2011年量子力学期末考试题库
量子力学期末考试试卷及答案范文
量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。
量子力学期末试题及答案
(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜
⎝
2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜
⎝
2⎟
−
i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3
量子力学期末试题
量子力学期末试题1一. 填空(3分×5=15分)1.2)2,(h vr ψ的含义是 2.在非定态下,力学量的平均值一定随时间变化吗?3.211ˆ(,)________L Y θϕ=;2,1ˆ(,)________z L Y θϕ−= 4.坐标y 在动量表象中的矩阵元为__________________________.5.2ˆ[,]y z σσ=____ 二.证明(10分×2=20分)1.(10分)设ˆA v ,ˆB v 是与σˆv 对易的任何矢量算符, 证明:)ˆˆ(ˆˆˆ)ˆˆ)(ˆˆ(B A i B A B A v v v v v v v v v ו+•=••σσσ。
2.(10分)设力学量A 不显含时间t ,H 为体系的Hamilton 量,试证明]],,[[222H H A A dt d =−h三.计算(65分),1. (15分)求一维谐振子的坐标,x 动量ˆp及Hamilton 量ˆH 在能量表象中的矩阵表示。
(已知:1111)n n n n n x ψ+−−+=+− 2.(15分)在ˆz σ表象中,求01ˆ10x σ⎛⎞=⎜⎟⎝⎠和0ˆ0y i i σ−⎛⎞=⎜⎟⎝⎠的本征值和所属的本征函数。
3.(15分)设粒子在势场 ⎩⎨⎧><∞<<=.,0,;0,0)(a x x a x x u 中运动, 求:粒子的能量本征值和本征函数。
(15分)4.(20分)考虑耦合谐振子,H H H ′+=0,其中)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh ;21x x H λ−=′(λ为实常数,刻画耦合强度)(1).求出0H 的本征值及能级的简并度;(2).以第一激发态为例用简并微扰论计算H ′对能级的影响(一级近似)试卷1参考答案一. 填空(每题3分,共15分)1. 电子自旋向上位置在r v处的几率密度, 2. 不一定,3. ),(2112ϕθY h ;),(1,2ϕθ−−Y h , 4. )(p p p i y p p ′′−′′∂∂=′′′δh5. 0二.证明(每题10分,共20分) 1 证明原式左端)(z z y y x x A A A σσσ++=)(z z y y x x B B B σσσ++ (5分)z z z y y y x x x B A B A B A 222σσσ++=x y x y y x y x z x z x x z x z y z y z z y z y B A B A B A B A B A B A σσσσσσσσσσσσ++++++又因为1222===z y x σσσ,z x y y x i σσσσσ=−=,x y z z y i σσσσσ=−=,y z x x z i σσσσσ=−= (3分)整理得)(B A i B A vv v v v ו+•σ (2分)问题得证 2 证明对于不显含时间t 的力学量A 有hi A dt d 1=],[H A (5分) 上式两边对t 求导,则有 h h i H A i dt d A dt d 1],[122==]],,[1[H H A i h ]],,[[12H H A h−= (5分)即]],,[[222H H A A dt d =−h三.计算题 1.解:取占有数表象,由已知可得:(2分)1) 坐标x 的矩阵表示为,1,n n n n n n x ′′′+⎞=+⎟⎟⎠(3分)0000100x α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L L L L L L L L L L L L L (2分) 2) 由于ˆdpi dx=−h ,所以,1,n n n n n n p ′′′−⎤=−⎥⎦(2分)故有0000000p i α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L h L L L L L L L L L L L (2分) 3) 能量ˆ(H=1ˆ2N ω+h ,所以 ,1()2n n n n H n ωδ′′=+h (2分)故有 1000230002ˆ50002100002H n ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+⎜⎟⎝⎠L L L L L L L L (2分)2.解:解:(1) 先求x σ的本征值和本征函数在z σ表象中,x σ=⎟⎟⎠⎞⎜⎜⎝⎛0110,设x σ本征值为λ,本征态为⎟⎟⎠⎞⎜⎜⎝⎛b a , 则本征方程为:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛b a b a λ1001 (3分) 解得: 1±=λ (2分)x σ∴的归一化的本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=1112111121λσλσx x (4分)(2) 同理可求y σ的本征值为1±=′λ (2分)相应于y σ的归一化本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=11211121λσλσi i y y (4分)3.1 解:一维定态薛定鄂方程为222()2d u x E m dxψψψ−+=h (2分) 1) 在0x a ≤≤范围:22202d E m dxψ+=h (2分) 故 sin cos A x B x ψαα=+,1222mE α⎛⎞=⎜⎟⎝⎠h (2分) 2) 根据波函数的连续性条件:()(0)0a ψψ==,可得 sin cos 0,0A a B a B αα+==故有 sin A x ψα= (3分)由sin 0a α=可得,(1,2,3)n n aπα==L (1分)3) 由归一化条件:2||1dx ψ+∞−∞=∫,可得2220sin 1aA xdx α=∫故有A =(2分) 4) 结合1222mE α⎛⎞=⎜⎟⎝⎠h 和(1,2,3)n n a πα==L 可得 2222222222n n n E m a ma ππ==h h (2分)所以()n x x aπψ= 1,2,3n =L (1分) 4.解:)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh )212(2122122x x μωμ+∂∂−=h )212(2222222x x μωμ+∂∂−+h 表示两个独立的谐振子,它们的共同本征态为:21n n21n n =)()(212x x n n n ψψ0201)21()21(21ωωh h +++=∴n n E n nL L h 3,2,1,)1(0=+=N N ω (4分) 当N 给定时, N n L L ,2,1,01= 0,2,1,2L L −−=N N N nN+1种组合因此,能级的简并度为N+1 (4分) (2)第一激发态为N=1 能级简并度为二重00)0(12)1(ωωh h =+=N E相应的波函数为:⎩⎨⎧==),()()(),()()(21220112112110x x x x x x x x φψψφψψ (1分) ⎟⎟⎠⎞⎜⎜⎝⎛′′′′=′∴22122111φφφφφφφφνμH H H H H (2分) 01111=′=′∴φφH H , 02222=′=′∴φφH H (2分) 221122αλ−=′=′∴H H (4分) ′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−=′∴022022αλαλνμH00220)1(22)1(=′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−−−∴E E αλαλ2)1(2αλ±=∴E (2分) 0020)1(1)0(112222μωλωαλωhh h ±=±=+=∴E E E (1分)量子力学期末试题2一.填空(3分×5=15分)1 粒子处于力学量B v 的本征态)(r n vψ的迭加态,)()(41)(21)(321r C r r r n v v v v ψψψψ++=则粒子处于)(1r vψ的概率是 ,C = (取实数)2 若ˆ,FG GF ik−=,则算符F 和G 之间满足测不准关系________________ 3 在粒子数表象中,产生算符和湮灭算符满足关系式:ˆ4an ++= ;ˆ1a n += 4.一个正电子和一个负电子同时在空间运动在两粒子相遇区域是否可以将其分辨?______5 中心力场中的粒子处于定态,则角动量取确定值,对吗? 二.证明(10分×2=20分)1.(10分)设λ为常数,z σ为泡利算符,证明:cos sin zi z ei λσλσλ=+2.(10分)证明:Hermite 算符的属于不同本征值的本征函数彼此正交(假定本征值是离散的)。
(完整版)量子力学期末考试题及解答
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
2011量子力学期末考试题目
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。
⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。
11-12学年度量子力学试题BB
湖北文理学院2011—2012学年度下学期物理学系物理专业《量子力学》期末考试试卷课程类别:必修适用专业: 09物理学 试卷编号:B系 别 专业 学号 姓名一、填空题(每空1分,共20分。
) 描述粒子运动的波函数为ψ(x,t),则ψ(x,t)ψ(x,t)*表示 ,归一化条件 。
2、波函数必须满足的条件是单值、 、 。
3、若ˆ,FG GF ik-=,则算符F 和G 之间满足测不准关系 。
4、表示力学量的算符是_____________算符,力学量算符的本征函数具有 、完备性、 性,本征函数系构成希尔伯特空间的一组完备的基矢组,任一量子态被视为该空间的一个________。
;5、定态薛定谔方程表示成_______________,它也是能量算符的本征方程。
6、力学量F ˆ由A 表象变换到B 表象的变换公式 ,态矢量从A 表象到B表象的变换公式 。
7、自旋为2的奇数倍的粒子所组成的全同粒子体系的波函数是反对称的,这类粒子称为 。
8、玻尔 索末菲理论应用于氢原子,只能求出谱线的频率,而不能求出谱线的 。
9、设粒子处于态2021103121cY Y Y ++=ψ,ψ为归一化波函数,lm Y 为球谐函数,则系数c 的取值为 ,的可能值为 。
10、完成对易关系:=]ˆ,[x p x ____,=]ˆ,ˆ[2x L L _______。
=]ˆˆ[,y x σσ_____。
11、处于独态的氦称为 。
二、选择题(从下列各题四个备选答案中选出一个或几个正确答案,并将其代号写在题干前面的括号内,答案选错或未选全者,该题不得分。
每小题2分,共6分。
)1、 根据德布罗意假设: [ ] A 、 辐射不能量子化,但粒子具有波的特性。
B 、 粒子具有波的特性。
C 、 波长非常短的辐射有粒子性,但长波辐射却不然。
D 、 长波辐射绝不是量子化的。
E 、 波动可以量子化,但粒子绝不可能有波动性。
2、关于不确定度关系h x p x ≥∆∆ 有以下几种理解,哪种说法是正确的。
量子力学2011级量子力学期末试卷A
徐州工程学院试卷2013 — 2014 学年第 二 学期 课程名称 量子力学 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟命 题 人 胡峰 2014 年5月21日 使用班级 11测试、11光伏及11电子1、2班 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号一、填空题(共10小题,每空2分,共计20分)1. 电子被150V 的电压加速,则电子的德布罗意波长为 。
(电子的质量为kg 31101.9-⨯,电子的电量为1910602.1-⨯库仑)2.波函数的标准条件为 。
3.一维线性谐振子的能级为 。
4.利用ˆxL 和ˆy L 的对易关系,得()()y x L L ∆⋅∆≥ 。
5.偶极跃迁中,角量子数与磁量子数的选择定则分别是 。
6.电子处于某能态的寿命为81.0010s -⨯,则该能态能量的最小不确定度E ∆为 。
7. 描写电子状态第四个变量是 。
8. 用Dirac 符号来表示本征函数封闭性表达式为 。
9.以线性谐振子哈密顿的本征态n 为基矢,†ˆ=an 。
10.全同性原理为: 。
二、简答题(5分) 1.量子力学的基本假定。
三、证明题(共2小题,共计10分) 1.(6分)证明z L 的本征态下,x y L L 0==2.(4分)证明[,]x y z L L i L =。
四、(10分)设2()cos (0)x xx x aa a ππψ=<<是一维无限深势阱中运动粒子的波函数,求在此任意态下粒子能量的可能值和相应的几率。
五、(10分) 一质量为m 的粒子在一维势阱中运动,求能量的一级近似0,2,20,2()0,2,x a x a a x a V x a x a V a x a∞<->⎧⎪-<<-⎪=⎨<<⎪⎪-<<⎩六、(10分)求01ˆ102xS⎛⎫= ⎪⎝⎭及ˆ2yiSi-⎛⎫= ⎪⎝⎭的本征值和所属的本征函数。
量子力学期末考试试卷及答案集
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
【试题】量子力学期末考试题库含答案22套
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
11-12学年度量子力学试题AA
湖北文理学院2011—2012学年度下学期物理系物理学专业《量子力学》期末考试试卷课程类别:专业课 适用专业: 09物理学 试卷编号:A系 别 专业 学号 姓名一、填空题(每空1分,共20分。
)1、,德布罗意关系表达为__________、__________,它反映了微观粒子的__________性。
2、波函数必须满足的条件是 、有限、 。
3、在坐标表象中,=x ˆ ,=p ˆ ,用δ符号表示的对易关系为_______________。
4、表示力学量的算符是_____________算符,力学量算符的本征函数具有 、完备性、 性,本征函数系构成希尔伯特空间的一组完备的基矢组,任一量子态被视为该空间的一个________。
;5、定态薛定谔方程表示成_______________,它也是能量算符的本征方程。
6、电子自旋也称为电子的______角动量,其本征值在任何方向上均取____个值。
7、自旋为2的奇数倍的粒子所组成的全同粒子体系的波函数是反对称的,这类粒子称为 。
8、玻尔 索末菲理论应用于氢原子,只能求出谱线的频率,而不能求出谱线的 。
9、设粒子处于态2021103121cY Y Y ++=ψ,ψ为归一化波函数,lm Y 为球谐函数,则系数c 的取值为 ,的可能值为 。
10、处于独态的氦称为 。
二、选择题(从下列各题四个备选答案中选出一个或几个正确答案,并将其代号写在题干前面的括号内,答案选错或未选全者,该题不得分。
每小题2分,共6分。
)1、泡利不相容原理说:[ ]A、自旋为整数和半整数的粒子不能处于同一态中。
B、自旋为整数的粒子不能处于同一态中。
C、自旋为整数的粒子能处于同一态中。
D、自旋为半整数的粒子能处于同一态中。
E、自旋为半整数的粒子不能处于同一态中。
2、康普顿效应指出:[ ]A、电子可以穿透原子核。
B、X射线可以与电子相互作用。
C、中子的净电荷为零。
D、氢离子是一个质子。
E、质子有自旋磁矩。
量子期末试题及答案
量子期末试题及答案第一部分:选择题1.下列哪项是描述量子力学的准确说法?a) 量子力学是一种经典物理学理论;b) 量子力学描述了微观粒子的行为;c) 量子力学只适用于宏观物体;d) 量子力学只适用于电磁学领域。
答案:b) 量子力学描述了微观粒子的行为。
2.下列哪个选项是量子力学的基本假设之一?a) 波粒二象性;b) 相对论;c) 牛顿定律;d) 热力学定律。
答案:a) 波粒二象性。
3.对于一个量子系统,其波函数的平方表示什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的波动性;d) 粒子的能量。
答案:c) 粒子的波动性。
4.下列哪项是量子纠缠的特点?a) 粒子之间的状态不相关;b) 粒子之间的状态不确定;c) 粒子之间的状态相关;d) 粒子之间的状态独立。
答案:c) 粒子之间的状态相关。
5.量子力学中的观测算子对应于什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的能量;d) 物理量的测量结果。
答案:d) 物理量的测量结果。
第二部分:简答题1.量子隧穿现象是什么?请简要解释。
答:量子隧穿现象是指在经典物理学中,粒子在能量不足以越过势垒时不可通行,而在量子力学中,粒子可以通过隧穿效应越过势垒。
这是由于波粒二象性的特性,波函数在势垒区域内会有一定的概率分布,因此粒子以概率的形式通过势垒,即使其能量低于势垒高度。
2.什么是量子比特?请简要解释。
答:量子比特(qubit)是量子计算的最小信息单位,类似于经典计算机中的比特(bit)。
而不同之处在于,量子比特允许同时处于多个状态的叠加态,而比特只能处于0或1状态。
量子比特的叠加态可以通过量子叠加原理进行并行计算,从而在某些计算问题上具有优势。
第三部分:计算题1.一粒子处于基态和第一激发态的叠加态上,其波函数可以表示为|ψ⟩=a|0⟩+b|1⟩,其中a和b为复数,且|a|^2+|b|^2=1。
若进行测量得到粒子处于基态的概率为1/3,则计算a和b的值。
量子力学期末考试试卷及答案
量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、| Ψ(r,t)|^2 的物理意义:t 时刻粒子出现在r 处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1 、第二题:如果类氢原子的核不是点电荷,而是半径为r0、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对r r0的区域有影响,对r r0的区域无影响。
据题意知?HU (r ) U 0 (r )其中U0(r)是不考虑这种效应的势能分布,即U r ()0 42 zerU为考虑这种效应后的势能分布,在r r0区域,(r)U (r )2 Ze 4 r在r r区域,U(r)可由下式得出,0U (r) e E d rr4 E 1r42Ze3 r43Zer243r 34Ze3r0 0r, (r(rrU (r) e r 0r Edr erEdr2 21Ze Zerrdr324 r r r4drr 0 0rr0 0? H U (r) U(r ) 82Ze3r2(3r2r )Ze42r( r r)0 (r r)32? ?( U r0) 2由于r0很小,所以H H ( ) ,可视为一种微扰,由它引起23Z(0) 1/2( ) 100 3a0 eZar一级修正为(基态)(1) E1*( 0)1?H( 0)d13Z3a2Z2 2r Ze rZe2 2 a[ (3r r ) ]e30 8 r 4r0 0 024 r dr2Zra∵r a0 ,故e 1。
量子力学期末考试试卷及答案集
量子力学试题集量子力学期末试题及答案(A) 选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA、黑体在紫外线部分辐射无限大的能量;B、黑体在紫外线部分不辐射能量;C、经典电磁场理论不适用于黑体辐射公式;D、黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的就是:BA、Ψ代表微观粒子的几率密度;B、Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C、Ψ一定就是实数;D、Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释就是:DA、偏振光子的一部分通过偏振片;B、偏振光子先改变偏振方向,再通过偏振片;C、偏振光子通过偏振片的几率就是不可知的;D、每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ就是该方程的一个解,则:AA、*ψ一定也就是该方程的一个解;B、*ψ一定不就是该方程的解;C、Ψ与*ψ一定等价;D、无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的就是:CA、粒子在势垒中有确定的轨迹;B、粒子在势垒中有负的动能;C、粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA、ih∧z lB 、 ih ∧zlC 、i∧x l D 、h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA 、ψ 一定不就是∧B 的本征态; B 、ψ一定就是 ∧B 的本征态;C 、*ψ一定就是∧B 的本征态;D 、 ∣Ψ∣一定就是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA 、 一定处于其本征态;B 、一定不处于本征态;C 、一定守恒;D 、其本征值出现的几率会变化。
9.与空间平移对称性相对应的就是:B A 、 能量守恒; B 、动量守恒; C 、角动量守恒; D 、宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3、4ev,则 n=5能级能量为:D A 、 -1、51ev; B 、-0、85ev; C 、-0、378ev; D 、 -0、544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n,则在一确定的能量 (N+23)h ω下,简并度为:BA 、)1(21+N N ;B 、)2)(1(21++N N ;C 、N(N+1);D 、(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 就是什么性质:CA 、 自旋单态;B 、自旋反对称态;C 、自旋三态;D 、z σ本征值为1、二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子力学考试题库及答案
量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。
下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。
答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。
答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。
答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。
这一现象在经典物理学中是不可能发生的。
一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。
6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。
答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。
这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。
四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。
答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。
量子力学期末考试题
20. (本题 3分)(1824)
一 100 W 的白炽灯泡的灯丝表面积为 5.3×10-5 m2.若将点燃的灯丝看成是
黑体,可估算出它的工作温度为___________________ . (斯特藩─玻尔兹曼定律常数σ = 5.67×10-8 W/m2·K4)
________________________________________________________________.这种
效应是微观粒子_____________________________的表现.
32. (本题 4分)(4991)
根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯 穿系数__________;当势垒变高时,贯穿系数____________.(填入:变大、变 小或不变)
一矩形势垒如图所示,设 U0 和 d 都不很大.在Ⅰ区中向
U(x)
右运动的能量为 E 的微观粒子, (A) 如果 E > U0,可全部穿透势垒Ⅱ进入Ⅲ区
U0 ⅠⅡⅢ
(B) 如果 E < U0,都将受到 x = 0 处势垒壁的反射,不可
Od
x
能进入Ⅱ区.
(C) 如果 E < U0,都不可能穿透势垒Ⅱ进入Ⅲ区. (D) 如果 E﹤U0,有一定概率穿透势垒Ⅱ进入Ⅲ区.
普朗克的量子假说是为了解释_______________________的实验规律而提出
来的.它的基本思想是_________________________________________________
_____________________________________________________________________
(完整版)量子力学期末考试题及解答
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学期末考试习题
量子力学期末考试习题(一) 单项选择题 1. A, 2.B, 3.C, 4.D, 5.A, 6.B, 7.A, 8.B, 9.C, 10.A, 11.B, 12.D, 13.C, 14.D, 15.D, 16.C, 17.C, 18.A, 19.D, 20.C, 21.C, 22.D, 23.C, 24.C, 25.C, 26.C, 27.D, 28.C, 29.A, 30.A, 31.A, 32 A, 33.C, 34. B, 35.A, 36.C, 37.D, 38.D, 39.D, 40.C, 41.D, 42.A, 43.B, 44.B, 45.C, 46.C, 47.C, 48.D, 49.A, 50.C, 51.A, 52.A, 53.A, 54.D, 55.B, 56.A, 57.B, 58.A, 59.C, 60.B, 61.D, 62.C, 63.A, 64.A, 65.A, 66.B, 67.D, 68.B, 69.A, 70.B, 71.B, 72.D, 73.D, 74.C, 75.B, 76.A, 77.B, 78.C, 79.C, 80.B, 81.C, 82.D, 83.A, 84.C, 85.D, 86.A, 87.C, 88.A, 89.B, 90.B, 91.B, 92.A, 93.B, 94.C, 95.A, 96.D, 97.B, 98.A, 99.A, 100.A, 101.B, 102.B, 103.A, 104.D, 105.B, 106.A, 107.B, 108.C, 109.A, 110.A, 111.A, 112.A, 113.B, 114.B, 115.B, 116.B, 117.B, 118.D, 119.A, 120.C, 121.B, 122.C, 123.A, 124.B, 125.D, 126.D, 127.D, 128.B, 129.D, 130.C, 131.C, 132.B, 133.C, 134.D, 135.D, 136.D, 137.D, 138.D, 139.C, 140.C, 141.C, 142.B, 143.A, 144.C, 145.A (一) 单项选择题1.能量为100ev 的自由电子的De Broglie 波长是 A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie波长是A.1.4A 0. B.1.9⨯1012-A 0.C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是A.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量为( ,2,1,0=n )A.E n n = ω.B.E n n =+()12ω.C.E n n =+()1 ω.D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是A.5.2A 0. B. 7.1A 0. C. 8.4A 0. D. 9.4A 0. 7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为 A. 0.25⨯1018-J. B. 1.25⨯1018-J. C. 0.25⨯1016-J. D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A. 2μc .B.22μc . C. 222μc . D. 22μc . pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了 A. 电子具有波动性. B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱U x x a x x a(),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sin x C xa = 描写,其归一化常数C 为 A.1a . B.2a . C.12a . D.4a.12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为A.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx . 13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为 A.ψ(,,)x y z dxdydz 2. B.ψ(,,)x y z dx 2. C.dx dydz z y x )),,((2⎰⎰ψ. D.dx dy dz x yz ψ(,)⎰⎰⎰2. 14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为 A.c c 112222ψψ+.B. c c 112222ψψ++2*121ψψc c .C. c c 112222ψψ++2*1212ψψc c .D. c c 112222ψψ++c c c c 12121212****ψψψψ+. 15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp(),ψ21122=-+u x i E t u x i E t ()exp()()exp() ,ψ312=-+-u x i Et u x iEt ()exp()()exp() ,ψ41122=-+-u x i E t u x iE t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c .D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)e x p ()x t c p t ipx dp =⎰12π的傅里叶变换式是A. c p t x t ipx dx (,)(,)exp()=⎰12π ψ. B. c p t x t i px dx (,)(,)exp()*=⎰12π ψ. C. c p t x t ipx dx (,)(,)exp()=-⎰12π ψ. D. c p t x t i px dx (,)(,)exp()*=-⎰12πψ. 21.量子力学运动方程的建立,需满足一定的条件: (1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6). 22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t iμ∂∂),,(),,(2121t r r t r r U ψ+B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r tμ∂∂),,(),,(2121t r r t r r Uψ+C. ∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t μ∂∂),,(),,(2121t r r t r r U ψ+D.∑=ψ∇=ψ21212221),,(2),,(i i it r r t r r t i μ∂∂),,(),,(2121t r r t r r Uψ+23.几率流密度矢量的表达式为A. J =∇ψ-2μ()**ψψ∇ψ.B. J i =∇ψ-2μ()**ψψ∇ψ.C. J i =-∇ψ2μ()**ψ∇ψψ.D.J =-∇ψ2μ()**ψ∇ψψ. 24.质量流密度矢量的表达式为A.J =∇ψ-2()**ψψ∇ψ.B.J i =∇ψ-2()**ψψ∇ψ.C.J i =-∇ψ2()**ψ∇ψψ.D.J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为A.J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C.J iq =-∇ψ2μ()**ψ∇ψψ. D.J q =-∇ψ2μ()**ψ∇ψψ. 26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22224 n a ,B.πμ22228 n a ,C.πμ222216 n a ,D.πμ222232 n a. 28. 在一维无限深势阱U x x ax a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a. 29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b .30. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x ax a(),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的 A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为A.(/),(,,,...)n n +=12123 ω.B.(),(,,,....)n n +=1012ω. C.(/),(,,,...)n n +=12012 ω. D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x =-122122,其位置几率分布最大处为A.x =0.B.x =±μω. C.x =μω.D.x =±μω. 35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是A.[]-+= 222222212μμωψψd dx x E . B.[]--= 22222212μμωψψd dx x E . C.[] 22222212μμωψψd dx x E -=-. D.[] 222222212μμωψψd dx x E +=-. 37.氢原子的能级为A.- 2222e n s μ.B.-μ22222e n s .C.242ne sμ -. D. -μe n s 4222 . 38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.r r R nl )(2.B.22)(r r R nl .C.rdr r R nl )(2.D.dr r r R nl 22)(.39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlm Y .B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ.40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是 A.ψφτφψτ*** F d F d =⎰⎰. B.ψφτφψτ** ( )F d F d =⎰⎰. C.( ) **F d F d ψφτψφτ=⎰⎰. D. ***F d F d ψφτψφτ=⎰⎰. 41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FGGF ( )+必为厄密算符. D. i FGGF ( )-必为厄密算符. 42.已知算符 x x =和 pi xx =- ∂∂,则 A. x 和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xp p x x x -必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1.B. 2.C. 3.D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为A.12πϕ exp()im .B. )exp(21r k i ⋅π.C.12πϕexp()im .D. )exp(21r k i⋅π.46.波函数)exp()(cos )1(),(ϕθϕθim P N Y m l lm m lm -=A. 是 L2的本征函数,不是 L z的本征函数. B. 不是 L 2的本征函数,是 L z 的本征函数. C. 是 L2、 L z的共同本征函数. D. 即不是 L 2的本征函数,也不是 L z的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为A. 3.B. 6.C. 9.D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小. 49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a .51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,.B.E E 321232,;,-.C.E E 321232,;,. D.E E 323414,;,.52.接51题,该体系的角动量的取值及相应几率分别为A.21 , .B. ,1.C.212 ,.D.212 ,. 53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- .B. 01434,;, .C.01232,;, -.D. 01232,;,-- .54. 接51题,该体系的角动量Z 分量的平均值为A.14 .B. -14 .C. 34 .D. -34 .55. 接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s .D.-177242μe s. 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12k .57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. k .C. - k .D. 12k .59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252 ωω,.C. 3272 ωω,.D. 1252ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B. 232121c c c +,232123c c c +.C.23211c c c +,23213c c c +. D. 31,c c .61.接59题,该振子的能量平均值为 A.ω 232123215321c c c c ++. B. 5 ω.C. 92 ω. D. ω 232123217321c c c c ++. 62.对易关系[ ,()]p f x x 等于(f x ()为x 的任意函数)A.i f x '().B.i f x ().C.-i f x '().D.-i f x ().63. 对易关系[ ,exp()]piy y 等于 A.)exp(iy . B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于 A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于 A. . B. 0. C. i . D. - .69. 对易关系[ , ]pp y z 等于 A.0. B. i x . C. i p x . D. p x . 70. 对易关系[ , ]LL xz等于 A.i L y . B. -i L y . C. L y . D. - L y. 71. 对易关系[ , ]LL zy等于 A.i L x . B. -i L x . C. L x . D. - L x . 72. 对易关系[ , ]LL x2等于 A. L x . B. i L x . C. i L L z y ( )+. D. 0. 73. 对易关系[ , ]LL z2等于 A. L z . B. i L z . C. i L L x y( )+. D. 0. 74. 对易关系[, ]L px y 等于 A.i L z . B. -i L z. C. i p z . D. -i p z . 75. 对易关系[ , ]p L z x等于 A.-i py. B. i p y. C.-i L y . D. i L y. 76. 对易关系[ , ]L p zy 等于 A.-i p x . B. i p x . C. -i L x . D. i L x. 77.对易式[ , ]L x y 等于A.0.B. -i z. C. i z . D. 1. 78. 对易式[ , ]FF m n 等于(m,n 为任意正整数) A. Fm n +. B. F m n -. C. 0. D. F . 79.对易式[ , ]FG 等于 A. FG. B. GF . C. FG GF -. D. FG GF +. 80. .对易式[ ,]Fc 等于(c 为任意常数) A.cF. B. 0. C. c . D. F ˆ. 81.算符 F 和 G 的对易关系为[ , ] F G ik =,则 F 、 G 的测不准关系是A.()()∆∆F G k 2224≥.B. ()()∆∆F G k 2224≥.C. ( )( )∆∆F G k 2224≥. D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ .C. ( )( )∆∆x p x 222≥ . D. ( )( )∆∆x p x 2224≥ .83. 算符 L x 和 L y 的对易关系为[ , ] L L i L x y z = ,则 L x 、 L y的测不准关系是 A.( )( ) ∆∆L L L x y z 22224≥ .B.( )( ) ∆∆L L L x y22224≥ . C.( )( ) ∆∆FG L z 22224≥ . D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze rE s.B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze rE s.D.[]-∇-= 22222μψψze rE s.85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 .B. -μ224222z e n s .C.-μze n s 2222 .D. -μz e ns 24222 .86. 在一维无限深势阱U x x ax x a(),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为A.22222229,2aa μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,, D.524222222πμπμ a a , .87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a. 89.若一算符 F的逆算符存在,则[ , ]F F -1等于 A. 1. B. 0. C. -1. D. 2.90.如果力学量算符 F和 G 满足对易关系[ , ]FG =0, 则 A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值 A. 可取一切实数值. B.只能取不为负的一切实数. C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式[ , ()]pp f x x x 2等于 A.-i pf x x '()2. B. i p f x x '()2 . C.-i pf x x ()2. D. i p f x x ()2. 93.定义算符yxL i L Lˆˆˆ±=±, 则[ , ]L L +-等于 A.z L ˆ . B.2 L z . C.-2 L z . D.zL ˆ -. 94.接上题, 则[ , ]LL z+等于 A. L +. B. L z . C. -+L . D. - L z . 95. 接93题, 则[ , ]LL z-等于 A. L -. B. L z . C. --L . D. - L z . 96.氢原子的能量本征函数ψθϕθϕn l m nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数.97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'e x p (21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是A.δ(')x x -.B.δ(')x x +.C.δ()x .D.δ(')x .101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪. 102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001.B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪.103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a .B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a .C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪.104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n,则算符 (,)F x i x∂∂在 Q 表象中的矩阵元的表示是A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mn n m =⎰()(,)()*∂∂. D.F u x F x i xu x dx mn m n =⎰()(,)()*∂∂. 106.力学量算符在自身表象中的矩阵表示是 A. 以本征值为对角元素的对角方阵. B. 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵. 107.力学量算符x ˆ在动量表象中的微分形式是 A.-i p x ∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ .B.p p2222212μμω∂∂-. C.22222212p p ∂∂μωμ-. D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i . 110.接上题, F 的归一化本征态分别为 A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,. B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为 A.S S +-=. B.S S +=*. C.S S =-. D.S S *=-. 112.幺正变换 A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢. 113.算符 ()( )/ax i p =+μωμω212 ,则对易关系式[ , ]a a +等于 A. [ , ]a a +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D. [ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似) A.E H H E E n nn mn nm m ()()()''0200++-∑. B. E H H E E n nn mnn m m ()()()'''0200++-∑. C.E H H E E n nn mnm n m()()()'''0200++-∑.D.E H H E E nnn mn mnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为A.H mn '.B.H nn '.C.-H nn '.D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为 A.H E E mn nm m'()()200-∑. B. ''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H E E mn nm m m '()()()000-∑ψ.B. ''()()()H E E mn nm m m 000-∑ψ.C. ''()()()H E E mn mn m m 000-∑ψ.D. H E E mn mn m m '()()()000-∑ψ.119.非简并定态微扰理论的适用条件是 A.H E E mk km'()()001-<<. B.H E E mk km'()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm m m H E E =+-∑()()()()''0000.B.ψψψn n mn nm m m H E E =+-∑()()()()''0000.C.ψψψn n mn mn m m H E E =+-∑()()()()''0000.D.ψψψn n nm mn m m H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.124.用变分法求量子体系的基态能量的关键是 A. 写出体系的哈密顿. B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]SS yx等于 A.2i . B. i . C. 0 .D. -i S z . 127. σ为Pauli 算符,则[ , ]σσx z 等于 A.-i y σ. B. i y σ. C.2i y σ. D.-2i y σ. 128.单电子的自旋角动量平方算符 S 2的本征值为 A.142 . B.342 . C.322 . D.122 .129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在 S z表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200. C. S x=⎛⎝ ⎫⎭⎪ 20110. D. S x =-⎛⎝ ⎫⎭⎪ 21001. 132. 电子自旋角动量的y 分量算符在 Sz表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110. C. S i i i y =-⎛⎝ ⎫⎭⎪ 200. D. S i i y =⎛⎝ ⎫⎭⎪ 200. 133. 电子自旋角动量的z 分量算符在 Sz表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110. C. S z =-⎛⎝ ⎫⎭⎪ 21001. D. S i z =-⎛⎝ ⎫⎭⎪ 21001. 137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C. 22,.D.22,-.138.接上题,测得s z 为22,-的几率分别是A.a b ,.B. a b 22,.C.a b 2222/,/. D. a a b b a b 222222/(),/()++. 139.接137题, s z 的平均值为A. 0.B.)(222b a - . C. )22/()(2222b a b a +- . D. .143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系. 144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性.145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.(二) 填空题pton 效应证实了 光具有粒子性;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。
⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。
⎪⎪⎪⎩⎪⎪⎪⎨⎧======n k h k n h P h E λππλων2 ,2⒚光谱线:光经过一系列光学透镜及棱镜后,会在底片上留下若干条线,每个线条就是一条光谱线。
所有光谱线的总和称为光谱。
⒛线状光谱:原子光谱是由一条条断续的光谱线构成的。
21.标识线状光谱:对于确定的原子,在各种激发条件下得到的光谱总是完全一样的,也就是说,可以表征原子特征的线状光谱。
22.戴维逊-革末实验证明了什么?第二章⒈量子力学中,原子的轨道半径的含义。
⒉波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。
按照这种解释,描写粒子的波是几率波。
⒊波函数的特性:波函数乘上一个常数后,并不改变在空间各点找到粒子的几率,即不改变波函数所描写的状态。
⒋波函数的归一化条件 )7-1.2( 1),,,( 2⎰=ψ∞τd t z y x ⒌态叠加原理:若体系具有一系列不同的可能状态Ψ1,Ψ2,…Ψn ,则这些可能状态的任意线性组合,也一定是该体系的一个可能的状态。
也可以说,当体系处于态Ψ时,体系部分地处于态Ψ1,Ψ2,…Ψn 中。
⒍波函数的标准条件:单值性,有限性和连续性,波函数归一化。
⒎定态:微观体系处于具有确定的能量值的状态称为定态。
定态波函数:描述定态的波函数称为定态波函数。
⒐定态的性质:⑴由定态波函数给出的几率密度不随时间改变。
⑵粒子几率流密度不随时间改变。
⑶任何不显含时间变量的力学量的平均值不随时间改变。
⒑本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。
常数f n 为该算符的第n 个本征值。
波函数ψn 为f n 相应的本征波函数。
⒒束缚态:在无穷远处为零的波函数所描述的状态。
基态:体系能量最低的态。
⒓宇称:在一维问题中,凡波函数ψ(x)为x 的偶函数的态称为偶(正)宇称态;凡波函数ψ(x)为x 的奇函数的态称为奇(负)宇称态。
⒔在一维空间内运动的粒子的势能为(μω2x 2)/2, ω是常数,这种粒子构成的体系称为线性谐振子。
线性谐振子的能级为:⋅⋅⋅=+=,,,, ),(321021n n E n ω ⒕透射系数:透射波几率流密度与入射波几率流密度之比。
反射系数:反射波几率流密度与入射波几率流密度之比。
⒖隧道效应:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象。
⒗求证:在薛定谔方程中),( )(),(t r r V t r t i ψμψ⎥⎦⎤⎢⎣⎡+∇-=∂∂222 只有当势能V(r)为实函数时,连续性方程0=⋅∇+∂∂J tt r w ),( 才能成立。
⒘设一个质量为μ的粒子束缚在势场中作一维运动,其能量本征值和本征波函数分别为E n ,ψn ,n=1,2,3,4、…。
求证:)( )( n m dx x x n m ≠=⎰+∞∞-,0ψψ⒙对一维运动的粒子,设Ψ1(x)和Ψ2(x)均为定态薛定谔方程的具有相同能量E 的解,求证:常数='-')( )()( )(x x x x 1221ψψψψ⒚一粒子在一维势场⎪⎪⎩⎪⎪⎨⎧>∞≤≤--<∞=2 ,22 02 ,)(a x a x a a x x U , 中运动,求粒子的能级和对应的波函数。
⒛体系处于ψ(x,t)态,几率密度ρ(x,t)=?几率流密度j(x,t)=? xJ t ∂∂-=∂∂ρ证明: 21.设粒子波函数为ψ(r,t),写出粒子几率守恒的微分表达式。
22.量子力学的波函数与经典的波场有何本质性的区别?答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。
23.什么是量子力学中的定态?它有什么特征?24.设),(t p C 为归一化的动量表象下的波函数,写出dp t p C 2),( 的物理意义。
25.设质量为μ粒子处于如下势垒中)1( 0 )(000⎪⎩⎪⎨⎧≤>=x x x x U x U 若U 0>0,E>0,求在x=x 0处的反射系数和透射系数。
26.设质量为μ粒子沿x 轴正方向射向如下势垒)(0⎪⎩⎪⎨⎧<>=000x x x x V x U 若V 0>0,E>0,求在x=x 0处的反射系数和透射系数。
27.一个粒子的波函数为都是常数。
其他,b a A b x a a b x b A a x a x A x ,, ,, ,)()(, ,)( ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤--≤≤=00ψ 求:①归一化常数A ;②画出)(x ψ与x 关系图,并求粒子出现最大几率的点。
③在a x ≤≤0区间找到粒子的几率。
在a b =和a b 2=时的几率。
④x 的平均值。
28.I A =2ˆ,I 为单位矩阵,则算符A ˆ的本征值为__________。
29.自由粒子体系,__________守恒;中心力场中运动的粒子___________守恒。
30.力学量算符应满足的两个性质是 。
厄密算符的本征函数具有 。
第三章⒈算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
⒉厄密算符的定义:如果算符F ˆ满足下列等式() ˆ ˆdx F dx F φψφψ**⎰⎰=,则称F ˆ为厄密算符。
式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。
推论:量子力学中表示力学量的算符都是厄密算符。
⒊厄密算符的性质:厄密算符的本征值必是实数。
厄密算符的属于不同本征值的两个本征函数相互正交。
⒋简并:对应于一个本征值有一个以上本征函数的情况。
简并度:对应于同一个本征值的本征函数的数目。
⒌氢原子的电离态:氢原子中的电子脱离原子的束缚,成为自由电子的状态。
电离能:电离态与基态能量之差⒍氢原子中在半径r 到r+dr 的球壳内找到电子的概率是: dr r r R dr r W n lnl 22)()(= 在方向(θ,φ)附近立体角dΩ内的概率是: d ΩY d Ωw lm lm 2),(),(ϕθϕθ=⒎两函数ψ1和ψ2正交的条件是: 0τ =⎰*d 21ψψ式中积分是对变量变化的全部区域进行的,则称函数ψ1和ψ2相互正交。
⒏正交归一系:满足正交条件的归一化本征函数φk 或φl 。
⒐厄密算符本征波函数的完全性:如果φn (r)是厄密算符F ˆ的正交归一本征波函数,λn 是本征值,则任一波函数ψ(r)可以按φn (r)展开为级数的性质。
或者说φn(r)组成完全系。
⒑算符与力学量的关系:当体系处于算符F ˆ的本征态φ时,力学量F 有确定值,这个值就是算符F ˆ在φ态中的本征值。
力学量在一般的状态中没有确定的数值,而有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。
每个可能值都以确定的几率出现。
⒒算符对易关系:[]A B B A B ,Aˆˆˆˆˆˆ-≡ 。
可对易算符:如果[]0ˆˆ=B ,A,则称算符A ˆ与B ˆ是可对易的; 不对易算符:如果[]0ˆˆ≠B ,A,则称算符A ˆ与B ˆ是不对易的。
⒓两力学量同时有确定值的条件:定理1:如果两个算符G Fˆ ˆ和有一组共同本征函数φn ,而且φn 组成完全系,则算符对易。
定理2:如果两个算符G Fˆ ˆ和对易,则这两个算符有组成完全系的共同本征函数。
⒔测不准关系:当两个算符不对易时,它们不能同时有确定值,G )(F)( 2242k ≥∆⋅∆∴ ⒕量子力学中力学量运动守恒定律形式是:01=⎥⎦⎤⎢⎣⎡+∂∂=H F i t F dt F d ˆ,ˆ量子力学中的能量守恒定律形式是:01=⎥⎦⎤⎢⎣⎡=H H i dt H d ˆ,ˆˆ⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。
⒗一维谐振子处在基态t i x e x ω-α-πα=ψ2222)(,求: (1) 势能的平均值221x Uμω=; (2) 动能的平均值μ=22p T; (3) 动量的几率分布函数。
πα-=⎰∞++α-012122)!12(22n n x n n dx e x ⒘证明下列关系式:μννδμ i p =⎥⎦⎤⎢⎣⎡ˆ,, ),,( ,,ˆz y x L L ==⎥⎦⎤⎢⎣⎡μμ02 L i L L z y x L i L L L i L L L i L L y x z x z y z y x ˆˆˆ ),,( L ˆL ˆ ˆˆ,ˆˆˆ,ˆˆˆ,ˆ =⨯==⎥⎦⎤⎢⎣⎡⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡综合写成:,,μμμ0 y i z L y i x L x i y L x i z L z i x L z i y L z y x L x z z y y x -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡,ˆ;,ˆ ,ˆ;,ˆ ,ˆ ;,ˆ ),,( ,ˆ,μμμ0 y z x y x z x y z x z y z x y z y x p i p L p i p L p i p L p i p L p i p L p i p L z y x p L ˆˆ,ˆ;ˆˆ,ˆ ˆˆ,ˆ;ˆˆ,ˆˆˆ,ˆ ;ˆˆ,ˆ ),,( ,ˆˆ, -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡μμμ0 ⒙量子力学中的力学量用什么算符表示?为什么?力学量算符在自身表象中的矩阵是什么形式?⒚表示力学量的厄密算符的所有本征函数构成 ;力学量的取值范围就是该算符的所有 。