有限差分方法
有限差分法
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
有限差分法
两端都要给定边界条件(双程坐标) 。
9
(C) 双曲型方程:适当的边界条件和初始条件,与波动传 播的性质有关 如:一维对流方程
∂u ∂u +c =0 ∂t ∂x u (x ,0) = f (x )
解为 u (x , t ) = f (x − ct ) ,代表一个向右(c > 0 时)或向左 ( c < 0 时)传播的波形。必须在波形传来的一侧提供边界条 件(单程坐标) 。
10
不适定的例子:
utt + u xx = 0 u (x ,0) = u t (x ,0) = 0
拉普拉斯方程+非闭域边界条件,解为 u (x , t ) ≡ 0 。 然而,若定解条件为 u (x ,0) = 0, ut (x ,0) =
u (x , t ) = 1 sin nx ,解为 n
1 sinh nt sin nx n
(
)
n n um+1 = um −
cτ n n um +1 − um −1 2h
(
)
设计算到第 n 步时的累积误差
n ~n εn = 计算值um − 差分法精确解um m
反之
n ~n um = εn + um m
15
则第 n+1 步的计算值
~n ~ n cτ u n − u n ~ ~ um+1 = um − m +1 m −1 2h cτ n cτ n n n = um − um +1 − um −1 + εn − εm +1 − εn −1 m m 2h 2h n = um+1 + εn +1 m
uin +1 − uin −1 uin+1 − uin +1 − uin −1 − uin−1 −α =0 Lh u = τ h2 ατ 2 ⎛ ∂ 2u ⎞ τ 2 ⎛ ∂ 3u ⎞ Ti = Lh u − Lu (x i , t n ) = 2 ⎜ 2 ⎟ + ⎜ 3 ⎟ − L 截断误差 6 ⎜ ∂t ⎟i h ⎜ ∂t ⎟i ⎝ ⎠ ⎝ ⎠
有限差分法
有限差分法有限差分法是数学领域的一项最新成果,它在某些特定情况下能得到非常好的结果。
所谓有限差分方程就是利用积分和求差公式将差分方程化成为多个等价的偏微分方程组的组合形式,然后再应用最优化方法求解这种方程组,从而得出未知数的近似值。
当已知方程组的每个参数及其变量代入数据计算后的误差时,只要对其进行必要的调整或者修改后,就可获得满意的精度与效率的估计值。
此外,还可以通过有限差分方程的求解来了解其物理背景。
比如说在物体碰撞问题中,两个质点之间距离的测量往往涉及到很复杂的三维几何关系。
即使是一个小的距离误差也会引起很大的误差。
因此,对于碰撞问题中两个质点之间的相互位置误差测量,必须考虑它们之间的三维几何关系,并根据具体问题建立相应的坐标系统。
有限差分方程可以用来描述许多不同类型的实际问题,例如质量、压力、速度、温度、流动、热传导、声音和电磁场等。
但是由于数学模型本身的复杂性,使得有限差分方程在求解上遇到了困难。
因此,人们开始寻找一种更加直观的方法来解决问题。
有限差分法正是基于此原理提出的。
利用有限差分方程求解偏微分方程,我们首先要给出所求解的偏微分方程的数学表达式,这样才能够在有限差分方程的数学模型中寻找解析解。
有限差分方程的解析解,需要借助解析函数的理论来确定。
但是在自然科学和工程技术领域里,对于一般的实际问题,很少会存在着某种数学模型完全适合于所有的具体问题,那么对于任意一个偏微分方程,总是存在着一个解析解。
当把偏微分方程的解析解用适当的坐标表示出来后,有限差分方程的求解就转化为如何寻找与这个解相对应的函数值的问题。
通常,解析函数的形式是比较复杂的,因此需要运用数值方法进行拟合,从而得到符合实际的数学表达式。
然后通过对这个数学表达式的求解来确定所求偏微分方程的解析解。
这种数值求解方法称为数值积分法。
在研究有限元法和边界元法时都可以采用一些简单易行而且计算机可能很容易处理的函数作为边界条件,而这些函数本身又是很容易计算的。
有限差分方法
有限差分方法
有限差分方法是数值分析中常用的一种数值计算方法,它主要用于解决微分方
程和积分方程的数值逼近问题。
有限差分方法的基本思想是将微分方程中的导数用差分代替,将微分方程转化为代数方程,然后利用数值计算方法求解代数方程,从而得到微分方程的数值解。
有限差分方法的核心是将求解区域离散化,将连续的求解区域划分为有限个小
区域,然后在每个小区域内利用差分逼近微分方程,得到代数方程。
通过对这些代数方程进行适当的组合和求解,最终得到微分方程的数值解。
有限差分方法有很多种形式,常见的有向前差分、向后差分、中心差分等。
这
些方法在具体应用中有各自的特点和适用范围。
在选择使用哪种有限差分方法时,需要根据具体的问题和求解区域的特点来进行合理的选择。
有限差分方法在实际应用中具有广泛的适用性,它可以用于求解各种类型的微
分方程和积分方程,包括常微分方程、偏微分方程以及积分方程等。
在工程、物理、经济等领域中,有限差分方法被广泛应用于模拟和求解各种实际问题。
在使用有限差分方法时,需要注意选取合适的离散化步长和求解区域的划分方式,这对于最终的数值解的精度和稳定性有着重要的影响。
同时,还需要注意数值计算方法的稳定性和收敛性,避免出现数值解的不稳定或者发散现象。
总之,有限差分方法作为一种常用的数值计算方法,在数值分析和科学计算中
具有重要的地位和作用。
掌握有限差分方法的基本原理和应用技巧,对于解决实际问题和开展科学研究具有重要的意义。
通过不断的学习和实践,可以更好地掌握有限差分方法的使用技巧,提高数值计算的准确性和效率。
有限差分法
有限差分法有限差分法(Finite Differential Method, FDM )什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。
按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
有限差分法的基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
(1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格)进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻和股票价格,用变量f i ,j 表示(i,j )点的期权价格。
2.建立差分格式(1)内含的有限差分方法其步骤可分为以下几步:(1)求前向差分近似:(2) 后向差分格式:(3)将(2),(3)式平均可更加对称地求出的近似,即(4)(2)求用前向差分近似:(5)(3)求(6)(4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式:+ b j f i,j−c j f i,j + 1 = f i + 1,j(7)aj f i,j− 1其中:i=0,1,…,N-1。
j=0,1…,M-1针对看跌期权和看涨期权可分别求出方程的边界条件:看跌期权:看涨期权:(5)利用边界条件和(7)式可以给出M-1个联立方程组:+ b j f N− 1,j + c j f N− 1,j + 1j=1,2…,M-1aj f N− 1,j− 1求解这M-1个联立方程组即可以求出期权价格,但对美式看跌期权时我们必须考虑其提前执行的情况。
有限差分法PPT课件
1
有限差分方法是一种微分方法,广泛用于计算机求解偏微分方程 。
为求解由偏微分方程定解问题所构造的数学模型,有限差分法 是将定解区域(场区)离散化为网格离散节点的集合。并以各离 散点上函数的差商来近似该点的偏导数,使待求的偏微分方程定 解问题转化为一组相应的差分方程。根据差分方程组解出各离散 点处的待求函数值——离散解。
Q c hc (T Ta )
Qr (T4Ta4)
代 入
C pz T t kz 2 T 2 h c T 2T 4 2 h c T a 2T a 4
上 式Leabharlann 边界条件: x=0m ,x=1m, y=1m ; q=0 w/m2
y=1m
; T=300 K
12
(2)利用matlab中的pdetool工具箱,首先绘出空间区域,并以0.1m为 步长对其进行网格划分。 (3)输入已知的参数并设定边界条件
2
建立控制方程及定解条件
确定节点(区域离散化)
建立节点物理量的代数方程
设立迭代初值
求解代数方程组 否
收敛? 是
解的分析
改进初场
3
1. 建立控制方程及定解条件
根据实际问题建立偏微分方程,同时给出边界条件。
2. 区域离散化
理论上可以通过任意的网格划分把求解区域划分成许多求解区域,以网格 线的交点作为需要确定的物理量的空间位置。实际应用中根据边界的形状采用 最简单、最有规律,和边界拟合程度最佳的方法来分割。
建立节点物理量的离散方程节点类型内节点边界节点泰勒级数展开法热平衡法泰勒级数展开法热平衡法热平衡法多运用于非均分网格划分下离散方程的建立其物理概念清晰推导过程简洁我们以二维稳态无内热源矩形均分下的温度场为例先用泰勒级数展开法对内节点由ab两个式子即可推出一阶导数和二阶导数的差分一般取中心差分更为精确一阶导数的中心差分
计算电磁学-第4章-有限差分法
同样对微分方程的解y(x)在点(xn,yn)进行泰勒展开
yn1 yn hf ( xn , yn )
1 ' 2 1 '' 3 y ( xn 1 ) y ( xn ) f n h f n h f n h 2! 3!
比较上面两式,只要它们前面项的系数尽可能多的相等,就 保证了截断精度。
1、差分与差商
用差分代替微分,是有限差分法的基本出发点。 这一点由微分原理保证的,当自变量的差分趋于 零时,差分变成微分
f ( x) f ( x h) f ( x), h x
df f ( x) f ( x) lim dx x 0 x
'
f ( x) f ( x h) f ( x) f ( x) x h
龙格-库塔法
选取α、β、ω系数,使两式项的系数相等
1 fn , 2 f , 3 f , 4 f ,
' n '' n ''' n
如果该关系式能够一直维持到第m阶仍能成立, 但m+1阶不再成立,就称为m阶龙格-库塔法
cem@
cem@
cem@
cem@
cem@
cem@
cem@
CST粒子仿真
Pierce Gun
MAGIC
cem@
dy f ( x, y ) dx y x x 0 y0
y( x) y0 f (t , y(t )dt
x0
x
欧拉近似法在函数图上用阶梯的折线代替曲线
f(x) y(x)
yn+1 yn y(x n+1)1) f(n+
有限差分公式
有限差分公式
有限差分是微分方程解的近似值的一种表示方法,通常用数学表达式
f(x+b)-f(x+a)来表示。
如果将有限差分除以b-a,则可以得到差商。
在微分方程数值解的有限差分方法中,特别是处理边界值问题时,有限差分导数的逼近起着关键的作用。
有限差分通常考虑三种形式:正向差分、反向差分和中心差分。
正向差分是f(x+h)-f(x),反向差分是f(x)-f(x-h),中心差分是f(x+h)-f(x-h)。
当h取为1时,正向差分除以h近似于导数。
在数值方法中,有限差分法是一种常用的数值解法,它用差商代替微分方程中的偏导数,从而得到相应的差分方程。
通过解这个差分方程,可以得到微分方程解的近似值。
以上内容仅供参考,如需更多信息,建议查阅数学类书籍或咨询数学专业人士。
有限差分法
第四章有限差分方法4.1引言有限差分法:数值求解常微分方程或偏微分方程的方法。
物理学和其他学科领域的许多问题在被分析研究之后, 往往可以归结为常微分方程或偏微分方程的求解问题。
一般说来,处理一个特定的物理问题,除了需要知道它满足的数学方程外,还应当同时知道这个问题的定解条件,然后才能设计出行之有效的计算方法来求解。
有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。
在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离散取值后对应的函数值。
但是从原则上说,这种方法仍然可以达到任意满意的计算精度。
因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得到。
这种方法是随着计算机的诞生和应用而发展起来的。
其计算格式和程序的设计都比较直观和简单,因而,它的实际应用已经构成了计算数学和计算物理的重要组成部分。
有限差分法的具体操作分为两个部分:(1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式; (2)求解差分方程组。
在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。
通常采用的是规则的分割方式。
这样可以便于计算机自动实现和减少计算的复杂性。
网络线划分的交点称为节点。
若与某个节点P 相邻的节点都是定义在场域内的节点,则P 点称为正则节点;反之,若节点P 有处在定义域外的相邻节点,则P 点称为非正则节点。
在第二步中,数值求解的关键就是要应用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。
有限差分法的差分格式:一个函数在x 点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。
如对一个单变量函数f(x),x 为定义在区间[a,b]的连续变量。
以步长h=Δx 将[a,b]区间离散化,我们得到一系列节点x = a , x = x + h , x = x + h = a + 212132Δx , ..., x = x + h = b , 然后求出 f(x)在这些点上的近似值。
有限差分法初步
• 引言 • 有限差分法的原理 • 有限差分法的应用 • 有限差分法的实现 • 有限差分法的优缺点 • 结论与展望
01
引言
有限差分法的定义
有限差分法是一种数值计算方法,通 过将偏微分方程离散化为差分方程, 从而求解偏微分方程的近似解。
近似表示微 分,从而将微分方程转化为差分方程。
有限差分法。
COMSOL Multiphysics实现
COMSOL Multiphysics是一款基于有限元法的多物理场仿真软件,也支持有限差分法。 COMSOL提供了友好的用户界面和丰富的物理模型库,使得有限差分法的实现更加便
捷。
有限差分法的并行计算实现
MPI实现
MPI(Message Passing Interface)是一种并行计算的标准,支持多个处理 器之间的通信。通过MPI,可以实现有限差分法的并行计算,提高计算效率。
自适应网格技术
根据解的特性自适应地调整离散点间距,以 提高计算精度和效率。
并行化与优化
通过并行计算和算法优化等技术提高有限差 分法的计算效率。
与其他方法的结合
将有限差分法与其他数值方法或物理模型相 结合,以处理更复杂的问题。
06
结论与展望
结论
01
有限差分法是一种数值计算方 法,通过离散化连续问题为差 分方程,进而求解数值近似解 。
有限差分法原理简单,易于理解和实现,不需要复杂的数学工 具。
有限差分法可以方便地进行并行计算,提高计算效率。
有限差分法可以应用于各种不同类型的偏微分方程,具有广泛 的适用性。
有限差分法的缺点
精度问题
由于有限差分法是一种离散化方法,其精度受到离散点间距的限制, 可能导致计算结果不够精确。
有限差分方法
有限差分方法有限差分法是一种用于数值解决常微分方程(ODE)、偏微分方程(PDE)的数学技术。
它将原本的微分方程式转化为差分方程,最终可以用数值计算解决。
作为一门数值分析技术,有限差分方法主要用于计算解决微分方程的参数和状态。
有限差分法的步骤一般分为三个:(1)数学模型的构建,(2)对物理场的离散化,(3)对差分方程进行求解。
首先,我们要建立准确的物理模型,这一步涉及到选取合适的假设和参数,以及采用适当的边界条件和初始条件。
其次,我们要对原方程进行离散处理,使其转化为有限差分方程,从而为求解此类方程打下基础。
最后,我们要设计出一个有效的求解方法,通过用数值计算解决有限差分方程,获得所求解的结果。
有限差分法的优点主要体现在精度和速度上。
首先,它的精度极高,它可以求解出精确的解,而且计算速度也很快,无需复杂的数学推理,就可以较快速度解决问题,大大降低了计算的难度。
其次,有限差分法可以拓展到更多的系统,不限于只能解决二维静止场,而能够解决一般感兴趣的场景。
此外,有限差分技术也可以解决有时限性的问题,例如分析物体的动态特性。
此外,有限差分方法也存在一些缺点,例如边界条件的处理和计算复杂性的增加。
由于差分的求解是基于某些边界条件的,一旦边界条件发生变化,原有的求解方案就会失效。
此外,在进行离散化处理时,随着问题规模的增大,计算复杂性也会随之增加,使得求解较大规模的问题极其困难。
有限差分法已经成为当今解决复杂问题数值计算的重要技术手段。
它在准确性、精度和计算速度方面均具有优势,深受工业界、医学界及数学领域的青睐。
有限差分法的实际应用也正在层出不穷,今后有望在更多的领域得到广泛的应用。
3第二章-有限差分方法基础
2.1.1 基本方程和定解问题
u t
2u x2
( 0)
求解域: (x, t) [0,1][0, ]
(2.1.1)
初始条件: u(x, 0) f (x)
边界条件: u(0, t) a(t), u(1, t) b(t)
(2.1.2)
方程(2.1.1)和初边条件(2.1.2)构成了一个适定的定解问题。
根据数学分析中的知识,我们知道
2u (x,t) lim u(x x,t) 2u(x,t) u(x x,t)
x2
x0
x2
所以,二阶导数可以近似为
2u
x
2
n
k
un k 1
2ukn x2
ukn
un k 1
2ukn
un k 1
称为二阶中心差分。
容易证明:
un k 1
2ukn
un k 1
t
)
ut
(
x,
t
)
lim
t 0
u(
x,
t
t
)u 2t
(
x,
t
t
)
其中,lim 后面的项称为差商(difference quotient)。 t 0
当t足够小时,可以用差商来近似导数。
即:
u(x,t t) u(x,t)
ut (x,t)
t
u(x,t) u(x,t t)
ut (x,t)
t
u(x,t t) u(x,t t)
The Elements of Computational Fluid Dynamics
第二章 有限差分方法基础
§2.1 有限差分方法概述 §2.2 导数的数值逼近方法 §2.3 差分格式的性质 §2.4 发展方程的稳定性分析
有限差分法推导
有限差分法推导摘要:一、有限差分法简介1.有限差分法的概念2.有限差分法在数值计算中的应用二、有限差分法的推导1.差分法的定义2.有限差分法的推导过程3.有限差分法的性质三、有限差分法的应用1.微分方程的数值解法2.有限差分法在数值积分中的应用四、有限差分法的优缺点1.优点2.缺点正文:一、有限差分法简介有限差分法是一种数值计算方法,通过将连续函数离散化,用差分代替微分,从而实现对微分方程或积分方程的求解。
有限差分法广泛应用于科学、工程和金融领域,例如,在天气预报、海洋学、生物学、经济学等方面都有重要作用。
二、有限差分法的推导1.差分法的定义差分法是一种将函数在某一点上的值与该点附近点的值相减的方法,用于近似计算函数在该点处的导数或变化率。
给定一个函数f(x),在x=a 处求导,可以得到差分算子Df(a,h),其中h 为差分步长。
2.有限差分法的推导过程有限差分法是将差分法应用于离散点集,通过有限个差分算子来近似表示函数在某一点的值。
设函数f(x) 在区间[x0, x1] 上可导,离散点集为{x0,x0+h, x0+2h, ..., x1},有限差分法的表达式为:Df(x0+k h) ≈ (h/(k+1)) * [f(x0+k h) - f(x0+(k-1) h)] (k=1,2,3,...,n-1)3.有限差分法的性质有限差分法具有以下性质:(1) 线性性质:Df(x) + Dg(x) = D(f(x) + g(x))(2) 移位性质:Df(x+h) = Df(x) + h * df(x)/dx(3) 微分性质:Df(x) * (x - x0) = f"(x) * (x - x0) + O(h^2)三、有限差分法的应用1.微分方程的数值解法有限差分法可以用于求解微分方程,例如,对于一阶线性微分方程:df(x)/dx + p(x) * f(x) = q(x)可以用有限差分法将其离散化为一个线性代数方程组,从而求解离散解。
有限差分法
有 限 差 分 法流体运动的控制方程多为偏微分方程,在复杂的情况下不存在解析解。
但是对于一些简单的情况存在解析解,偏微分方程的解析解可用精确的数学表达式表示,该表达式给出了因变量在整个定义域中的连续变化状况。
有限差分法(Finite Difference Method ,FDM )是数值计算中比较经典的方法,由于其计算格式直观且计算简便,因此被广泛地应用在计算流体力学中。
有限差分法首先将求解区域划分为差分网格,变量信息存储在网格节点上,然后将偏微分方程的导数用差商代替,代入微分方程的边界条件,推导出关于网格节点变量的代数方程组,通过求解代数方程组,获得偏微分方程的近似解。
偏微分方程被包含离散点未知量的代数方程所替代,这个代数方程能求出离散节点处的变量,这种离散方法叫做有限差分法。
2.1有 限 差 分 逼 近2.1.1 有限差分网格 由于有限差分法求解的是网格节点上的未知量值,因此首先介绍有限差分网格。
图2.1 – 1是x-y 平面上的矩形差分网格示意图。
在x 轴方向的网格间距为△x ,在y 轴方向的网格间距为△y ,网格的交点称为节点,计算变量定义在网格节点上。
称△x 和△y 为空间步长,△x 一般不等于△y ,且△x 和△y 也可以不为常数。
取各方向等距离的网格,可以大大简化数学模型推导过程,并且经常会取得更加精确的数值解。
本章作为计算流体力学入门知识,假设沿坐标轴的各个方向网格间距分别相等,但是并不要求各方向的网格间距一致。
例如假设△x 和△y 是定值,但是不要求△x 等于△y 。
在图2.1 - 1中,网格节点在x 方向用i 表示,在y 方向用j 表示。
因此,假如(i ,j )是点P 在图2.1 – 1中的坐标,那么,点P 右边的第一个点的就可以用(i+1,j )表示;在P 左边的第一个点的就可以用(i —1,j )表示;点P 上边的第一个点的就可以用(i ,j+1)表示;点P 下边的第一个点的就可以用(i ,j —1)表示。
有限差分法
有限差分法一、有限差分法的定义有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。
其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ的差分方程组的问题。
二、有限差分法的应用例3.7.1 有一个无限长直的金属槽,截面为正方形,两侧为正方形,两侧面及底板接地,上盖板与侧面绝缘,其上的电位为ϕ=100V, 试用有限差分法计算槽内电位。
(1)用Matlab 中的有限差分法计算槽内电位;(2)对比解析法和数值法的异同点;(3)选取一点,绘制收敛曲线;(4)总的三维电位图;1、根据有限差分公式计算出电位最终近似值为1,12,13,11,22,23,21,32,33,3=7.144=9.823=7.144=18.751=25.002=18.751=42.857=52.680=42.857ϕϕϕϕϕϕϕϕϕ,,,,,,用Matlab有限差分法计算出来结果:(见附录程序一)2、解析法和数值法的异同点解析法数值法定义在分析具体问题的基础上,抽取出一个数学模型,这个数学模型能用若干个解析表达式表示出来,解决了这些表达式,问题也就得以解决。
数值法是用高性能的计算机以数值的、程序的形式解决问题,主要是指有限元法和差分法相同点都是在具体问题的基础上取一个用解析表达式表示的数学模型来解决问题;数值法是在解析法的基础上在不同尺度上进行有限元离散,离散单元尺度不同,进行有限元计算时要满足的连续性条件不同,预测结果的精确度就不同不同点解析法可以计算出精确的数值结果;可以作为近似解和数值解的检验标准;解析法过程可以观察到问题的内在和各个参数对数值结果起的作用。
但是分析过程困难又复杂使其仅能解决很少量的问题。
数值法求解过程简单,普遍性强,用户拥有的弹性大;用户不必具备高度专业化的理论知识就可以用提供的程序解决问题。
但求解结果没有解析法精确。
04有限差分法.ppt
n Rj
O t x
2
无条件稳定
2.一维混合问题
u 2u 2 0 t x u x ,0 F x u a, t t u b, t t
0 x b, t 0, 0
对于[a,b]区间的内点,可以构造以上各种格式。 如四点显式
例:驱动腔内的流体流动。
3.网格划分
x h y l xi ih
-----称为步长。
u x, y u i , j
xi , y j i, j
y j jl
4.差分格式 将u在(i,j)附近展成Taylor级数
ui 1, j ui , j ui 1, j ui , j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j
-----中心差分式
O h 表示具有二阶精度。
2
两Taylor展式相加
2u 1 ui 1, j 2ui , j ui 1, j O h 2 x 2 h2 i, j
3第二章_有限差分方法基础
3第二章_有限差分方法基础有限差分方法是一种数值计算方法,用于求解偏微分方程的数值近似解。
它的基本思想是将求解域离散化,将连续的偏微分方程转化为离散的差分方程,然后通过迭代求解差分方程的解来逼近原方程的解。
有限差分方法的基础是差分近似。
差分近似是将连续函数在一组离散点上进行近似表示的方法。
差分近似的基本思想是用函数的差商来近似函数的导数。
例如,对于函数f(x),在点x上的导数可以用差商表示为f'(x)≈(f(x+h)-f(x))/h,其中h是一个小的正数。
有限差分方法的核心是离散化。
离散化是将求解域划分为有限个网格点,然后在这些网格点上进行近似计算。
通常使用均匀网格,即将求解域等分为相同大小的网格。
在每个网格点上,用差分近似来代替偏微分方程中的导数项,将偏微分方程转化为离散的差分方程。
在离散的差分方程中,未知函数在每个网格点上的值可以通过迭代求解得到。
迭代的过程是通过将差分方程中的未知函数值代入到方程中,然后求解得到新的未知函数值。
不断迭代直到满足一定的收敛准则,得到近似解。
有限差分方法有很多的变形和扩展。
其中最基础的是一维情况下的有限差分方法,它适用于求解一维偏微分方程。
在一维情况下,求解域只有一个自变量x,因此只需要在x方向上进行离散化。
除了一维情况,有限差分方法还可以扩展到更高维的情况,例如二维和三维情况。
在二维情况下,求解域有两个自变量x和y,需要在x和y 方向上都进行离散化。
在三维情况下,求解域有三个自变量x、y和z,需要在x、y和z方向上都进行离散化。
有限差分方法的优点是简单易懂,计算效率高。
它可以应用于各种偏微分方程的求解,包括椭圆方程、双曲方程和抛物方程等。
然而,有限差分方法也有一些局限性,例如对于复杂的几何形状和边界条件的处理比较困难。
总之,有限差分方法是一种常用的数值计算方法,用于求解偏微分方程的数值近似解。
它通过将求解域离散化,将连续的偏微分方程转化为离散的差分方程,然后通过迭代求解差分方程的解来逼近原方程的解。
有限差分方法
n
Δt
(2-2)
空间导数用一阶中心差商近似代替,即
ζ in+1 − ζ in−1 ⎛ ∂ζ ⎞ ⎜ ⎟ ≈ 2Δx ⎝ ∂x ⎠ i
则在 ( xi , t n ) 点的对流方程就可近似地写作
(2-3)
ζ in +1 − ζ in
Δt
+α
ζ in+1 − ζ in−1
2Δx
(1-11)
当然,在某些情况下也可取向前或向后的二阶差商。
9
第一节 差分原理及逼近误差/差分原理 以上是一元函数的差分与差商。多元函数f(x,y,…)的差分与 差商也可以类推。 如一阶向前差商为
Δf f ( x + Δx , y , Λ ) − f ( x , y , Λ ) = , Δx Δx
Δf f ( x, y + Δy , Λ ) − f ( x, y , Λ ) = , Δy Δy ΛΛ
(1-6)
6
第一节 差分原理及逼近误差/差分原理 函数的差分与自变量的差分之比,即为函数对自变量的 差商。 一阶向前差商为 一阶向后差商为
f ( x + Δx) − f ( x) Δy = Δx Δx
(1-7)
f ( x ) − f ( x − Δx ) Δy = Δx Δx
(1-8)
7
第一节 差分原理及逼近误差/差分原理 一阶中心差商为
15
第一节 差分原理及逼近误差/非均匀步长
图1-2 均匀和非均匀网格实例1
16
第一节 差分原理及逼近误差/非均匀步长
图1-3 均匀和非均匀网格实例2
17
第二节 差分方程 差分相应于微分,差商相应于导数。差分和差商是用有限形 式表示的,而微分和导数则是以极限形式表示的。如果将微 分方程中的导数用相应的差商近似代替,就可得到有限形式 的差分方程。现以对流方程为例,列出对应的差分方程。
求解偏微分方程三种数值方法
求解偏微分方程三种数值方法偏微分方程是数学中研究包含多个变量及其偏导数的方程。
解决偏微分方程的数值方法有很多,但本文将重点介绍三种常用的数值方法,分别是有限差分法、有限元法和谱方法。
一、有限差分法:有限差分法是一种常用的数值方法,用于求解偏微分方程的数值解。
其基本思想是通过建立网格来离散化偏微分方程中的空间变量,并近似替代导数,将偏微分方程转化为代数方程组,进而求解。
常见的有限差分格式有向前差分、向后差分和中心差分。
有限差分法主要包括以下步骤:1.空间离散化:将区域划分为网格点,在每个网格点上计算方程中的函数值。
2.近似代替导数:使用差分公式,将导数近似替代为函数在相邻网格点上的差分。
3.建立代数方程组:根据近似的导数和偏微分方程的形式,可以建立相应的代数方程组。
4.求解方程组:使用求解线性方程组的方法,如高斯消元法或迭代法,求解代数方程组。
5.恢复连续解:通过插值或者其他方法,将离散解恢复为连续解。
二、有限元法:有限元法是一种广泛应用的数值方法,用于求解偏微分方程的数值解。
其基本思想是将区域划分为有限个小区域,称为单元,通过求解单元上的局部方程,最终得到整个区域上的数值解。
有限元法主要包括以下步骤:1.离散化:将区域划分为单元,并选择适当的有限元空间。
2.建立局部方程:在每个单元上,根据选择的有限元空间和边界条件,建立局部方程。
3.组装全局方程:将所有单元上的局部方程组装成整个区域上的全局方程。
4.施加边界条件:根据问题的边界条件,施加适当的边界条件。
5.求解方程组:使用求解线性方程组的方法,求解全局方程组,得到数值解。
6.后处理:通过插值等方法,将离散解恢复为连续解,并进行后续的分析。
三、谱方法:谱方法是一种高精度的数值方法,适用于求解偏微分方程的数值解。
其基本思想是将区域上的函数展开为一组基函数的线性组合,通过选取适当的基函数和系数,来逼近求解方程。
谱方法主要包括以下步骤:1. 选择基函数:根据问题的性质,选择合适的基函数,如Legendre多项式、Chebyshev多项式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
主要内容
二叉树期权定价yright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
续
为了构造二叉树,我们把期权有效期分为五段, 每段一个月(等于0.0833年)。可以算出:
u e d e
Dt
1.1224 0.8909
SerDt pSu (1 p)Sd
erDt pu (1 p)d
同样可以推得:
f e r Dt pf u 1 p f d
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
Dt
e r Dt d p 0.5076 ud 1 p 0.4924
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
美式看跌期权二叉树
70.70 0 62.99 56.12 50 A 4.48 2.15 44.55 6.95 0.63 50 3.76 39.69 B 10.35 D 56.12 1.30 C 44.55 6.37 35.36 14.64 79.35 0 62.99 0 50 2.66 39.69 10.31 31.51 18.50 E 89.07 0 70.70 0 56.12 0 44.55 5.45 35.36 G 14.64 28.07 21.93
e
rDt
d p ud
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
风险中性定价法
在风险中性世界里: (1)所有可交易证券的期望收益都是无风险利率; (2)未来现金流可以用其期望值按无风险利率贴现。 在风险中性的条件下, 参数值满足条件:
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
举例说明
假设标的资产为不付红利股票,其当前市场价 为50元,波动率为每年40%,无风险连续复利年 利率为10%,该股票5个月期的美式看跌期权协 议价格为50元,求该期权的价值。 利用倒退定价法,可以推算出初始结点处的期 权价值为4.48元。
证券价格的树型结构
Su4 Su3 Su2 Su S Sd Sd2 Sd3 Sd4 S S Sd Sd2 Su Su2
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
倒推定价法
得到每个结点的资产价格之后,就可以在二叉 树模型中采用倒推定价法,从树型结构图的末 端T时刻开始往回倒推,为期权定价 值得注意的是,如果是美式期权,就要在树型 结构的每一个结点上,比较在本时刻提前执行 期权和继续再持有时间,到下一个时刻再执行 期权,选择其中较大者作为本结点的期权价值 。
二叉树模型的基本方法
Su p S 1-p Sd
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
无套利定价法
构造投资组合包括 D份股票多头和1份看涨期 权空头
SuD – ƒu SdD – ƒd
当SuD – ƒu = Sd D – ƒd ,则组合为无风险组
F
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
二叉树方法的一般定价过程
以无收益证券的美式看跌期权为例。把该期权 有效期划分成N个长度为 Dt 的小区间,令
f ij (0 i N ,0 j i) 表示在时间 iDt 时第j个结 点处的美式看跌期权的价值,同时用 Su j d i j 表示结点 (i, j ) 处的证券价格,可得:
合
ƒu f d D Su Sd
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
无套利定价法(续)
组合在 T 时刻价值为 Su D – ƒu 组合现值应为: (Su D – ƒu )e–rT 组合现值的另外一个表达式为:S D – f 因此:ƒ = S D – (Su D – ƒu )e–rT
支付连续红利率资产的期权定价
当标的资产支付连续收益率为 q 的红利时,在 风险中性条件下,证券价格的增长率应该为rq,因此:
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University
无套利定价法(续)
将
fu f d D Su Sd
代入上式,可以得到:
f e
其中:
r Dt
pf u 1 p f d
f N,j max( X Su j d N j ,0)
Dt 后 ,假定期权不被提前执行,则在风险中
性条件下:
fij e
rDt
[ pfi1, j 1 (1 p) fi1, j ]
Copyright© Zhenlong Zheng 2003, Department of Finance, Xiamen University