最新初中数学几何图形初步专项训练答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学几何图形初步专项训练答案

一、选择题

1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()

A.∠ABE=2∠CDE B.∠ABE=3∠CDE

C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°

【答案】A

【解析】

【分析】

延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】

解:延长BF与CD相交于M,

∵BF∥DE,

∴∠M=∠CDE,

∵AB∥CD,

∴∠M=∠ABF,

∴∠CDE=∠ABF,

∵BF平分∠ABE,

∴∠ABE=2∠ABF,

∴∠ABE=2∠CDE.

故选:A.

【点睛】

本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.

2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()

A .1

B .2

C .3

D .4

【答案】C

【解析】 试题分析:作F 点关于BD 的对称点F′,则PF=PF′,连接EF′交BD 于点P .

∴EP+FP=EP+F ′P .

由两点之间线段最短可知:当E 、P 、F′在一条直线上时,EP+FP 的值最小,此时EP+FP=EP+F′P=EF′.

∵四边形ABCD 为菱形,周长为12,

∴AB=BC=CD=DA=3,AB ∥CD ,

∵AF=2,AE=1,

∴DF=AE=1,

∴四边形AEF′D 是平行四边形,

∴EF ′=AD=3.

∴EP+FP 的最小值为3.

故选C .

考点:菱形的性质;轴对称-最短路线问题

3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )

A .90°

B .75°

C .105°

D .120°

【答案】B

【解析】

【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC

的度数.

【详解】

∵//BC DE

∴30E BCE ==︒∠∠

∴453075AFC B BCE =+=︒+︒=︒∠∠∠

故答案为:B .

【点睛】

本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.

4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )

A .重心

B .内心

C .外心

D .不能确定

【答案】A

【解析】

【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.

【详解】

连接BP 、BE ,

∵AB=AC ,BD=BC ,

∴AD ⊥BC ,

∴PB=PC ,

∴PC+PE=PB+PE ,

∵PB PE BE +≥,

∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,

∵AD 也是中线,

∴点P 是△ABC 的重心,

故选:A.

【点睛】

此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.

5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )

A .8

B .9

C .10

D .11

【答案】C

【解析】

【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.

【详解】

解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小

∵四边形ABCD 是正方形

B D ∴、关于A

C 对称

PB PD =∴

PB PE PD PE DE ∴+=+=

2,3BE AE BE ==Q

6,8AE AB ∴==

226810DE ∴=+=;

故PB PE +的最小值是10,

故选:C .

【点睛】

本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段

最短的性质得出.

6.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.

上述说法中,正确的个数为( )

A .1个

B .2个

C .3个

D .4个

【答案】D

【解析】

【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.

【详解】

解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;

③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;

④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.

综上所述,正确的是①②③④共4个.

故选:D .

【点睛】

本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.

7.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】 根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.

相关文档
最新文档