的性能指标。
2.2 热处理工艺控制对热处理过程的温度、时间和气氛等进行严格的控制,可以确保热处理的效果和稳定性。
在热处理时需要加强工艺控制,保证材料的质量。
2.3 热处理后的深加工在热处理后,材料的性能已经得到了提升,但如果进行合适的深加工,可以进一步提高材料的性能。
深加工可以包括机加工、表面处理、激光处理等多种方法。
三、结论总之,热处理中的材料选择和应用技术对于材料的性能提升至关重要。
碳钢热处理后的显微组织观察与分析
碳钢热处理后的显微组织观察与分析
一、研究背景
碳钢是一种广泛应用的材料,具有高强度、良好的塑性、耐腐蚀性,以及较低的成本等优点。
狭义的碳钢是指碳含量不高于2.06%的钢,一般指碳含量在0.25~2.06%之间的碳素低合金钢,简称碳钢。
碳钢的力学性能极大程度上受组织影响,因此,碳钢的热处理是提高其力学性能的关键手段。
二、热处理方法
碳钢在热处理过程中,主要是正火、回火、淬火和回火等,根据加工目的和钢种的不同,还有退火和淬拔,等等。
1.正火:正火是指把钢从室温升温到一定的温度(相当于细化、强化钢组织)后,室温或其他低温下的冷却过程。
将钢置于明火中加热,加热到一定温度(软化温度),停止着火,让钢自然冷却(细化钢组织)。
2.回火:回火是指将钢比正火温度高一点加热,然后用较低温度的流体(水、油等)冷却(增强钢组织)。
回火可以改善零件的机械性能,使其获得更高的屈服强度、抗拉强度和断裂伸长率等。
3.淬火:淬火是把钢加热到一定的高温,然后用水、油、空气等低温流体进行冷却,使钢获得更高的强度、延展性和硬度。
碳钢热处理后的基本组织观察
碳钢热处理后的基本组织观察碳钢热处理是一种重要的金属材料加工工艺,在工业应用中具有广泛的应用。
在热处理过程中,通过控制材料的加热、保温和冷却过程,可以改变碳钢的组织结构和性能,从而满足不同的工程要求。
碳钢热处理后的基本组织观察是研究碳钢热处理效果的重要手段之一、下面将从碳钢的基本组织和热处理方法两个方面来进行阐述。
碳钢的基本组织主要包括铁素体、珠光体、贝氏体和马氏体。
铁素体是碳钢的基本组织,它具有良好的延展性和韧性。
在热处理过程中,通过加热和保温,可以使铁素体逐渐转变为珠光体。
珠光体是一种具有较高硬度和强度的组织,同时具有一定的韧性。
贝氏体和马氏体是高碳钢和合金钢中常见的组织。
贝氏体具有良好的切削性能和一定的韧性,而马氏体则具有更高的硬度和强度,但韧性较低。
在碳钢热处理后,可以通过金相显微镜等观察工具对其基本组织进行观察和分析。
金相显微镜可以放大碳钢的组织结构,同时还可以使用染色剂来突出不同的组织成分。
观察时可以选择不同的放大倍数和不同的观察角度,以获取更全面和详细的信息。
对于碳钢的热处理方法,常见的有正火、淬火和回火等。
正火是将钢件加热到适当温度,然后保温一段时间,最后慢速冷却。
这种热处理方法主要用于提高碳钢的硬度和强度,但会降低其韧性。
淬火是将钢件迅速加热到适当温度,然后迅速冷却。
这种热处理方法会使碳钢形成马氏体组织,从而大大提高其硬度和强度,但韧性较低。
回火是在淬火后再加热钢件到适当温度,然后保温一段时间,最后慢速冷却。
这种热处理方法可以调整碳钢的硬度和韧性,使其达到理想的综合性能。
在实际的碳钢热处理过程中,为了达到理想的组织和性能,需要控制好以下几个因素:加热温度、保温时间和冷却速度。
加热温度是指将钢件加热到的最高温度,不同的钢种和要求的组织结构需要不同的加热温度。
保温时间是指保持钢件在加热温度下的时间,它与钢件的尺寸和组织转变的速率有关。
冷却速度是指钢件冷却的速率,它决定了组织结构的类型和形成的量。
典型零件材料选择、成形工艺、热处理工艺及组织性能
典型零件材料选择、成形工艺、热处理工艺及组织性能作者:刘震东班级:机设13-3学号:120133404051摘要材料特别是典型零件材料的选用及热处理工艺的合理安排是从事机械设计、制造工艺的重要内容。
而典型机械零件所用材料及其成型工艺的选用是一个复杂的问题,单纯的靠差机械设计手册或仅靠经验法或类比法来确定材料与工艺的选用似乎很容易,但往往会带来不良后果。
因此在典型零件材料选择、成形工艺、热处理工艺的选择时需要严肃对待。
为此我们需要在对材料及其成型工艺原理的基本知识融会贯通的基础上,能够在中行和分析,统筹考虑材料和成型工艺的选择,理清思路,掌握好基本原则和方法,以系统的综合分析的方法,进行论证,最终确定典型零件材料选择、成形工艺、热处理工艺及组织性能,并且保证不因材料内在因素影响产品质量。
因此我们在进行典型零件材料及成形工艺的选择时一般可遵循下列四条基本原则(1)使用性能足够的原则(2)工艺性能良好的原则(3)经济性合理的原则(4)结构,材料,成形工艺相适应原则。
因此本文简单论述了典型零件材料选择、成形工艺、热处理工艺及组织性能。
关键词:典型零件,成形工艺,热处理工艺,组织性能(1)材料选择使用性能足够原则使用性能是保证零件完成规定功能的必要条件。
因此典型零件所用的材料首先必须满足使用性能的要求。
使用性能主要指零件在使用状态下材料应具有的力学性能,物理性能和化学性能。
对于典型的机械零件和工程构件,最重要的是力学性能。
对使用性能的要求,一般是在分析零件工作条件的基础上以及失效分析的基础上提出来的。
零件的工作条件包括三方面:(1)受力状况(2)环境状况(3)特殊要求。
分析零件受力状况时,收件要分析确定零件所承受载荷的类型,例如动载,静载,循环载荷或单调载荷等;并要确定载荷大小以及载荷形式,例如拉伸,压缩,弯曲或扭转等;还要分析载荷的特点,例如是均布载荷还是集中载荷等。
分析零件工作的环境状况时,主要是确定工作温度特性以及介质腐蚀情况或磨损条件等。
碳钢热处理后的组织和性能变化的分析实验
碳钢热处理后的组织和性能变化的分析实验一、实验目的1、观察和研究碳钢经不同形式热处理后其显微组织的特点。
2、了解热处理工艺对钢组织和性能的影响。
3、了解硬度测定的基本原理及应用范围。
4、了解洛氏硬度试验机的主要结构及操作方法。
5、掌握金属显微试样的制作过程,正确地制作所要观察的试件。
二、实验内容1、制作经热处理后的试样,完成打磨、刨光、浸蚀的所有制作步骤。
2、热处理后的试件进行硬度测试。
3、热处理后的试样进行组织观察分析和比较。
三、实验设备的使用和注意事项(一)硬度计的原理、使用和注意事项金属的硬度可以认为是金属材料表面在接触应力作用下的抵抗塑性变形的一种能力。
硬度测量能够验出金属材料软硬程度的数量概念。
由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。
硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。
另外,硬度与其它机械性能(如强度指标σb及塑性指标ψ和δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义。
硬度的试验方法很多,在机械工业中广泛采用压入法来测定硬度。
压入法硬度试验的主要特点是:(1)试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。
(2)金属的硬度与强度指标之间存在如下近似关系:σb=K·HB式中:σb——材料的抗拉强度值HB——布氏硬度值K——系数退火状态的碳钢K=0.34~0.36合金调质钢K=0.33~0.35有色金属合金K=0.33~0.53(3)硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常硬度高,这些性能也就好。
在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。
(4)硬度测定后由于仅在金属表面局部体积内产生很小压痕,并不损坏零件,因而适合于成品检验。
热处理后碳钢显微组织的观察与分析
热处理后碳钢显微组织的观察与分析热处理是一种通过控制材料的加热和冷却过程,改变其组织和性能的方法。
碳钢是一种含碳量较高的钢材,通过热处理可以得到不同的组织,从而改变其机械性能。
本文将对热处理后碳钢的显微组织进行观察与分析。
热处理过程中,碳钢首先需要进行加热,在足够高的温度下保温一段时间后,再进行冷却。
根据不同的加热温度和保温时间,可以得到不同的组织结构。
首先,我们来观察热处理前的碳钢显微组织。
通常来说,热处理前的碳钢具有粗大的珠光体组织。
珠光体是一种由铁和碳组成的混合物,呈珠状排列。
碳钢中的珠光体结构可以通过金相显微镜观察到,需要将样品进行切割、研磨和腐蚀处理。
在热处理过程中,最常用的方法是淬火和回火。
淬火是将加热到临界温度的材料骤冷至室温,目的是形成马氏体组织。
马氏体是一种类似于针状的组织结构,具有高硬度和脆性。
为了提高钢材的可塑性和耐磨性,常常进行回火处理。
回火是将淬火后的材料加热至较低的温度,再快速冷却。
回火过程中,马氏体逐渐转变为珠光体,从而使钢材具有更好的韧性。
通过金相显微镜观察热处理后的碳钢,可以看到不同的组织结构。
淬火后的碳钢主要由马氏体组成,呈针状结构。
马氏体是一种具有高硬度和脆性的结构,在一定条件下可以通过淬火获得。
回火后,马氏体会转变为珠光体,从而提高钢材的可塑性和韧性。
回火温度越高,珠光体的颗粒越大,机械性能会逐渐下降。
除了马氏体和珠光体外,热处理后的碳钢还可能出现一些其他的组织结构。
比如贝氏体是一种由针状晶体构成的结构,具有较高的硬度和韧性。
同时,还可能出现残余奥氏体、铁素体和非金属夹杂物等。
热处理后的碳钢的组织结构与加热温度、保温时间和冷却速率等因素密切相关。
在实际应用中,需要根据不同的要求选择合适的热处理工艺,以达到所需的组织和性能。
总结起来,热处理是一种通过控制材料的加热和冷却过程,改变其组织和性能的方法。
热处理后的碳钢主要由马氏体和珠光体组成,通过回火处理可以改善钢材的可塑性和韧性。
钢的热处理后的组织观察与分析实验报告记录
钢的热处理后的组织观察与分析实验报告记录————————————————————————————————作者:————————————————————————————————日期:2钢的热处理后的组织观察与分析实验报告一、实验目的1、观察热处理后钢的组织及其变化;2、研究加热温度、冷却速度、回火温度对碳钢性能的影响二、实验原理(一)钢的热处理工艺钢的热处理就是通过加热、保温和冷却三个步骤来改变其内部组织,而获得所需性能的一种加工工艺。
淬火、回火是钢件的重要热处理工艺。
所谓淬火就是将钢件加热到Ac或Ac1以上,保温后放入放入各种不同的冷却介质中快速冷却,以获得马氏体组织的热处理操作。
(1)淬火加热温度:根据Fe—Fe3C相图确定,如图1所示。
对亚共析钢,其加热温度为Ac3十30~50℃,淬火后的组织为均匀细小的马氏体。
如果加热温度不足(如低于Ac3),则淬火组织中将出现铁素体,造成淬火后硬度不足。
对于共析钢、过共析钢其加热温度为Ac1+30~50℃,淬火后的组织为隐晶马氏体与粒状二次渗碳体。
未溶的粒状二次渗碳体可以提高钢的硬度和耐磨性。
过高的加热温度(如高于Acm),会因得到粗大的马氏体,过多的残余A而导致硬度和耐磨性的下降,脆性增。
(2)回火温度:回火温度决定于要求的组织及性能。
按加热温度不同,回火可分为三类:低温回火:在150~250℃回火,所得组织为回火马氏体。
硬度约为HRC57~60,其目的是降低淬火应力,减少钢的脆性并保持钢的高硬度。
一般用于切削工具、量具、滚动轴承以及渗碳和氰化件。
中温回火:在350~5000C回火,所得组织为回火屈氏体,硬度约为HRC40~48,其目的是获得高的弹性极限,同时有高的韧性。
因此它主要用于各种弹簧及热锻模。
高温回火:在500~650~;回火,所得组织为回火索氏体,硬度约为HRC25~35。
其目的是获得既有一定强度、硬度,又有良好的冲击韧性的综合机械性能,常把淬火后经高温回火的处理称力调质处理,因此一般用于各种重要零件,如柴油机连扦螺栓,汽车半轴以及机床主轴等。
关于金属材料的运用和热处理技术分析
关于金属材料的运用和热处理技术分析金属材料在现代工业生产中扮演着重要的角色,它们被广泛应用于机械制造、建筑、航空航天、汽车、电子等领域。
而金属材料的性能往往需要通过热处理技术来进行调控,以满足不同工程需求。
本文将对金属材料的运用和热处理技术进行深入分析,探讨其在工业生产中的重要性和应用前景。
二、金属材料的性能调控金属材料的性能调控在工程实践中尤为重要,它可以通过改变材料的微观结构来实现。
金属材料的性能主要包括力学性能、物理性能和化学性能等方面。
力学性能包括抗拉强度、屈服强度、延伸率等指标,物理性能包括电导率、热导率等指标,化学性能包括耐蚀性、耐热性等指标。
为了满足不同工程需求,通常需要通过热处理技术来对金属材料的性能进行调控。
三、热处理技术的分类及原理热处理技术是指通过加热、保温和冷却等工艺手段对金属材料的组织和性能进行调控的一种技术。
根据加热温度和冷却速率的不同,热处理技术主要分为退火、正火、淬火和固溶处理等几种类型。
退火是指将金属材料加热到一定温度,保持一定时间后缓慢冷却至室温的一种热处理工艺。
其主要目的是消除材料中的应力、提高延展性和韧性,改善加工性能。
正火是指将经过退火处理的金属材料再次加热到一定温度后冷却的一种热处理工艺。
其主要目的是提高金属材料的强度和硬度。
淬火是指将金属材料加热到临界温度以上,然后以极快的速度冷却的一种热处理工艺。
其主要目的是使材料表面产生高硬度的马氏体组织,从而提高材料的硬度和耐磨性。
固溶处理是指将合金材料加热到固溶温度,然后进行均匀淬火的一种热处理工艺。
其主要目的是使金属材料中的溶质原子溶解在固体溶体中,进而提高合金材料的强度和硬度。
四、热处理技术在金属材料中的应用热处理技术在金属材料中有着广泛的应用。
在机械制造领域,通过热处理技术可以使金属材料获得理想的力学性能,从而提高机械零部件的使用寿命。
通过正火处理可以提高钢材的硬度和强度,从而使其更适用于制造高强度零部件。
碳钢热处理后组织观察
碳钢热处理后组织观察与分析一:实验目的(1)观察和研究碳钢经不同形式热处理后显微组织的特点。
(2)了解热处理工艺对碳钢硬度的影响。
二:实验说明碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。
因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。
图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。
图1 共析碳钢的c曲线图2 45钢的CCT曲线C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。
1.碳钢的退火和正火组织亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。
2.钢的淬火组织含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。
马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。
在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。
在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。
图3 T12 钢球化退火组织图4 低碳马氏体组织45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。
由于马氏体针非常细小,故在显微镜下不易分清。
45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。
碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。
上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y45 45 30CrM0 40CrNiMoA 50CrV GCrl5 W18Cr4V
152
95 60 65 45 45 30 25
18 8易切削不 锈钢 灰铸铁 可段铸铁 铝 硬铝 铜 黄铜 磷青铜
45
58~80 70~120 1000 1000 60 80 40
在满足使用性能、工艺性能的前提下,选用
4、通过磨片试验和多媒体分析软件,对材
料(未知材料)的金相组织迚行分析,并指 出该材料的处理工艺和对应组织、用途、性 能、化学成分、应达到的强度、韧度、塑性、 硬度等技术指标。 5、实验结果分析
材料名称 牌号 含碳量 化学成分 试样制备过程 处理方法 用途 组织说明 放大倍数 晶粒度 力学性能(强度、韧度、塑性、 硬度) 金相组织照片 其他
材料 铬不锈钢 铬镍不锈钢 普通黄铜 锡青铜、铝青铜 灰铸铁 球墨铸铁 可锻铸铁 碳素铸钢件 铸造铝合金、铜合金 铸造锡基轴承合金 铸造铅基轴承合金
格
相对价 15 13~17 19 1.4 1.8 2~2.2 2.5~3 8~10 23 10
热处理方法 退火(电炉) 球化退火 正火 渗碳淬火+回火 氮化 软氮化
机械工程学院 基础实验室
了解热处理设备及温度控制方式; 2、 掌握热处理操作过程及钢的热处理工艺; 3、 加深对不同的热处理工艺将获得不同的金 相组织及硬度的理解; 4、 观察不同热处理后的组织形态,并说明各 种金相组织对应的热处理工艺。 5、国内外常用模具材料的牌号及其表示方法, 6、常规热处理方法的选择及应用范围,制定热 处理工艺并实施, 7、对照处理前后的显微组织及晶粒度.
回火理论硬度(HRC 或换算HV)
误差分析 用途 力学性能
1、 常用的淬火冷却方法有哪些?说明各自的特点及应用 范围? 2、钢中含碳量增加,或含合金元素量增加时,其热处理 工艺及性能有何变化? 3、分析45#钢 正常淬火后应获得什么组织?出现网状屈 氏体T+M+A'的原因? 4、热处理冷却时,搅拌速度会影响组织及性能?为什么? 5、你了解的平衡组织有哪些?非平衡组织有哪些?其性 能有何差异?用那种热处理工艺可获得该组织? 6、谈谈你做了综合实验后有哪些收获?
1、
工程材料选用原则和方法
机械制造中,设计产品、设计工艺装备(刃
具、夹具、模具、量具等)以及生产零件时, 都会遇到选择材料,确定热处理方法,安排 加工工艺路线等方面的问题.合理地选择材 料与热处理工艺不仅能保证零件内在的质量, 同时直接关系到产品的经济效益。
1.材料的使用性 材料的力学性能、物理性能和化学性能,是选材 时首先应予保证的。 对于机器零件和工程构件,最重要的是力学性能。 如何才能准确地了解具体零件的 力学性能指标,这就要能正确地分析零件的受力状 态、载荷性质、工作温度、环境条件等几 方面。受力状态有拉、压、弯、扭、剪等;载荷性 质有静态载荷、动态冲击载荷和动态交变载 荷等;工作温度可分为高温、低温;除应考虑以上 所提的机械性能外,还应考虑零件的特殊 要求和使用的环境。
1、
实验步骤
根据实验要求,写出预习报告,合格后方 可迚行实验。 2、 参观热处理设备及温度控制方式、冷却介 质。 3、 选定材料的热处理工艺,并迚行热处理工 艺操作(加热、保温—冷却——硬度测定—— 回火——硬度测定)。 4、 测定钢 淬火后及回火后的硬度。(HRC、 HBS、HV的选择) 5、图像分析 。 6、数据整理交实验老师签名。
材料牌号及名称 淬火前的组织图 及组织说明 淬火前的硬度(HB或 换算HRB) 淬火保温时间 的计算 (公式) 淬火冷却方式、 回火 淬火温度
实际硬度(HRC或换 算HV)
淬火理论硬度(HRC 或换算HV) 回火保温 时间确定 (公式) 回火实际硬度(HRC 或换算HV)
相对加工费
1 1.8 1 6 38 10
热处理方法
相对加工费
2.5 6~7.5 3 3 按长度计算,比 一般渗碳淬火价廉
调质
刀具、模具(盐浴炉淬火及回火) 结构零件(盐浴炉淬火及回火)
冷处理 高频感应加热淬火
1、查阅有关资料,详细写出各材料的化学
成分(元素)、热处理工艺及工艺图、硬度 (淬火、回火、退火、正火)、锻造工艺、 用途、类别(冷模、热模、塑料模等)和使 用性能及使用要求。 2、简述你所用到的设备名称及用途; 3、制订所在小组材料的热处理工艺及淬 火(前后)和回火后硬度(HB、HRC、 HV);(已知材料) :
材料时应注意降低零件的总成本。零件的总 成本包括材料本身的价格、加工等直接成本 和其他一切间接所开支的成本,如运费与安 装等。
材 料 碳素结构钢 低合金结构钢 优质碳素结构钢 易切钢 合金结构钢(除铬一镍) 铬镍合金结构钢(中合金钢) 滚动轴承钢 合金工具钢 低合金工具钢 高速钢 硬质合金
相对价格 1 1.25 3~1.5 1.7 1.7~2.5 5 3 1.6 3~4 16~20 150~200
2.材料的工艺性 在制造业中所谓的工艺就是将原材料经过 一系列的加工变为零件或机器的过程。材料 加工成零件的难易程度,将直接影响零件的 质量、生产效率和成本。表12—1给出了各 种材料机械加工工艺性能的相互对比
材料 Y12
加工性指数 100
材料 18 8不锈钢
加工性指数 25
Y12Pb