最新初中数学几何图形初步专项训练答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学几何图形初步专项训练答案
一、选择题
1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()
A.∠ABE=2∠CDE B.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】
解:延长BF与CD相交于M,
∵BF∥DE,
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()
A .1
B .2
C .3
D .4
【答案】C
【解析】 试题分析:作F 点关于BD 的对称点F′,则PF=PF′,连接EF′交BD 于点P .
∴EP+FP=EP+F ′P .
由两点之间线段最短可知:当E 、P 、F′在一条直线上时,EP+FP 的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD 为菱形,周长为12,
∴AB=BC=CD=DA=3,AB ∥CD ,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D 是平行四边形,
∴EF ′=AD=3.
∴EP+FP 的最小值为3.
故选C .
考点:菱形的性质;轴对称-最短路线问题
3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )
A .90°
B .75°
C .105°
D .120°
【答案】B
【解析】
【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC
∠
的度数.
【详解】
∵//BC DE
∴30E BCE ==︒∠∠
∴453075AFC B BCE =+=︒+︒=︒∠∠∠
故答案为:B .
【点睛】
本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.
4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )
A .重心
B .内心
C .外心
D .不能确定
【答案】A
【解析】
【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.
【详解】
连接BP 、BE ,
∵AB=AC ,BD=BC ,
∴AD ⊥BC ,
∴PB=PC ,
∴PC+PE=PB+PE ,
∵PB PE BE +≥,
∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,
∵AD 也是中线,
∴点P 是△ABC 的重心,
故选:A.
【点睛】
此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.
5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )
A .8
B .9
C .10
D .11
【答案】C
【解析】
【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.
【详解】
解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小
∵四边形ABCD 是正方形
B D ∴、关于A
C 对称
PB PD =∴
PB PE PD PE DE ∴+=+=
2,3BE AE BE ==Q
6,8AE AB ∴==
226810DE ∴=+=;
故PB PE +的最小值是10,
故选:C .
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段
最短的性质得出.
6.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.
上述说法中,正确的个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.
【详解】
解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;
③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;
④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.
综上所述,正确的是①②③④共4个.
故选:D .
【点睛】
本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.
7.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.