高三数列列项求和和放缩法专题
2020届高考数学专题汇编:数列求和之裂项放缩

(2)记 Rn=
1 a1a2
+
1 a2a3
++
1 an an +1
,试比较 Rn 与
1 2
Tn
的大小.
解析:(1)因为 S1 ,S3 ,S9 成等比数列,所以 S3=2 S1 ⋅ S9 ,所以 (3 + 3d )2 = 9 + 36d ,即 d (d − 2) = 0 ,
又 d ≠ 0 ,所以 d = 2 ,因为 a1 = 1,所以 a=n 2n −1, Sn = n2 .
1 2n +1
(n
≥
1)
;
4
1 n2
<
1 n2 −
1
(
n
>
1)
;
1 n2
<
n
(
1 n−
1)
(
n
>
1)
;
1 n2
>
1 2n
(n > 5);
n
∑ 1、 ai < f (n)(> f (n)) 类型 i =1
例 1.1(根式分式型)
【2019 年高考浙江卷】设等差数列 {an} 的前 n 项和为 Sn , a3 = 4 , a4 = S3 ,数列 {bn} 满足:对每个 n ∈ N∗, Sn + bn , Sn+1 + bn , Sn+2 + bn 成等比数列.
2n − 1= , an−1 2n − 3 an−2
2n 2n
− −
3 5
,= , aa23
5 ,∴ an ⋅ an−1 ⋅ ⋅ = a3
3
an−1 an−2 a2
高中数学数列与不等式综合问题放缩法

数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
最新高中数学数列放缩专题用放缩法处理数列和不等问题(精品收藏)

数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}na 的前n 项的和nS ,满足12+=n n a S ,试求:(1)数列{}na 的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=nna S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n nnna a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}na 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a bn n n,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}na 的前n 项的和,14122333n nnS a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n n nT S =,1,2,3,n =,证明:132ni i T =<∑。
解: (Ⅰ)由 S n=错误!a n -错误!×2n +1+错误!, n=1,2,3,… , ①得 a 1=S 1= \f (4,3)a 1—错误!×4+错误! 所以a 1=2再由①有 Sn —1=\f (4,3)a n -1-错误!×2n+错误!, n=2,3,4,…将①和②相减得: a n =S n -S n-1= 错误!(an -a n-1)-错误!×(2n+1—2n),n=2,3, …整理得: a n +2n=4(an-1+2n-1),n=2,3, … , 因而数列{ a n +2n}是首项为a 1+2=4,公比为4的等比数列,即 : a n +2n =4×4n-1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n —2n 代入①得 S n = \f (4,3)×(4n -2n)—\f (1,3)×2n+1 + 错误! = 错误!×(2n+1-1)(2n+1-2) = \f(2,3)×(2n+1-1)(2n-1)T n= \f(2n,S n) =错误!×错误! = 错误!×(错误! - 错误!)所以, 1ni i T =∑=错误!1(ni =∑错误! - 错误!) = 错误!×(错误! -1121n +-) < \f (3,2)二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}na 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nnn a a b -=12,数列{}nb 前n 项的和为nT ,证明:13nT<. 解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812aq a==-.∴n na)21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.(利用等比数列前n 项和的模拟公式n nSAq A=-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤nn 。
高考数学数列放缩法技巧全总结计划材料

实用文档高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩n2n5 1例1.(1)求k14k 21的值;(2)求证:k1k3. 2211解析:(1)因为4n21(2n1)(2n1)2n12n1,所以21n4k21112n12n1421111125n214n22n12n1(2)因为,所以k1k21 452n2n133 1121奇巧积累:(1)n24n24n212n2n1(2)Cn11Cn2n1)n(n)n(n1)n(n1) r1!11(3)r1Cnnrr!(nr)!r!r(r)1r2)1n11211)(n213n4)(n1n(5)2n(2n1)2n1n(6)( 1) 12(n1)11(7)(8)2n2n2n(2n) n1 (2n 3) 2n1111(9)k(n1k) n 1k k nn(n 1k)knk(10)(11)(12)n 1 112( 2n 1n )2 22n2n1 2n11 1(n1)! n!(n1)!(11)n n222n2n2n2n1 1(n2)(2n 1)2(2n 1)(2n 1) (2n 1)(2n2) (2n 1)(2n11) 2n1 12n111111n3n n 2n (n 1)(n1)n (n 1)n (n 1) n 1n111n1n 111n 1n 12nn 1n1(13)(14)2 n122n (31)2n33(2n1)2n2n12n12n32n13k2111nn1(n2) k!(k)!(k2)!(k1)!(k2)!n(n(15)1)文案大全实用文档21j212j2i j1( 15)j ij)(i212)i21j2n2)例2.(1)求证:32521)2(2n2(2n1) 1111(2)求证:416364n24n113135135(2n1)2n1(3)求证:22462462n2(1)1112(n)(4)求证:23111n11111解析:(1)因为(2n1)22n1)(2n1)2n12n1所以i(2i1)21()1()22n132n1,1111111( 2)416364n4(122n2)(11)13(2n1)1(3)先运用分式放缩法证明出后就可以得到答案1n进行裂项,n 22n 最12(n1n)211(4)首先nn,所以容易经过裂项得到2(n11)1n1232(2n12n1)22212n1112n再证nn 而由均值不等式知道这是显然成立的,2 211112( 2n 11)所以23n6n111例3.求证:(n1)(2n 1)9n21411214n 21 2n12n11 11 1125 解析:一方面:因为n 412 2n12n11所以k1k23533,111111 n另一方面:4922334 n(n1)n1n1n6n6n111 1当31(1)当1149n 2n时,nn (2n1)n时,(n)(2n1),6n11,当n2时,(n1)(2n1)49n2n 11所以综上有(n1)(2n1) 49例4.(2021年全国一卷)设函数f(x)xxlnx 数列a n 满足11a n1f (a n )..文案大全实用文档设b(a1,1),整数k≥a1bb.a1lnb.证明:a k1解析:由数学归纳法可以证明an是递增数列,故假设存在正整数mk,使a m,那么a k1ak b,kmb(mk)a1a mb1am lna ma1lna ma1lnb0a k1a k a k lna ka1a m lnam假设,那么由知,m1kam lna mk(a1lnb)因为m1,于是ak1a1k|a1lnb|a1(ba1)b例5.n,mN,x1,S1m2m3m n m m1(m1)S(n1)m1.,求证:解析:首先可以证明:(1x)nnxm1n m1(n1)m1(n1)m1(n2)m11m1[k m1(k1)m1]1所以要证nm1(m1)S(n1)m1只要证:nn[ k m1(k1)m1](m1)km(n1)m11(n1)m1nm1nm1(n1)m12m11m1[(k1)m1k m1]k111[ k m1(k1)m1](m1)km[(k1)m1k m1]故只要证k1k11,即等价于k m1(k1)m1(m1)k m k1)m1km,即等价于1m11m11k(1)1k(1而正是成立的,所以原命题成立.例6.a n4n2n,Tn2na n,求证:T1T2T3na122.解析:Tn314(14n)2(12n)4 4422)1412341)2(12 Tn2n2n2n32n2n11n1n12n1)2(12n)4n1422n1432222321所以4n33n312(22n1)(2n1)22n12n11T 1T2T3313Tn3372n12n112从而2n (n2k1,k)1117.x1xn2k,k)x2x34x4x52(n11)(nN*)例n1(n求证4x2n x2n1 1文案大全实用文档证明:因为1111124x2n x2n14(2n1)(2n1)44n2144n22n2n,122) n1,所以2(n1 2n4x2n x2n12n nn1112(n11)(nN*)所以4x2 x3 4x4x5 4x2nx2n1 二、函数放缩ln2ln3ln 4ln3n3n5n6(nN*).例8.求证:2343n6解析:先构造函数有lnxlnx1ln2ln3ln4ln3n n111x11x,从而2343n3133n)11111111111caus e233n234567892n2n1n533993n13n15n669182723n13n6 ln2ln3ln4ln3n15n n5n6所以2343n 362,ln 2ln3lnn2n2n1(n)例9.求证:(1)23n2(n1)解析:构造函数f(x)lnxlnnlnn2lnn21111x得到nn2再进行裂项n2n2n(n1)求和后可以得到答,,,案函数构造形式:lnxx1,lnn1(2)11ln(n1)111例10.求证:232n解析:提示:ln(n1)lnn2nn1nnln2 n11nn1函数构造形式:lnxx,lnxy当然此题的证明还可以运用积分放缩如图,取函数f(x)1ED x,F CA Bilnx|nlnn ln(ni)n-iSABC F首先x,从而,i文案大全实用文档1lnnln (n1),取i1有,n11 l n3 l n211ln(n1)lnn ,相加后可以得到:所以有2 l n2,3 ,⋯,nlnnln(n1),n111ln (n1)3n1S ABD E1,从而有nii另一方面ii1l nn ln(n1),取i1有,n1l nx|nlnnl n(ni)n所以有ln(n1)1 11 1 11 l n(n1)112n,所以上有2 3n 1 2例11.求:1 1)(11)(11)e和1 )(11) (11解析构造函数后即可明2!3!n!98132n.:2n3ln[n (n1)1]3例12.求:(112)1 23)[1 n (n 1)] 解析 2:,以得到答案l n(x1 )31ln(1x)3x)(加命)函数构造形式(x0)x1x1 ln2ln3ln4lnnn(n)(nN*,n1)例13.明:3451解析:构造函数f(x)ln(x1)(x)1(x1)求可以得到:,f'(x)112x''0有x2,x1x1,令f(x)0有1x2,令f(x)所以f(x)f(2)0,所以ln(x1)2,令xn21有,lnn2n21lnn n1n2ln3ln4lnnn(n1)(nN*,n)所以n12,所以345n14例14.a11,a n1(11n)a n.明a ne2.n2n1)a n111)a n解析:a n1(1n(n1)n(n1),11lna n1ln(1n(n1)2n)lna n然后两取自然数,可以得到文案大全实用文档然后运用ln(1)x和裂项可以得到答案)放缩思路:a nlna n1ln(11lna n(1n2n2n a nn2n nlna n11 22n。
2024年高考数学二轮专题05 数列放缩(精讲精练)(解析版)

专题05 数列放缩【命题规律】数列放缩是高考重点考查的内容之一,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.此类问题往往从通项公式入手,若需要放缩也是考虑对通项公式进行变形;在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向可裂项相消的数列与等比数列进行靠拢.【核心考点目录】核心考点一:先求和后放缩核心考点二:裂项放缩核心考点三:等比放缩核心考点四:1()()ni i a f n =<>∑型不等式的证明核心考点五:1()()n i i a f n =<>∏型不等式的证明核心考点六:1()ni i a b =<>∑型不等式的证明核心考点七:1()ni i a b =<>∏型不等式的证明【真题回归】1、(2022·全国·()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈N ln(1)n >+ .【解析】(1)当1a =时,()()1e xf x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()00h x h <=.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,∞+上为减函数,所以()()00h x h <=.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10xx x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n ∈N,有<整理得到:()ln 1ln n n +-<()ln 2ln1ln 3ln 2ln 1ln n n>-+-+++- ()ln 1n =+,故不等式成立.2、(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【解析】(1)∵11a =,∴111S a ==,∴111S a =,又∵n n S a ⎧⎫⎨⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=,∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n a n -+=-,∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立,∴{}n a 的通项公式()12n n n a +=;(2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++ 1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦3、(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=.(I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii)证明)*nk n N =<∈【解析】(I )因为{}n a 是公差为2的等差数列,其前8项和为64.所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =,所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去),所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nn n c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--,所以数列{}22n n c c -是等比数列;(ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n -==,所以112nn k k k -==<,设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑,则123112322222n n n T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n n nn n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--,所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫<=-<⎪⎭4、(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.【解析】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11(3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭ n n S ,230121123111112333323333n n nn S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n nn n .设0121111101212222Γ3333------=++++ n n n , ⑧则1231111012112222Γ33333-----=++++ n nn . ⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n n n n .所以21312Γ4323---=--=⨯⨯n n n n 因此10232323--=-=-<⨯⨯n n n n n S n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n n n n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则21()123-=++++=' n f x x x nx又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.【方法技巧与总结】常见放缩公式:(1)()()21111211<=-≥--n n n n n n ;(2)()2111111>=-++n n n n n ;(3)2221441124412121⎛⎫=<=- ⎪--+⎝⎭n n n n n ;(4)()()()11!111112!!!11+=⋅=⋅<<=-≥---rr n r r n T C r n r n r n r r r r r;(5)()1111111312231⎛⎫+<+++++< ⎪⨯⨯-⎝⎭nn n n ;(6(()22<=≥n ;(7(2=>=;(8=<==+;(9)()()()()()()()1211222211212121212122212121---=<==----------nn n n n n n n n n n n n()2≥n ;(10=<=2=-=-()22<≥n;(11=<=()2n==-≥;(12)()()01211122221111111nnn n nC C C n n n n=<==--++-+++-;(13)()()()111121122121212121nn n nn nn---<=-≥-----.(14)=<<=.(15)二项式定理①由于()0112(1)21(11)11(3)2n n nn n n n nn nC C C C C n+-=+-=+++->+=≥,于是12112(3)21(1)1nnn n n n⎛⎫<=-≥⎪-++⎝⎭②221(3)n n n>+≥,011012(11)221n n n nn n n n n nC C C C C C n-=+=++++>+=+;222(5)n n n n≥++≥,0122101222(11)2222n n n n nn n n n n n n n nC C C C C C C C C n n--=+=++++++≥++=++(16)糖水不等式若>>>0,0b a m,则+>+a m ab m b;若>>>0b a m,则-<-a m ab m b.【核心考点】核心考点一:先求和后放缩例1.(2022·全国·模拟预测)己知n S为等比数列{}n a的前n项和,若24a,32a,4a成等差数列,且4282S a=-.(1)求数列{}n a的通项公式;(2)若()()122nnn naba a+=++,且数列{}nb的前n项和为nT,证明:11124nT≤<.【解析】(1)设数列{}n a的公比为q,由24a,32a,4a成等差数列可得24344a a a+=,故244q q+=,解得2q=,由4282S a=-可得()4111216212aa-=--,解得12a=,故2nna=,即数列{}n a的通项公式为2,Nnna n*=∈.(2)由(1)可得()()()()1112112222222222n n n n n n n n n a b a a +++===-++++++,故1111111111114661010182222422n n n n T ++=-+-+-+⋅⋅⋅+-=-+++.当1n =时,1122n ++取得最大值16,当n →+∞时,11022n +→+1110226n +∴<≤+,故11124n T ≤<.例2.(2022·江苏南京·模拟预测)记数列{}n a 的前n 项和为n S ,已知12a =-,()1122n n n S S +++=-.(1)求{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n T ,证明:3n n n S T S ≤<.【解析】(1)由()1122n n n S S ++=-+-,两边同时除以()12n +-可得:()()11122n nn nS S ++=+--,故数列()2n n S ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭为以1为公差的等差数列,则()()()111111222n n S S a n n n =+-⨯=+-=---,即()2n n S n =⋅-,当2n ≥时,()()()()()111212231n n n n n n a S S n n n ---=-=⋅----=--+,将1n =代入上式,可得()()1112312a -=--+=-,则1a 满足上式,故数列{}n a 的通项公式()()1231n n a n -=--+.(2)由*N n ∈,则310n -+<,即()()()11231231n n n a n n --=--+=-,()0121222528231n n T n -=⨯+⨯+⨯++- ,()1232222528231n n T n =⨯+⨯+⨯++- ,两式相减可得,()1212232323231n nn T n --=+⨯+⨯++⨯-- ()()231232222231n n n -=+⨯++++-- ()()12122323112n n n -⨯-=+⨯---()()12621231n n n -=+⨯---()2326231n n n =+⨯---()4243n n =-+-,则()4234nn T n =+-,由(1)可得()22nnn S n n =⋅-=⋅,()()423424224n n n n n T S n n n -=+--⋅=+-,令()4224n n b n =+-,()()11142224422420n n n n n b b n n n +++-=++----=⋅>,则数列{}n b 为递增数列,()1142240b =+⨯-=,则0n b ≥,即n n T S ≥;()2342343242n n n n n T S n n +-=+--⋅=-,令242n n c +=-,易知数列{}n c 为递减数列,1214240c +=-=-<,则0n c <,即3n n S T >.综上,不等式3n n n S T S ≤<恒成立.例3.(2022·重庆巴蜀中学高三阶段练习)已知数列{}n a 满足11a =,{}n a 的前n 项和为n S ,且()*122n n a S n +=-∈N .(1)求数列{}n a 的通项公式;(2)设4n n nb a =⋅,记12n n T b b b =+++ ,证明:1n T <.【解析】(1)依题意()*122n n a S n +=-∈N ,()1122,22n n n n n S S S S S ++-=-=+,()11111,2222n n n n S S S S ++=+-=-,所以数列{}2n S -是首项为11221S a -=-=-,公比为12的等比数列,所以11112,222n n n n S S ---==-,当2n ≥时,由1122n n S -=-得12122n n S --=-,两式相减并化简得()2111111211222222n n n n n n a n -----=-=-=≥,1a 也符合上式,所以112n n a -=.(2)111242n n n n n b -+==⋅,23112222n n n T +=+++ ,3421122222n n n T +=+++ ,两式相减得2312111122222n n n n T ++=+++- ,所以1211112222n n n n T +=+++-11111112221111222212n n n n n n n n +++⎛⎫- ⎪+⎝⎭=-=--=-<-.例4.(2022·黑龙江·海伦市第一中学高三期中)在各项均为正数的数列{}n a 中,13a =,且()2116n n n n a a a a ++=+.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,数列{}n b 的前n 项和为nT,证明:14n T <.【解析】(1)因为{}n a 各项为正数,()2116n n n n a a a a ++=+,所以上式两边同时除以2na ,得1126n n n n a aa a ++⎛⎫= ⎝⎭+⎪,令()10n na x a x +=>,则26x x =+,即260x x --=,解得3x =(负值舍去),所以13n na a +=,又13a =,所以{}n a 是以13a =,3q =的等比数列,故1333n nn a -=⨯=.(2)由(1)得()()()121111333n n n n n b +--==++()()()()()11111133331111313n n n n n n n n n n ++++-+++==-++++,所以223111111111223131313133343n n n n T nn n ++++-+++⎛⎫⎛⎫⎛⎫=-+-+=- ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+ ,因为*N n ∈,则11031n n ++>+,所以14nT <.例5.(2022·山西临汾·高三阶段练习)在各项均为正数的等比数列{}n a 中,n S 为其前n 项和,11a =,3a ,22S ,4a 成等差数列.(1)求{}n a 的通项公式;(2)若()2log 1n nb S =+,数列122n n n n b b b a ++⎧⎫+⎨⎩⎭的前n 项和为n T ,证明:3182n T ≤<.【解析】(1)设数列{}n a 的公比为q ,由题意知2344S a a =+,即()()2321244(1)1a a q q q q q +=+=+=+,因为*n ∀∈N ,0n a >,所以0q >,所以2q =,所以12n n a -=.(2)证明:由(1)得122112n n n S -==--,所以2log 2nn b n ==,所以()()1112221112212n n n n n n n b n b b a n n n n ++++++==-+⋅⋅+⋅,所以()()1223111111111112222232212212n n n n T n n n ++=-+-+⋅⋅⋅+-=-⨯⨯⨯⨯⨯+⨯+⨯.显然{}n T 单调递增,所以138n T T ≥=,因为()11012n n +>+⨯,所以12nT <,所以3182n T ≤<.例6.(2022·浙江·慈溪中学高三期中)已知数列{}n a 的前n 项和为n S ,若23123452n S S S S n n n ++++=++ ,(1)求数列{}n a 的通项公式;(2)证明:123111138n S S S S ++++< .【解析】(1)当2n ≥时,23123452n S S S S n n n ++++=++ ()()23112113451n S S S S n n n -++++=-+-+ 相减得()()22222nn S n S n n n n =⇒=+≥+当1n =时,16=S 符合上式所以()()*22N n S n n n =+∈.当2n ≥时,()()()12221142n n n a S S n n n n n -=-=+--+=+当1n =时,116a S ==符合上式.故()*42N n a n n =+∈(2)由(1)知:()111112242n S n n n n ⎛⎫==- ⎪++⎝⎭所以1231111nS S S S ++++ 111111111111143243546112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111113113111314212421284128n n n n n n ⎛⎫⎛⎫⎛⎫=+--=--=-+< ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭核心考点二:裂项放缩例7.(2022·天津市新华中学高三阶段练习)已知n S 为数列{}n a 的前n 项和,且(1)2n n n S +=,数列{}n b 前n 项和为n T ,且12b =,12n n b T +=+.(1)求{}n a 和{}n b 的通项公式;(2)设2(1)n n n c a =-,设数列{}n c 的前n 项和为n P ,求2n P ;(3)证明:()22211121ni i i i a a b =++<-∑.【解析】(1)由(1)2n n n S +=,当1n =时,111a S ==,当2n ≥时,()()1+11===22n n n n n n n a S S n ----,检验1n =时,111a S ==,所以=n a n ;因为12n n b T +=+,1=+2n n b T -(2n ≥),所以+11==n n n n n b b T T b ---,即12n nb b +=(2n ≥),而12112,224b b T b ==+=+=,故212b b =满足上式,所以{}n b 是以12b =,公比等于2的等比数列,即2nn b =;(2)因为22=(1)=(1)n n n n c a n --,所以()()22212+=21+2=41n n c c n n ---,所以21234212=++++++n n n P c c c c c c - ()23+41=3+7++41==2+2n n n n n --⋅⋅⋅;(3)因为()()2222+12+1+1+1+1+1=<(1)1212n n n n n a n n a b n n n ---,()()()()22+1+1+1+1+1+1+1++11+1111==+=+12122122122n n n n n n n n n n n n n n n n n n n n ---⋅-⋅-⋅-⋅⋅.所以()22222+1111(1)1nni i i i i i i i i a a a a b a b -==+++-∑∑ ,()2+1+122+11111=+(1)2122nn i i i i i i i i i a a a b i i ---⋅⋅==⎛⎫+ ⎪ ⎪⎝⎭∑∑()34+12334+1111111111=+++++++2222222232122n n n n n ⋅⋅⋅--⋅⋅⋅-⨯⨯⨯-⋅⋅1+1+1+11111111182=+=14222212n n n n n n -----⋅⋅-⎛⎫ ⎪⎝⎭,因为1102n +>,+11>02n n ⋅,所以+1+11111<2222n n n --⋅,即22+111(1)2ni i i i i a a a b -=+∑,即证:()22211121ni i i i a a b =++<-∑;综上,=n a n ,2nn b =,222n P n n =+ .例8.(2022·山东·济宁市育才中学高三开学考试)已知数列{an }的前n 项和为Sn ,且()14211n n S n a +=-+,a 1=1.(1)求数列{an }的通项公式;(2)设n b =,数列{bn }的前n 项和为Tn ,证明32n T <.【解析】(1)因为()14211n n S n a +=-+,所以()()142312n n S n a n -=-+≥.两式相减,得()()()1421232n n n a n a n a n +=---≥,即()()12121n n n a n a ++=-所以当2n ≥时,12121n na n a n ++=-,在()14211n n S n a +=-+中,令1n =,得23a =,所以123211232121232553121(2)23252731n n n n n n n a a a a a n n n a n n a a a a a n n n --------=⋅⋅⋅⋅⋅⋅⋅⋅=-≥--- ,又11a =满足,所以21n a n =-所以()()()1212322n n a a n n n --=---=≥,故数列{an }是首项为1,公差为2的等差数列,且21n a n =-.(2)()2122n n n S n n -=+⨯=,所以()()()12211=21221222222n b n n n n n n n n <=-----,当1n =时,1312T ==<,当2n ≥时,11111131312446222222n T n n n ⎛⎫<+-+-++-=-< ⎪-⎝⎭ ,所以32n T <.例9.(2022·天津一中高三阶段练习)已知数列{}n a 满足111,2,22,n n n a n a a a n +-⎧==⎨+⎩为奇数为偶数记21n n b a -=.(1)证明:数列{}n b 为等比数列,并求出数列{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .(3)设()2111log n n c n b +=+,记数列{}n c 的前n 项和为n T ,求证:34n T <.【解析】(1)证明:因为21n n b a -=,所以()121221212221222n n n n n n b a a a a b ++--==+=-+==,又112b a ==,所以数列{}n b 是首项为2,公比为2的等比数列,所以2nn b =.(2)()()21321242n n n S a a a a a a -=++⋯++++⋯+()()()()1321132111n n a a a a a a -⎡⎤=++⋯++-+-+⋯+-⎣⎦()13212n a a a n-=++⋯+-()122n b b b n=++⋯+-()221222412n n n n +-=⋅-=---(3)222111111(1)21222n c n n n n n n n ⎛⎫==<=- ⎪+++++⎝⎭1111111112324352n T n n ⎛⎫∴<-+-+-++- ⎪+⎝⎭ 11113122124n n ⎛⎫=+--< ⎪++⎝⎭例10.(2022·全国·成都七中高三开学考试(理))记数列{}n a 前n 项和为n S ,222n n S n na n +=+.(1)证明:{}n a 为等差数列;(2)若11a =,记n T 为数列{}n a 的前n 项积,证明:112nk kT =∑<.【解析】(1)由题意,得222n n S na n n =+-.则()()21122111n n S n a n n --=-+---.两式相减,得()()*12222222n n n a n a n n n ----=-≥∈N ,,,即*112n n a a n n --=≥∈N ,,,{}n a ∴是等差数列.(2)因为11a =,由(1)知*112n n a a n n --=≥∈N ,,(11a =也符合此式)故数列{}n a 的通项公式为n a n =则123!n n T a a a a n =⋅⋅=L 所以1111111!2!3!!nk k T n =∑=++++L ()111112231n n ≤++++⨯⨯-L 11111112231n n ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L 122n=-<故112nk kT =∑<,得证.例11.(2022·河南·模拟预测(理))若数列{}n a 满足11a =,12n n a a n +-=.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .【解析】(1)因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++ 2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+;(2)证明:当n =1时,1112a =<;当2n ≥时,2111111(1)1n a n n n n n n=<=--+--,则12231111111111111112231n n a a a a a a n n ⎛⎫+++=++++<+-+-++- ⎪-⎝⎭ 122n =-<,故121112na a a +++< ;综上,21n a n n =-+.核心考点三:等比放缩例12.(2022·重庆八中高三阶段练习)记n S 为数列{}n a 的前n 项和,已知1=2a ,{}32n n a S -是公差为2的等差数列.(1)求{}n a 的通项公式;(2)证明:121111na a a ++⋅⋅⋅+<.【解析】(1)111322a S a -== ,()322212n n a S n n ∴-=+-=,即32n n S a n =-;当2n ≥且n *∈N 时,()1133122n n n n n a S S a n a n --=-=--+-,即132n n a a -=+,()1131n n a a -∴+=+,又113a +=,∴数列{}1n a +是以3为首项,3为公比的等比数列,13n n a ∴+=,则31n n a =-.(2)由(1)得:1131nn a =-,()()212323320331331331n n n n n n n n n ⋅----==>--- ,123n n a ∴<,2121111112221332111333313n n n n a a a ⎛⎫- ⎪⎝⎭∴++⋅⋅⋅+<++⋅⋅⋅+=⨯=-<-.例13.(2022·广东·高三阶段练习)已知数列{}n a 的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+,其中0,q n N *>∈.(1)若2322,,2a a a +成等差数列,求{}n a 的通项公式;(2)设数列{}n b满足n b =,且253b =,数列{}n b 的前n 项和为n T ,证明:()1433n nn n T n N *-->∈.【解析】(1)由11n n S qS +=+得211n n S qS ++=+,两式相减得21(1)n n a qa n ++=≥,由211S qS =+可得21a qa =,故1n n a qa +=对所有n N *∈都成立,所以数列{}n a 是首项为1,公比为q 的等比数列,从而1n n a q -=,由2322,,2a a a +成等差数列可得32232a a =+,化简得22320q q --=,又0q >,解得12,2q q ==-(舍去),所以()12n n a n -*=∈N .(2)由题意可知n b ==由253b =53=,解得44,33q q ==-(舍去),又222(1)1144411333n n n ---⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=+>⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦143n -⎛⎫> ⎪⎝⎭,即()143n n b n N -*⎛⎫>∈ ⎪⎝⎭,则11241443143313nn n b b b -⎛⎫- ⎪⎛⎫⎝⎭+++>+++= ⎪⎝⎭-,即()1433n nn n T n N *-->∈.例14.(2022·天津·南开中学高三阶段练习)记n S 是公差不为0的等差数列{}n a 的前n 项和,已知3453a a S +=,154a a S =,数列{}n b 满足()11322n n n b b n --=+≥,且111b a =-.(1)求{}n a 的通项公式,并证明数列12n nb ⎧⎫+⎨⎬⎩⎭是等比数列;(2)若数列{}n c 满足()()()114111n n n n nc a a -+=---,求{}n c 的前n 项和的最大值、最小值.(3)求证:对于任意正整数n ,1211132n b b b +++< .【解析】(1)设等差数列{}n a 的公差为()d d≠0,由3451543a a S a a S +=⎧⎨=⎩,可得1111115423(3)5243(4)42a d a d a d a a d a d ⨯⎧+++=+⎪⎪⎨⨯⎪+=+⎪⎩,解得122a d =⎧⎨=⎩或100a d =⎧⎨=⎩(舍去),22(1)2n a n n =+-=∴.又1111b a =-=,则113122b +=,由()11322n n n b b n --=+≥,可得11312222n n n n b b --=⋅+,∴11311222n n n n b b --⎛⎫+=+⎪⎝⎭,∴数列12n nb ⎧⎫+⎨⎬⎩⎭是以32为首项,32为公比的等比数列;(2)由(1)可得()()()()()()()()()111144411111212212121n n n n n n n n n c a a n n n n ---+=-=-=----+--+()()()()()()112121122111121121n n n n n n n n --⎛⎫=-+ ⎪++-=+-⎝-+-⎭,设{}n c 的前n 项和为n W ,则()11231111111111335572121n n n W c c c c n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+=+-++++⋯+-+ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111(1)21n n -=+-+,当n 为奇数时,1121n W n =++随着n 的增大而减小,可得413n W <≤,当n 为偶数时,1121n W n =-+随着n 的增大而增大,可得415n W ≤<,n W ∴的最大值为43,最小值为45.(3)证明:因为数列12n nb ⎧⎫+⎨⎬⎩⎭是以32为首项,32为公比的等比数列,∴3122nn n b ⎛⎫+= ⎪⎝⎭,∴32n nn b =-.所以1111323n n n n b -=≤-,所以1231111nb b b b ++++ 211111333n -≤++++ 11133131123213n n⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,所以1211132n b b b +++< .例15.(2022·浙江大学附属中学高三期中)记n S 为数列{}n a 的前n 项和,已知12a =,{}32n n a S -是公差为2的等差数列.(1)求证{}1n a +为等比数列,并求{}n a 的通项公式;(2)证明:121111na a a +++< .【解析】(1)因为{}32n n a S -是公差为2的等差数列,1111123232a S a a a --===,所以()232122n n n n a S =-⨯-+=,当2n ≥时,112322n n a n S --=--,两式相减得,12332n n n a a a ---=,即132n n a a -=+,故()1131n n a a -+=+,又113a +=,所以{}1n a +是首项为3,公比为3的等比数列,故11333n n n a -+=⨯=,则31n n a =-.(2)因为*N n ∈,所以()2313323323n n n n n->+->+->,则211331n n n a >=-,即123nn a <,所以2121113311122212111333313nn nn a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++<+++=⨯=-< ⎪⎝⎭- .例16.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<【解析】(1)当2n ≥时,22121n n a a n --=-累加可得22,0,,n n n a n a a n =>\= 且当1n =时,11a =符合,n a n ∴=.由等差数列前n 项和的公式可得:(1)2n n n S +=(2)由(1)得213n n n c +=,对于左边,123c =,又120,3n n k k c c =>>å ,对于右边,212(1)12132213122121122,(1)(11)313133n nn n n ncn n n n c n n ++++++++³==×=+£+=++,1211213255252257527239939339333313n n n nk k c ---=éùæöêú-ç÷ç÷êúæöæöèøëûç÷ç÷\£++´++´=+´=-´<ç÷ç÷èøèø-å .综上:122733n c c c £+++< 成立.例17.(2022·江苏·泗洪县洪翔中学高三开学考试)已知数列{}n a 的前n 项和为n S ,13a =,12n n S a +=+.(1)证明:数列{}2n S -为等比数列;(2)记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:2n T <.【解析】(1)因为()1122n n n n S a S S ++=+=+-,所以122n n S S +=+,所以()1222n n S S +-=-,因为120S -≠,所以10n S -≠,1222n n S S +-=-,故数列{}2n S -为等比数列,首项为121S -=,公比为2;(2)由(1)可知122n n S --=,所以11111222n n n S --=<+,所以21111111212121222212n n n nT -⎛⎫- ⎪⎛⎫⎝⎭<+++⋅⋅⋅+==-< ⎪⎝⎭-.核心考点四:1()()ni i a f n =<>∑型不等式的证明例18.(2022·山东省实验中学模拟预测)已知函数1ln ()xf x x+=.(1)求函数()y f x =的最大值;(2)若关于x 的方程2ln e e 1x x x x kx =-+-有实数根,求实数k 的取值范围;(3)证明:()2*222ln 2ln 3ln 21N ,2234(1)n n n n n n n --+++<∈≥+ .【解析】(1)2ln ()xf x x -'=,当(0,1)x ∈时,()0f x '>,当(1,)x ∈+∞时,()0f x '<,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减所以max ()(1)1f x f ==,即当1x =时,()f x 取最大值1.(2)依题意,21ln ln e e 1(e e )x x x x x x kx k x x +=-+-⇔=+-,令1ln ()(e e )x xg x x x +=+-,2ln ()(e e )x xg x x -'=+-,当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<,()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,即max ()(1)1g x g ==,因此()g x 的值域是(,1]-∞,方程1ln )(e e x xk x x+=+-有解,有1k ≤,所以实数k 的取值范围是1k ≤.(3)由(1)知()1f x ≤,当且仅当1x =时取等号,因此当1x >时,ln 1x x <-,即当2n ≥时,22ln 1n n <-,222222ln 1ln 111111()(1)[1]2222(1)n n n n n n n n n -=⋅<=-<-+111[1()]21n n =--+, 所以222ln 2ln 3ln 1111111[1()1()1(23223341n n n n +++<--+--++--+ 211121[(1)(2214(1)n n n n n --=---=++.例19.(2022·全国·高三专题练习)设各项均为正数的数列{}n a 的前n 项和为n S ,满足()()222*330,n n S n n S n n n N -+--+=∈.(1)求1a 的值:(2)求数列{}n a 的通项公式:(3)证明:对一切正整数n≤ .【解析】(1)令1n =,()()1121133101-+--+=S S ,则13a =-舍去,所以12a =.(2)()()()()2222330,30n n n n S n n S n n S S n n -+--+=∴+--= ,因为数列{}n a 各项均为正数,3≠-n S 舍去,2∴=+n S n n ,当2n ≥时,()()21111,2--∴===-+-∴-n n n n S n n a S S n ,12,12.2,2-=⎧∴=∴=⎨-=≥⎩n n n n n a a n S S n n (3)令n b ===≤=()2n==≥,所以1211n n S b b b b =+++≤11.4==+例20.(2022·上海·模拟预测)在数列{}n a 中,115,342n n a a a n +==-+,其中N n *∈.(1)设2n n b a n =-,证明数列{}n b 是等比数列;(2)记数列{}n a 的前n 项和为n S ,试比较n S 与22022n +的大小.【解析】(1)N n *∈,由2n n b a n =-得:2n n a b n =+,而1342+=-+n n a a n ,则12(1)3(2)42n n b n b n n +++=+-+,整理得13n n b b +=,而1123b a =-=,所以数列{}n b 是首项为3,公比为3的等比数列.(2)由(1)知,1333n nn b -=⨯=,于是得32nn a n =+,123(13)223313222n n n n n n n S +-+=+⋅=++--,因此,2112233324047(202022222)22n n n n n n n S n +++--++---=+=,令1324047n n c n +=+-,显然数列{}n c 是递增数列,而671848,2528c c =-=,即{1,2,3,4,5,6}n ∈时,0n c <,2202)(20n S n -+<,当7,N n n *≥∈时,2202)(20n S n -+>,所以,当6,N n n *≤∈时,22022n S n +<,当7,N n n *≥∈时,22022n S n +>.例21.(2022·全国·高三专题练习)已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈N ln(1)n >+ .【解析】(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x '<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0∞-,增区间为()0,∞+.(2)设()e e 1ax x h x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x '>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,∞+上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,∞+上为减函数,所以()()00h x h <=.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,∞+上为减函数,所以()()00h x h <=.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10xx x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n ∈N ,有<整理得到:()ln 1ln n n +-<()ln 2ln1ln 3ln 2ln 1ln n n>-+-+++- ()ln 1n =+,故不等式成立.例22.(2022·湖南·周南中学高三阶段练习)已知函数()1ln xf x x+=.(1)求函数()y f x =的最大值;(2)证明:()()2222ln 2ln 3ln 21N ,22341n n n n n n n *--+++<∈≥+ 【解析】(1)因为()1ln x f x x +=定义域为()0,∞+,所以()2ln xf x x -'=,当()0,1x ∈时,()0f x ¢>,当()1,x ∈+∞时,()0f x '<,所以()f x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()max 1)1(f x f ==,即当1x =时,()f x 取最大值1.(2)证明:由(1)知()1f x ≤,当且仅当1x =时取等号,因此当1x >时,ln 1x x <-,即当2n ≥时,22ln 1n n <-,所以()222222ln 1ln 1111111111112222121n n n n n n n n n n n ⎡⎤⎛⎫-⎡⎤⎛⎫⎛⎫=⋅<=-<-=--⎢ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎝⎭⎣⎦,所以222ln 2ln 3ln 111111111123223341n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++<--+--++-- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦()()211121122141n n n n n ⎡⎤--⎛⎫=---= ⎪⎢⎥++⎝⎭⎣⎦.例23.(2022·全国·高三专题练习)已知单调递减的正项数列{}n a ,2n ≥时满足()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=. 112n a S =,为{}n a 前n 项和.(1)求{}n a 的通项公式;(2)证明:1n S >【解析】(1)由()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=,得()2221111()20n n n n n n n n a a a a a a a a --------=,即()()111120n n n n n n n n a a a a a a a a -----+--=,由{}n a 是单调递减的正项数列,得1120n n n n a a a a ----<,则110n n n n a a a a ---+=,即1111n n a a --=,故1n a ⎧⎫⎨⎬⎩⎭是以112a =为首项,1为公差的等差数列,则11n n a =+,即11n a n =+.(2)要证:1n S >只需证:11n a n =>+即证:2111(1)1n n n >+++21111(1)n n n >+-++,22221(1)n n n n ++>+,即证:3224(1)(221)n n n n +>++,即证:324410n n +->,而此不等式显然成立,所以1n S >.例24.(2022·广东·铁一中学高三阶段练习)记n S 为数列{}n a 的前n 项和,已知1n S n -⎧⎫⎨⎬⎩⎭是首项为3,公差为1的等差数列.(1)求{}n a 的通项公式;(2)证明:当2n ≥时,231111112n n n a S S S a -+++<-+ .【解析】(1)∵1n S n -⎧⎫⎨⎬⎩⎭是首项为3,公差为1的等差数列,∴3()11n n n S =+--,∴2221(1)n S n n n ++=+=.∴当2n ≥时,12n S n -=,121n n n a S S n -=-=+.又114S a ==不满足21n a n =+,∴{}n a 的通项公式*41212N n n a n n n =⎧=⎨+≥∈⎩,,且.(2)当2n ≥时,21111(1)1(1)1n S n n n n n =<=-+++,112111222212n n a n n a n n --=-=-+++,∴23111111111111233412112nn S S S n n n n +++<-+-++-=-=-+++ ,∴231111112n n n a S S S a -+++<-+ .例25.(2022·全国·高三专题练习)已知数列{}n a 和{}n b 满足11a b =,且对任意*N n ∈都有1n n a b +=,121n n n na ba a +=-.(1)求数列{}n a 和{}nb 的通项公式;(2)证明:31324122341123ln(1)n n n n a a a a a a a a n b b b b b b b b +++++⋯+<+<+++⋯+.【解析】(1) 对任意*N n ∈都有1n n a b +=,121n n n n a b a a +=-,∴12211111n n n n n n n a b a a a a a +-===--+.∴1111n n a a +=+,即1111n n a a +-=.∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公差为1的等差数列.11a b = ,且111a b +=,1112a b ∴==.∴12(1)1n n n a =+-=+.∴11n a n =+,11n n n b a n =-=+,(2) 11n a n =+,1n nb n =+,∴1n n a b n =.∴所证不等式31324122341123ln(1)n n n n a a a a a a a a n b b b b b b b b +++++⋯+<+<+++⋯+,即1111111ln(1)1234123n n n +++⋯+<+<++⋯++.①先证右边不等式:111ln(1)123n n+<+++⋯+.令()(1)f x ln x x =+-,则1()111xf x x x'=-=-++.当0x >时,()0f x '<,所以函数()f x 在[0,)+∞上单调递减.∴当0x >时,()(0)0f x f <=,即ln(1)x x +<.分别取1111,,,23x n=.得111111ln(11)ln(1)ln(1)ln(1)12323n n ++++++⋯++<+++⋯+.即111111ln[(11)(1)(1)(1)]12323n n+⋅+⋅+⋯+<+++⋯+.也即341111ln(212323n n n +⨯⨯⨯⋯⨯<+++⋯+.即111ln(1)123n n+<+++⋯+.②再证左边不等式:1111ln(1)2341n n +++⋯+<++.令()ln(1)1xf x x x=+-+,则2211()1(1)(1)x f x x x x '=-=+++.当0x >时,()0f x '>,所以函数()f x 在[0,)+∞上单调递增.∴当0x >时,()(0)0f x f >=,即ln(1)1xx x+>+.分别取1111,,,23x n =.得111111ln(11)ln(1)ln(1)ln(123231n n++++++⋯++>++⋯++.即111111ln[(11)(1(1(1)]23231n n +⋅+⋅+⋅⋅+>++⋯++.也即341111ln(2)23231n n n+⨯⨯⨯⋯⨯>++⋯++.即。
专题 数列不等式放缩问题(课件)-高考数学二轮专题复习

3 2
an1
3
②,
由② ①得: an 3an1 ,
所以数列{an} 是以 6 为首项,3 为公比的等比数列.
所以 an 6 3n1 2 3n .
(Ⅲ)当
n
1 时,
b1
3 4
1
;
当n
2 时, bn
2an (an 2)2
4 3n (2 3n 2)2
3n (3n 1)2
(3n
3n 1)(3n
a1 a2
an
典型例题讲解:
解:(1) a1 2 ,{3an 2Sn} 是公差为 2 的等差数列,
3a1 2S1 a1 2 ,
3an 2Sn 2 2(n 1) 2n ,
即
Sn
3 2
an
n
,
当n
2
时,
an
Sn
Sn1
3 2
an
n
3 2
an1
(n
1)
,
即 an 3an1 2 ,
an 1 3(an1 1) ,又 a1 1 3 ,
(Ⅰ)求{an} 的通项公式;
(Ⅱ)证明数列
bn 2n
1
是等比数列,并求{bn} 的通项公式;
(Ⅲ)求证:对任意的 n N* , n 1 3 . b i1 i 2
(Ⅰ)解:设等差数列{an} 的公差为 d , d 0 , 因为 a3 3a4 S5 , a1a5 S4 ,
则
aa11
所以 n 1 3 . b i1 i 2
变式练习:
附:本题可以运用糖水不等式进行放缩, 也可以运用指数不等式进行放缩。
变式练习:
变式 4.已知数列{an} 满足 a1 a2 an1 an 2(n 2 且 n N*) ,且 a2 4 .
数列难题突破之裂项与放缩资料讲解

裂项与放缩是高考数列题常用技巧主要有以下3类应用1.裂项法求和2.裂项、放缩证明求和不等式3.放缩证明连乘不等式裂项法求和一个最简单的裂项求和的例子1111122334(1)n n ++++⋅⋅⋅⋅+L【例1】已知等差数列{}n a 满足:3577,26.a a a =+=设*21(),1n n b n N a =∈-求n b 的前 n 项和n T .【例2】设数列{}n a 为等差数列,且每一项都不为0,则对任意的*n N ∈,有1223111111.n n n n a a a a a a a a ++++=L裂项法求和小结回顾:1111223(1)n n +++⋅⋅⋅+L 1111335(21)(21)n n +++⋅⋅-⋅+L 12231111n n a a a a a a ++++L裂项、放缩法证明求和不等式【例3】证明:2221111112123n n-<+++<+L【例4】已知数列{}n a 与{}n b 满足1120;n n n n n b a a b a +++++= *3(1),,2n n b n N +-=∈ 且122,4a a ==,设21,n n k k S a ==∑求证:417.6n k k kS a =<∑和式不等式小结回顾:放缩去“凑”裂项形式12231111n n a a a a a a ++++L ★连乘不等式的证明【例5】求证:1321242n n -⋅⋅⋅<L【例6】等比数列{}n a 的前 n 项和为n S ,已知对任意的*n N ∈,点(,)n n S 均在函数x y b r =+(0 b >且1, b ≠, b r 均为常数)的图像上.(II)当2 b =时,记*22(log 1)(). n n b a n N =+∈求证:*1212111)n nb b b n N b b b +++⋅⋅⋅>∈L总结:1.裂项求和:111111()k k k k a a d a a ++=-∑∑ ★ 2.求和不等式:放缩à可裂项3.连乘不等式:·配上“错一位”的连乘式à可消去·选择“错位”方向课后作业【习题1】求和111144797100+++⋅⋅⋅L【习题2】求证:22221111111.5 2.5 3.5(0.5)n n ++++<-+L .【习题3】求证:2583114732n n -⋅⋅⋅⋅>-L 分析:考虑配上一个“错一位”的连乘式,发现还是消不掉,因此本题应当配上两个“错一位”的连乘式.答 案【习题1】解:111144797100111111111()()()3143473971001133(1)3100100+++⋅⋅⋅=-+-++-=-=L L 【习题2】 分析:希望将和式放缩成可以裂项的形式,可以考虑用放缩211(0.5)(1)k k k <++. 证: 222211111.5 2.5 3.5(0.5)1111122334(1)11n n n n+++++<++++⋅⋅⋅+=-L L【习题3】 解:设2583114732n A n -=⋅⋅⋅⋅-L ,369325831n B n =⋅⋅⋅⋅-L ,4710313693n C n +=⋅⋅⋅⋅L ,则31A B C n ⋅⋅=+,由,,0A B C >知,只需证,A B A C >>就有A >证明对任意1,2,3,k n =L ,连乘式A 中的第k 项大于B 和C 的第k 项,只需要证:3133132313k k k k k k -+>>--此不等式的每项减去1,即11132313k k k>>--,显然成立,故原不等式成立。
(完整版)裂项相消和放缩法解数列专题

数列专题3一、裂项求和法裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:通项为分式结构,分母为两项相乘,型如:11+•n n a a , }{n a 是0≠d 的等差数列。
常用裂项形式有: ;111)1(1+-=+n n n n 1111()()n n k k n n k =-++;)121121(211)12)(12()2(2+--+=+-n n n n n ; ])2)(1(1)1(1[21)2)(1(1++-+=+-n n n n n n n ; )(11b a ba b a --=+; )(11n k n k n k n -+=++特别地:n n nn -+=++111 二、用放缩法证明数列中的不等式将不等式一侧适当的放大或缩小以达证题目的方法,叫放缩法。
1.常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下4种:①1n i i ak =<∑(k 为常数);②1()n i i a f n =<∑;③1()n i i a f n =<∏;④1ni i a k =<∏(k 为常数). 放缩目标模型→可求和(积)→等差模型、等比模型、裂项相消模型2.几种常见的放缩方法(1)添加或舍去一些项,如:a a >+12;n n n >+)1((2)将分子或分母放大(或缩小) ①n n n n n 111)1(112--=-< ; 111)1(112+-=+>n n n n n(程度大) ②)1111(21)1)(1(111122+--=+-=-<n n n n n n )2(≥n (程度小) ③1111111121312111<+=++++++≤+++++++n n n n n n n n n 或21221212121312111==+++≥+++++++n n n n n n n n n ④n n n n n n n ==+++>++++111131211 ⑤平方型:)121121(2144441222+--=-<=n n n n n ; )111(41)1(41441)12(122nn n n n n n --=-=-<- ⑥立方型:])1(1)1(1[21)1(1123+--=-<n n n n n n n )2(≥n ⑦指数型: )1()(111≥>-≤--b a b a a b a n n n ;)1()(111≥>-≤--b a b a a b a n n ⑧kk k k k 21111<++=-+; ⑨利用基本不等式,2)1()1(++<+n n n n ,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅(一)放缩目标模型可求和—等比数列或等差数列例如:(1)求证:)(121212121*32N n n ∈<++++ .(2)求证:)(1121121121121*32N n n ∈<++++++++ .(3)求证:)(22323222121*32N n n n n ∈<++++++++ .总结:放缩法证明与数列求和有关的不等式,若1n i i a =∑可直接求和,就先求和再放缩;若不能直接求和的,一般要先将通项n a 放缩后再求和.问题是将通项n a 放缩为可以求和且“不大不小”的什么样的n b 才行呢?其实,能求和的常见数列模型并不多,主要有等差模型、等比模型、错位相减模型、裂项相消模型等. 实际问题中,n b 大多是等比模型或裂项相消模型.(1)先求和再放缩例1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a n +12-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:2a =(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.(2)先放缩再求和例如:求证:)(2131211*222N n n∈<++++.例如:函数x x x f 414)(+=,求证:)(2121)()2()1(*1N n n n f f f n ∈-+>++++ .例2.设数列{a n }的前n 项和为S n ,满足,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有.总结:一般地,形如n n n b a a -=或b a a n n -=(这里1≥>b a )的数列,在证明k a a a n<+++11121。
高中数学数列放缩专题用放缩法处理数列和不等问题含答案

用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =g g g(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn n T S =,1,2,3,n =g g g ,证明:132ni i T =<∑.解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n),n=2,3, …整理得: a n +2n=4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n}是首项为a1+2=4,公比为4的等比数列,即 :a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n, n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n-1)T n = 2nS n = 32×2n(2n+1-1)(2n-1) = 32×(12n -1 - 12n+1-1) 所以,1ni i T =∑=321(ni =∑12i -1 - 12i+1-1) = 32×(121-1 - 1121n +-) < 32 二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a=-,前n 项的和为n S ,且798,,S S S 成等差数列. 设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴n na )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式nn S Aq A =-猜想)∴n n b b b B Λ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n Λ. 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---=+∈L,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311...()232n n a a a n n n N a a a +-<+++<∈.(I )解:*121(),n n a a n N +=+∈Q112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+Q122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:Q1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1Λ=+=+n a n a n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a Λ.令12212221--+++=n n n S Λ,所以n n n S 2122212132-+++=Λ,两式相减得:n n n n S 212121212121132--++++=-Λ,所以1212-+-=n n n S ,所以1213-+-≥n n n a ,故得11213-++-≥>n n n n a a . 3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a Θ ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a Θ ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++ΛΛ练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;(Ⅲ)若1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之. 解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:nn n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)nn n n n n n a S S a a ---=-=+----(n>1)化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--.⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
(学)高中数学数列放缩专题:用放缩法处理数列和不等问题模板

数列和不等问题(教师版)•先求和后放缩(主要是先裂项求和,再放缩处理) 例1正数数列 a 詁勺前n 项的和S n ,满足2 S ; -a n 1,试求:(1)数列;a n 1的通项公式;AA(2)设b n ——,数列h n [的前n 项的和为B n ,求证:B n :::—a n a n +2解:(1)由已知得 4S n =(a n J)2 , n_2 时,4S n ^-(a n j 1)2,作差得:4a n 二a ; • 2a n -a ;丄-2a n 」,所以(a n a nJ )(a n -a n 」-2)=0,又因为、a n {为正数数列,所以 a n - a n 丄=2,即:a n :■是公差为2的等差数列,由 2 S^a 1 1,得厲=1,所以a n = 2n -11 11-(2 —),所以 2 2n -1 2n 14 1 2彳得 a 1=S 1= 3*1 — T X 4+3 所以 a 1 =2 3 3 34 1将①和②相减得:a n =S — s —1= 3(a n — a n -1) — 3X (2n+13 3整理得:a n +2n=4(a n —1+2n —1),n=2,3,…,因而数列{ a n +2n}是首项为a1+2=4,公比为4的等比数列,即:…,因而 a n =4n — 2n, n=1,2,3, …,4 n n 1 n+1 3X (4 — 2 ) — 2 + 2 1 n+1 n+1—=—X (2 — 1)(2 —2)2 (2n+1— 1)(2 n— 1) 2 2—-X 2n+1+3, n=1,2,3,…,①B n J(1 一1 D 2 3 3 5 1)=12n -1 2n 122(2n 1)2真题演练1: (06全国 4 1 1卷理科22题)设数列的前n 项的和,S n — an-— 233n「| , n =1,2,3』(I)求首项a 1与通项a n ; (n)设T n =—S nnn =1,2,3,丄,证明:v T iy再由①有S 4 —1 =§a n — 1 — 1 23X 2n+§, n=2,3 , 4,…2nTn=恳2n32X(2 n+1— 1)(2 n— 1) 31 =2 X (22n+1— 11n 所以,'、 i 3 1 i+1 _ 3」 1T = 2 二(2—1 — 2^—1)=i 3 3 2X (21— 112n 1 -13 )<3⑵b n1 1a n a n 1 (2n -1)(2n 1)4 Sn =3a—2n ), n=2,3.a n +2n =4X 4n —1= 4n, n=1,2,3, (n )将a n =4n— 2n代入①得 S n =二.先放缩再求和1 •放缩后成等比数列,再求和例2.等比数列3中,a1 V ,前n 项的和为S ,且成等差数列.2设b n 二主—,数列4/前n 项的和为1 — a n真题演练2: (06福建卷理科22题)已知数列 订「满足a^1,3nd =2a n 1( N *).(I )求数列 曲的通项公式;(II )若数列 和[滿足4b ^44b 2J lh4b n^ -(a n - 1)b n(n ・N *),证明:数列〈b n?是等差数列; (川)证明: °_1 :::色■电■…,-a^ ::: n (n ・ N*).2 3a 2 a 3 a n + 2(I )解:* a . 1 = 2a n 1(n N ),-a n1 1=2(a n 1), :a n 1是以a 「1 = 2为首项,2为公比的等比数列 .a n 1 =2n .即a n =22 -1(n N *).(II )证法一::/坏%* =(a n 1)k n..4E % +••*“)■» =2nkn2[(b b 2 ... b n )-n]= nb n ,① 2[(b 1 b 2 ... bn b n1)-(n 1)]=(n 1)b n1.②②—①,得 2(0 1 -1)=(n 1)b n1 - nbh,1T n'证明:「2解:T A 9 -A 7 =a 8 89,A 8 _ A 9a8' a 9V 9,二公比 q88(利用等比数列前 二 B n fb nb n11_(_1)nn 项和的模拟公式 4n S n 1_(-2)n1 <3 2n=Aq n - A 猜想)1 1 323 223 21 11 1 2(^2?)T — 2 1(1 1)3,2n ;即(n -1)bn 1 -nb n 2 =0, nb n 2 -(n 1)0 1 2=0. ③—④,得nb h .2-2nb h 1 nb n =0,•b n =0,.b n 2-b n 1 =b n 】-b n (N *),. fb n ?是等差数列b n 21(山 )证明:■.a kk .2 -1 k .2 -1a k 12k -12(21) 1 ,k =1,2,..., n,2a i a n a ? a 3.a n 12 2k -1-1 —— --------------------------------------------- — -------------------------------------- 二_ ——2 2(2k 1 -1) 2 3.2k2—2一2 321 1 1.k ,k= 1,2,...,n,a na ? a 3n 1 111、 n 11、 n 1-厂3(2戸…歹)匕一3(12)厂亍a ? a 3.电a n 1n *□ N).2 •放缩后为“差比”数列,再求和 例3•已知数列{a n }满足:a, =1 ,a n 1 = (1 尹)a n ( n ~ 1,2,3 ).求证:a n1a n-3证明:因为 a n 1 = (1-斗)a n ,所以a n d 与a n 同号,又因为a^ ^1 0,所以a n 0 ,2即 a n 1 - a n0,即a n d ■ a n .所以数列{a n }为递增数列,所以a . — a1 =1,即 a n 1 " a n1累加得:a n ~^1 -2+——222nJ令S nn _•亍,两式相减得:1 n -1—,所以Sn =2 nJn 2 22心,所以 a n -32n -,故得a n 1 -a n -3 2n43 •放缩后成等差数列,再求和例4.已知各项均为正数的数列{a n}的前n项和为& ,且a2a n 二2S n .解:(1)在条件中,令 n=1,得 al - a^2S^2a 1,; a 1 0 . 1,又由条件 a 2 - a n = 2S n 有a 31 ■ a n 1 = 2S n 勺,上述两式相减,注意到 a n “ = S n j - S n 得(a n 1 a n )(a n 1 _a n _ 4 = 0a n 0 a n 1 a n 0二 a n 1「a n = 1所以,a n =11 (n -1) = n ,S n =练习:13 1. (08南京一模22题)设函数f (x ) x 2 bx,已知不论:J 为何实数,恒有f (cos 「)岂0且4 4f (2-si n 0.对于正数列,其前n 项和^乂仁內),(n • N *).(I )求实数b 的值;(II )求数列<a n ?的通项公式; —,n • N .,且数列;的前n 项和为T n ,试比较T n 和1的大小并证明之1 a n61解:(I ) b(利用函数值域夹逼性);(II ) a n =2n ,1;23 (04全国)已知数列{a n }的前n 项和S n 满足:S n =2a n ・(T )n , n_1(1)写出数列{a n }的前三项a 1,a 2,a ? ; ( 2)求数列{a .}的通项公式;⑴求证:S n :::n(n 1) 22 2所以2 2a n ' a n 14(2)因为 n v Jn(n +1) < n +1,所以 2 <、 <2 \:n(n+1) n+1所以2「n(n 1)2n n(n 1) 2 2、2S n 2(川)若,C n(出) C n—丄」 ・(2n 2)22 2n 1 2n 3丄J2n 3 62 2a n a n 14⑵求证:二数列{ a n }的通项公式为: a n心十1)n ].⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
数列放缩法技巧

高考数学备考之放缩技巧一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n nn n n n(13) 3212132122)12(332)13(2221nn nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n≤α,再进行裂项)1(1111ln 222+-<-≤n n nnn ,求和后可以得到例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e <+⋅⋅++)311()8111)(911( . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n a nn a )2111(1⇒++++≤+n n a nn a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
高考数学 压轴题 放缩法技巧全总结(最强大)

高考数学压轴题放缩法技巧全总结(最强大)高考数学-压轴题-放缩法技巧全总结(最强大)变焦技术(高考数学备考资料)证明级数不等式由于其思维跨度大、建构性强,充满了思考和挑战。
它可以全面全面地测试学生的潜能和后续学习能力。
因此,它已成为高考最后一道题和各级各类竞赛题命题的优秀材料。
这类问题的解决策略往往是:多角度观察给定序列的通项结构,深入分析其特点,把握其规律,适当放大缩小;主要有以下膨胀和收缩技术:一、裂项放缩例1(1)请问?K1n24k2?124n2?11? n2n值;(2)验证:?1.五2k?1k3解析:(1)因为211,那么n212n 1.2(2n?1)(2n?1)2n?12n?12n?12n?1k?14k?14(2)因为n1111?251?,所以?1?1?2??11????2?2?2???k352n?12n?133??k?114n?1?2n?12n?1?n2?41奇巧积累:(1)1441?? 1.2.2.2.2N4N?1.2n?12n?1.R1r?中国?(2)121112cn?1cn(n?1)n(n?1)n(n?1)n(n?1)(3) t1n!11111 (r?2)rrr!(n?r)!nr!r(r?1)r?1rn(4)(1?1)n?1.1.1.1.氮气?13? 215?n(n?1)21?n?2?nn?2?2n?12n?3?211?n?1(2n?1)?2(2n?3)?2n(5)111? Nnnn2(2?1)2?12(6)21?1(7)2(n?1?n)?1?2(n?n?1)(8)n?n(9)111?111?11,????k(n?1?k)?n?1?kk?n?1n(n?1?k)k?1?nn?1?k?n11??(n?1)!n!(n?1)!(10)(11)1n?2(2n?1?2n?1)?222n?1.2n?1.N211? N22(11)(12)(13)(14)2n?111 (n?2)n2nnnnnnnnnn?1n?1n(2?1)(2?1)(2?1)(2?1)(2?2)(2?1)(2?1)2?12? 11n3?1n?n21111 n(n?1)(n?1)?n(n?1)??n(n?1)?N1.N一1?n?1?n?1?1n?1?2n?n?111N1n?一2n12n?n?32?132n?1?2?2n?(3?1)?2n?3?3(2n?1)?2n?2n?1?k?211??k!?(k?1)!?(k?2)!(k?1) !(k?2)!1.NN1(n?2)n(n?1)(15)22(15)i?1?j?1?i2?j2(i?j)(i2?1?j2?1)i?j?i?ji2?1?j2?1?1例2(1)验证:1?11171? 2.(n?2)2262(2n?1)35(2n?1)(2)验证:1?1.1.1.1.12416364n24n(3)验证:1?1.3.1.3.5.1.3.5.(2n?1)?2n?1.一22?42?4?62?4?62nn(4)求证:2(n?1?1)?1?1?11?2(2n?1?1)23分析:(1)因为111?11?,所以2(2n?1)(2n?1)2?2n?12n?1?(2n?1)?(2i?1)i?1n12111111?1?(?)?1?(?)232n?1232n 1(2)11111(111)1(111)222416364n42n4n(3)首先证明1?3.5.(2n?1)?2.4.6.2n12n?1.重新连接1n?2?n?2?n进行裂项,最后就可以得到答案(4)首先,再次证明1n1n?2(n?1?n)?2n?1?n22,所以容易经过裂项得到2(n?1?1)?1?1?1123n从平均不平等性来看,很明显这是真的,2(2n12n1)2n12n1n211n22所以1?1?11?2(2n?1?1)23n例3.求证:6n1115?1.2.(n?1)(2n?1)49n31?n21??1?2?214n?12n?12n?1?2?n?414解析:一方面:因为,所以kk?1n1211?25? 11? 1.2.1.2n?12n?1.33? 35另一方面:1?1.1.1.1.1.1.249n2?33? 411n1n(n1)n1n1当n?3时,什么时候?2点,总结一下6n111n6n,当n?1时,?12?(n?1)(2n?1)49nn?1(n?1)(2n?1)6n111?12,(n?1)(2n?1)49n,6n1115?12?(n?1)(2n?1)49n3案例4(2022年国家第一卷)集合函数f(x)?十、xlnx。
高中数学数列放缩专题用放缩法处理数列和不等问题含答案

用放缩法处理数列和不等问题(教师版)一.先求和后放缩(主要是先裂项求和,再放缩处理)例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 真题演练1:(06全国1卷理科22题)设数列{}n a 的前n 项的和,14122333n n n S a +=-⨯+,1,2,3,n =(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑. 解: (Ⅰ)由 S n =43a n -13×2n+1+23, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23所以a 1=2再由①有 S n -1=43a n -1-13×2n +23, n=2,3,4,…将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13×(2n+1-2n ),n=2,3, …整理得: a n +2n =4(a n -1+2n -1),n=2,3, … , 因而数列{ a n +2n }是首项为a1+2=4,公比为4的等比数列,即 :a n +2n =4×4n -1= 4n , n=1,2,3, …, 因而a n =4n -2n , n=1,2,3, …,(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1-2)= 23×(2n+1-1)(2n -1)T n = 2n S n = 32×2n (2n+1-1)(2n -1) = 32×(12n -1 - 12n+1-1)所以, 1ni i T =∑=321(ni =∑12i-1 - 12i+1-1) = 32×(121-1 - 1121n +-) < 32二.先放缩再求和1.放缩后成等比数列,再求和例2.等比数列{}n a 中,112a =-,前n 项的和为n S ,且798,,S S S 成等差数列.设nn n a a b -=12,数列{}n b 前n 项的和为n T ,证明:13n T <.解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-. ∴n n a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. (利用等比数列前n 项和的模拟公式n n S Aq A =-猜想)∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式; (II )若数列{}n b 滿足12111*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;(Ⅲ)证明:*122311...()232n n a a a n nn N a a a +-<+++<∈. (I )解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列12.n n a ∴+=即 2*21().n a n N =-∈(II )证法一:1211144...4(1).n n k k k k n a ---=+12(...)42.n n k k k n nk +++-∴=122[(...)],n n b b b n nb ∴+++-= ①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②②-①,得112(1)(1),n n n b n b nb ++-=+-即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++= ③-④,得 2120,n n n nb nb nb ++-+=即 2120,n n n b b b ++-+=*211(),n n n n b b b b n N +++∴-=-∈{}n b ∴是等差数列(III )证明:1121211,1,2,...,,12122(2)2k k k k k k a k n a ++--==<=-- 12231 (2)n n a a a na a a +∴+++<111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证:11213-++-≥>n nn n a a 证明:因为n n n a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a . 令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .3.放缩后成等差数列,再求和例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅ 解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++•<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++练习:1.(08南京一模22题)设函数213()44f x x bx =+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和16的大小并证明之. 解:(Ⅰ) 12b =(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ⎛⎫=<- ⎪+++⎝⎭,∴1231111+23236n n T c c c c n ⎛⎫=+++⋅⋅⋅<-< ⎪+⎝⎭…2.(04全国)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式;(3)证明:对任意的整数4>m ,有8711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+-2)1(2)1(11---=---n n n n a a ,]32)1([232)1(11+--=+---n n n n a a 故数列{32)1(+-nn a }是以321+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n nn a ∴22[2(1)]3n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
数列放缩法高考专题

高考专题—放缩法一.先求和后放缩 例1.正数数列{}n a 的前n 项的和nS ,满足12+=nna S ,试求:,试求:(1)数列{}n a 的通项公式;的通项公式;(2)设11+=n n na a b,数列{}n b 的前n 项的和为n B ,求证:21<n B二.先放缩再求和1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=. (1) 求证:2214nn n a aS ++<;(2)(2) 求证:112122nn nSSS S S +-<++××××××++<2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ×+³--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.1n1+练习1nn m1-2设数列{na }满足12,311+-==+n a aa nn (1) 求{n a }的通项公式;的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c求证:数列{n n d b ×}的前n 项和31<n s3已知正项数列{n a }满足)(,)1(1,1211*+Î×++==N n a n a a a nn n (1) 判断数列{n a }的单调性;的单调性; (2) 求证:21)1(1112111+<-<+-++n a a n n n n求证:121(23n a a a n a a a -<+++6 ,有11178a a a +++<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)数列通项公式的求法8.(1)和型: )(1n f a a n n =++基本思路是,由)(1n f a a n n =++得)1(21+=+++n f a a n n ,相减,得奇数项成等差,偶数项成等差,分别求奇数项通项,偶数项通项。
例如:数列{}n a 中相邻两项n a ,1+n a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b =____.(2)积型:)(1n f a a n n =⋅+基本思路是,由)(1n f a a n n =⋅+,得)1(21+=⋅++n f a a n n ,两式相除,得奇数项成等比,偶数项成等比,分别求奇数项通项,偶数项通项,做法与“商型”相乘的思路相反.例如:已知数列}{n a 中,11=a ,n n n a a )21(1=⋅+,则数列}{n a 的通项公式为________.特别地:(1)如果数列}{n a 从第2项起的每一项与前一项的和为定值,则此数列}{n a 为等和数列。
递推公式为:⎩⎨⎧=+=+ca a aa n n 11 (c 为常数),则n n a a =+2.即该数列的所有的奇数项均相等,所有的偶数项也相等.(2)如果数列}{n b 从第2项起的每一项与前一项的积为定值,则此数列}{n b 为等积数列。
递推公式为:⎩⎨⎧=⋅=+pb b bb n n 11 (p 为常数),则n n a a =+2,即该数列的所有的奇数项均相等,所有的偶数项也相等. 9.周期型解法:由递推式计算出前几项,寻找周期。
例如:已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则56a =______.10.取对数法形如rn n pa a =+1,一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。
例如.设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.11.换元法:适用于含有根式递推关系式类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。
例如.已知数列}{n a 中,111(14116n n a a a +=+=,,求数列}{n a 的通项公式.练习:1.数列{}n a 满足01=a ,n a a n n 21=++,则数列{}n a 的通项公式为_________.2.数列{}n a 中,若31=a ,)(*1N n a a n n ∈=+,则数列{}n a 的通项公式=n a ________.3.若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则2014a 的值为___________。
4.在数列}{n a 中,12211,5,n n n a a a a a ++===-,则1998a 的值为___________。
5.已知数列}{n a 满足:11=a ,543221+++=+n n a a n n ,则数列{}n a 的通项公式=n a ________.总结:形如)001(21≠≠+++=+a p c bn an pa a n n ,,解法: 利用待定系数法构造等比数列,令221(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,与已知递推式比较,解出y x ,,z.从而转化为{}2naxn yn c +++是公比为p 的等比数列。
6.已知数列}{n a 满足:11=a ,3221++=-nn n a a ,则数列{}n a 的通项公式=n a ________.7.已知数列}{n a 满足:21=a ,*N n ∈∀,0>n a , 且0)1(2112=-++++n n n n na a a a n ,则数列{}n a的通项公式=n a ________.总结:当数列的关系式较复杂,可考虑分解因式和约分化为较简形式,再用其它方法求得a n . 8.已知在各项均不为零的数列}{n a 中,11=a ,)(02*11N n a a a a n n n n ∈=-+++. (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足1+=n n n a a b ,求数列}{n b 的前n 项和n S .总结:数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得9.已知数列}{n a 满足222213221na a a a n n =++++- ,*N n ∈. (1)求数列}{n a 的通项公式;(2)设n n a n b )12(-=,求数列}{n b 的前项和n S .10.已知数列}{n a 满足:11=a ,2141+=++n a a n n ,*N n ∈. (Ⅰ)证明数列}{12-n a 为等差数列;(Ⅱ)求数列}{n a 的通项公式及其前n 项和n S .11.已知数列}{n a 满足:c a =1,)1(12*1N n c a a n n ∈≠+=+,,记数列}{n a 的前n 项和为n S .(Ⅰ)令1-=n n a b ,证明:数列}{n b 是等比数列;(Ⅱ)求最小的实数c ,使得对任意*N n ∈,都有3≥n S 成立.(一)数列通项公式的求法 8.(1)和型: )(1n f a a n n =++基本思路是,由)(1n f a a n n =++得)1(21+=+++n f a a n n ,相减,得奇数项成等差,偶数项成等差,分别求奇数项通项,偶数项通项。
例如:数列{}n a 中相邻两项n a ,1+n a 是方程032=++n b nx x 的两根,已知1710-=a ,则51b =____.分析:由题意:n a +n a n 31-=+ ①,得: 1+n a +)1(32+-=+n a n ②,②—①:32-=-+n n a a .所以该数列的所有的奇数项成等差,所有的偶数项也成等差,公差都为-3.(2)积型:)(1n f a a n n =⋅+基本思路是,由)(1n f a a n n =⋅+,得)1(21+=⋅++n f a a n n ,两式相除,得奇数项成等比,偶数项成等比,分别求奇数项通项,偶数项通项,做法与“商型”相乘的思路相反.例如:已知数列}{n a 中,11=a ,n n n a a )21(1=⋅+,求数列}{n a 的通项公式.特别地:(1)如果数列}{n a 从第2项起的每一项与前一项的和为定值,则此数列}{n a 为等和数列。
递推公式为:⎩⎨⎧=+=+ca a aa n n 11 (c 为常数),则n n a a =+2.即该数列的所有的奇数项均相等,所有的偶数项也相等.(2)如果数列}{n b 从第2项起的每一项与前一项的积为定值,则此数列}{n b 为等积数列。
递推公式为:⎩⎨⎧=⋅=+p b b bb nn 11 (p 为常数),则n n a a =+2,即该数列的所有的奇数项均相等,所有的偶数项也相等.9.周期型解法:由递推式计算出前几项,寻找周期。
例如:已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则56a =______.10.取对数法形如rn n pa a =+1,一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。
例如.设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b , 则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n , ∴1212--=n n a11.换元法:适用于含有根式递推关系式类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。
例如.已知数列}{n a 中,111(14116n n a a a +=+=,,求数列}{n a 的通项公式.解法: 令n b =21(1)24n n a b =-,代入得2214(3)n n b b +=+, 则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -==为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,21()32n -=+,得2111()()3423n n n a =++。
评注:的换元为n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。
练习:1.数列{}n a 满足01=a ,n a a n n 21=++,则数列{}n a 的通项公式为_________.2.数列{}n a 中,若31=a ,)(*1N n a a n n ∈=+,则数列{}n a 的通项公式=n a ________.3.若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则2014a 的值为___________。
4.在数列}{n a 中,.19981221,,5,1a a a a a a n n n 求-===++.解:由条件,)(11123n n n n n n n a a a a a a a -=--=-=+++++即,,363n n n n n a a a a a =-=∴-=+++即每间隔6项循环一次.1998=6×333,∴.461998-==a a 结论:数列有形如0),(12=++n n n a a a f ,的关系,如果复合数列构不成等差、等比数列,有时可考虑构成循环关系而求出.n a5.已知数列}{n a 满足:11=a ,543221+++=+n n a a n n ,则数列{}n a 的通项公式=n a ________.总结:形如)001(21≠≠+++=+a p c bn an pa a n n ,,解法:利用待定系数法构造等比数列,令221(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,与已知递推式比较,解出y x ,,z.从而转化为{}2naxn yn c +++是公比为p 的等比数列。