回归分析简答题
第十章 一元线性回归
![第十章 一元线性回归](https://img.taocdn.com/s3/m/12f0a916964bcf84b9d57bce.png)
第十一章 一元线性回归一、填空题1、对回归系数的显著性检验,通常采用的是 检验。
2、若回归方程的判定系数R 2=0.81,则两个变量x 与y 之间的相关系数r 为_________________。
3、若变量x 与y 之间的相关系数r=0.8,则回归方程的判定系数R 2为____________。
4、对于直线趋势方程bx a y c +=,已知∑=,0x ∑=130xy ,n=9,1692=∑x, a=b ,则趋势方程中的b=______。
5、回归直线方程bx a y c +=中的参数b 是_____________。
估计待定参数a 和 b 常用的方法是-_________________。
6、相关系数的取值范围_______________。
7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项的方程称为 。
8、在回归分析中,根据样本数据求出的方程称为 。
9、在回归模型εββ++=x y 10中的ε反映的是 。
10、在回归分析中,F 检验主要用来检验 。
11、说明回归方程拟合优度检验的统计量称为 。
二、单选题1、年劳动生产率(x :千元)和工人工资(y :元)之间的回归方程为1070y x =+,这意味着年劳动生产率没提高1千元,工人工资平均( )A 、 增加70元B 、 减少70元C 、增加80元D 、 减少80元 2、两变量具有线形相关,其相关系数r=-0.9,则两变量之间( )。
A 、强相关B 、弱相关C 、不相关D 、负的弱相关关系 3、变量的线性相关关系为0,表明两变量之间( )。
A 、完全相关B 、无关系C 、不完全相关D 、不存在线性关系 4、相关关系与函数关系之间的联系体现在( )。
A 、相关关系普遍存在,函数关系是相关关系的特例 B 、函数关系普遍存在,相关关系是函数关系的特例C 、相关关系与函数关系是两种完全独立的现象D 、相关关系与函数关系没有区别 5、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δxy2=-7,n=100,则x 和y 存在着( )。
医学统计学简答题
![医学统计学简答题](https://img.taocdn.com/s3/m/cad738d99f3143323968011ca300a6c30c22f184.png)
1、正态分布的特点及其应用性质:①以均数为中心,两头低中间高,左右完全对称的钟型曲线;②只有一个高峰,在X=μ,总体中位数亦为μ;③μ为位置参数,当σ恒定时,μ越大,曲线沿横轴越向右移动;σ为形态参数,当μ恒定时,σ越大,表示数据越分散,曲线越矮胖,反之,曲线越瘦高;④对于任何服从正态分布N(μ,σ2)的随机变量X作的线性变换,都会变换成u服从于均数为0,方差为1的正态分布,即标准正态分布;⑤正态分布在μ±1σ处各有一个拐点;⑥正态曲线下的面积分布有一定的规律:X轴与正态曲线所夹面积恒为1;区间μ±σ的面积为68.27%,区间μ±1.96σ的面积为95.00%,区间μ±2.58σ的面积为99.00%。
应用:①概括估计变量值的频数分布;②制定参考值范围;③质量控制;④是许多统计方法的理论基础。
2、确定参考值范围的一般原则和步骤、方法一般原则和步骤:①抽取足够例数的正常人样本作为观察对象;②对选定的正常人进行准确而统一的测定,以控制系统误差;③判断是否需要分组测定;④决定取单侧范围值还是双侧范围值;⑤选定适当的百分范围;⑥选用适当的计算方法来确定或估计界值。
方法:①正态分布法:②百分位数法(偏态分布):3、标准差与标准误的区别与联系区别:含义:标准差反映观察值在个体中的变异大小,标准差越大,变量值越分散。
标准误是指样本统计量的标准差,反映来自同一总体的样本统计量的离散程度以及样本统计量与总体参数的差异程度,即抽样误差的大小。
计算方法:标准差:总体标准差:样本标准差:标准误:均数的标准误:率的标准误:用途:标准差①用于对称分布,特别是正态分布资料,表示观察值分布的离散程度②结合均数,描述正态分布的特征、估计参考值范围③结合样本统计量,计算均数标准误④计算变异系数⑤反映均数的代表性标准误①衡量样本均数的可靠性②估计总体均数的可信区间③用于均数的假设检验与n的关系:随着n增加,样本标准差稳定于总体标准差;随着n增加,样本标准误减少并趋于0。
数据分析简答题
![数据分析简答题](https://img.taocdn.com/s3/m/3baab8262379168884868762caaedd3383c4b5e2.png)
数据分析简答题数据分析是指通过收集、整理、分析和解释数据,以发现其中的模式、关联和趋势,并从中提取有价值的信息和洞察。
在进行数据分析时,通常需要回答一系列的问题,以下是几个常见的数据分析简答题。
1. 什么是数据清洗?为什么数据清洗在数据分析中很重要?数据清洗是指对原始数据进行处理,以去除错误、不完整、重复或不相关的数据,并确保数据的准确性和一致性。
数据清洗在数据分析中非常重要,原因如下:- 提高数据质量:清洗数据可以去除错误和不完整的数据,提高数据质量,从而减少分析结果的误差。
- 保证数据一致性:清洗数据可以对数据进行标准化和统一格式化,确保数据在不同来源和格式之间的一致性,方便后续的分析和比较。
- 提高分析效率:清洗数据可以减少重复数据和不相关数据的存在,减少分析的时间和计算资源的消耗。
- 降低分析风险:清洗数据可以减少数据分析过程中的错误和偏差,提高分析结果的可靠性和可信度。
2. 什么是数据可视化?为什么数据可视化在数据分析中很重要?数据可视化是指通过图表、图形、地图等可视化方式展示数据,以帮助人们更直观地理解和分析数据。
数据可视化在数据分析中非常重要,原因如下:- 提供直观理解:通过可视化方式展示数据,可以将抽象的数据转化为直观的图形,帮助人们更容易理解数据的含义和趋势。
- 发现模式和关联:通过可视化数据,可以更容易地发现数据中的模式、关联和趋势,从而提取有价值的信息和洞察。
- 支持决策和沟通:通过可视化数据,可以更清晰地传达数据分析结果,支持决策和沟通,使复杂的数据变得更易于理解和接受。
- 提高效率和效果:通过可视化数据,可以减少人们在分析数据时的认知负荷,提高分析的效率和效果。
3. 什么是相关性分析?如何计算相关系数?相关性分析是指通过计算变量之间的相关系数,来衡量它们之间的线性关系强度和方向。
相关系数可以用来判断两个变量是否具有相关性,以及相关性的强弱和方向。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
生物统计学简答题
![生物统计学简答题](https://img.taocdn.com/s3/m/a4cf65d95901020206409c02.png)
1. 什么是生物统计学?生物统计学的主要容和作用是什么?生物统计学是用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料,是研究生命过程中以样本来推断总体的一门学科。
生物统计学主要包括试验设计和统计分析两大局部的容。
其根本作用表现在以下4个方面:1.提供整理和描述数据资料的科学方法,确定某些性状和特性的数量特征。
2.判断试验结果的可靠性。
3.提供由样本推断总体的方法。
4.提供试验设计的一些重要原那么。
2. 随即误差与系统误差有何区别?随机误差也称为抽样误差或偶然误差,它是由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间的误差,是不可防止的,随机误差可以通过试验设计和精心管理设法减小,而不能完全消除。
系统误差也称为片面误差,是由于试验处理以外的其他条件明显不一致所产生的带有倾向性或定向性的偏差。
系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的。
3. 准确性与准确性有何区别?准确性指在调查和实验中某一实验指标或性状的观测值和真实值接近程度。
准确性指调查和实验中同一实验指标或性状的重复观察值彼此接近的程度。
准确性是说明测定值和真实值之间符合程度的大小;准确性是反映屡次测定值的变异程度。
4. 平均数与标准差在统计分析中有何用处?他们各有哪些特性?平均数的用处:①平均数指出了一组数据的中心位置,标志着资料所代表性状的数量水平和质量水平;②作为样本或资料的代表数据与其他资料进展比拟。
平均数的特征:①离均差之和为零;②离均差平方和为最小。
标准差的用处:①标准差的大小,受实验后调查资料中的多个观测值的影响,如果观测值之间的差异大,离均差就越大;②在计算标准差是如果对观察值加上一个或减去一个a,标准差不变;如果给各观测值乘以或除以一个常数a,所得的标准差就扩大或缩小a倍;③在正态分布中,X+-S的观测值个数占总个数的68.26%,X-+2s的观测值个数占总个数的95.49%,x-+3s 的观测值个数占总个数的99.73%。
2[1].回归方程复习题
![2[1].回归方程复习题](https://img.taocdn.com/s3/m/1976344f011ca300a6c3906e.png)
第二、三章 回归方程复习题一、 单项选择题1、将内生变量的前期值作解释变量,这样的变量称为( D )。
A .虚拟变量 B. 控制变量C .政策变量 D. 滞后变量2、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( B )。
A .横截面数据 B. 时间序列数据C .修匀数据 D. 原始数据3、在简单线性回归模型中,认为具有一定概率分布的随机数量是( A )。
A .内生变量 B. 外生变量C .虚拟变量 D. 前定变量4、回归分析中定义的( B ) 。
A .解释变量和被解释变量都是随机变量B .解释变量为非随机变量,被解释变量为随机变量C .解释变量和被解释变量都为非随机变量D .解释变量为随机变量,被解释变量为非随机变量5、双对数模型μββ++=X Y ln ln ln 10中,参数β1的含义是( C )。
A .Y 关于X 的增长率 B. Y 关于X 的发展速度C .Y 关于X 的弹性 D. Y 关于X 的边际变化6、半对数模型i i i X Y μββ++=ln 10中,参数β1的含义是( D )。
A .Y 关于X 的弹性 B. X 的绝对量变动,引起Y 的绝对量变动C .Y 关于X 的边际变动 D. X 的相对变动,引起Y 的期望值绝对量变动7、在一元线性回归模型中,样本回归方程可表示为:( C )。
A .t t t X Y μββ++=10 B. t t t t X Y E Y μ+=)|(C .t t X Y 10ˆˆˆββ+= D. t t t X X Y E 10)|(ββ+= (其中t=1,2,…,n )8、设OLS 法得到的样本回归直线为i i i e X Y ++=10ˆˆββ,以下说法不正确的是( D )。
A .0=∑i e B. ),(Y X 在回归直线上C .Y Y =ˆ D. 0),(≠i i e X COV9、同一时间,不同单位相同指标组成的观测数据称为( B )。
大学专业课-计量经济学-A卷-试卷及答案
![大学专业课-计量经济学-A卷-试卷及答案](https://img.taocdn.com/s3/m/dc0872a9f7ec4afe05a1dfb7.png)
REV does not Granger Cause GDP
26
3.17904
0.12663
GDP does not Granger Cause REV
1.84105
0.17907
根据上述输出结果,对REV和GDP进行Granger因果关系分析(显著性水平为0.05)
2.(5分)观察下列输出结果,分析变量间出现了什么问题?如何解决该问题?
A.F=1 ; B. F=0; C. F=-1 D. F=∞
5.判定系数r2=0.7,说明回归直线能解释被解释变量总变差的:( )
A.30% B.70% C.64% D.49%
6.DW的取值范围是:( )
A.-1≤DW≤0 B.-1≤DW≤1 C.-2≤DW≤2 D.0≤DW≤4
7.设个人消费函数 中,消费支出Y不仅与收入X有关,而且与消费者的性别、年龄构成有关,年龄构成可以分为老、中、青三个层次,假定边际消费倾向不变,该消费函数引入虚拟变量的个数为( )
Variable
Coefficient
Std. Error
t-Statistic
Prob.
T
0.195181
0.004367
44.69628
0.0000
C
4.887978
0.059875
81.63659
0.0000
R-squared
0.989598
Mean dependent var
7.230146
假定3无自相关假定,两个误差项之间不相关。即cov (ui,uj)=0i≠j。
这里,cov表示协方差,i和j表示任意的两个误差项。(如果I=j,则上式就给出了的方差的表达式)。无自相关假定表明误差项ui是随机的。
第八章 相关分析与回归分析习题答案
![第八章 相关分析与回归分析习题答案](https://img.taocdn.com/s3/m/c573deb60066f5335b812141.png)
第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。
相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。
在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。
这种关系不能用完全确定的函数来表示。
相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。
回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。
其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。
单相关:单相关是指仅涉及两个变量的相关关系。
复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。
正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。
负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。
线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。
非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。
相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。
取值在-1到1之间。
两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。
三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。
回归分析期末试题及答案
![回归分析期末试题及答案](https://img.taocdn.com/s3/m/d3b8ba4d591b6bd97f192279168884868762b8c6.png)
回归分析期末试题及答案一、简答题1. 请解释回归分析的基本思想。
回归分析是一种统计学方法,用于研究变量之间的关系。
其基本思想是通过建立一个数学模型来描述一个或多个自变量对因变量的影响,并根据观察数据对模型进行拟合和推断。
2. 请解释简单线性回归和多元线性回归的区别。
简单线性回归是建立在一个自变量和一个因变量之间的基础上的回归模型。
多元线性回归则是在两个或更多个自变量和一个因变量之间建立的回归模型。
3. 请解释残差的含义。
残差是指建立回归模型后,观测值与模型预测值之间的差异。
残差可以用来评估模型的拟合程度,如果残差较大,则说明模型无法很好地解释观察数据的变化。
4. 请解释R平方的含义及其优缺点。
R平方是一个用来衡量回归模型拟合程度的指标,其值介于0和1之间。
R平方越接近1,说明模型对观察数据的拟合越好;而R平方越接近0,则说明模型对观察数据的拟合越差。
R平方的优点是简单直观,易于理解,但其缺点是不适用于比较不同自变量的模型。
5. 请简要说明什么是多重共线性问题。
多重共线性问题指的是在多元线性回归中,自变量之间存在高度相关性的情况。
多重共线性会导致回归系数的估计不准确,难以解释自变量与因变量之间的关系。
二、计算题1. 已知一个简单线性回归模型为:Y = 2 + 3X,回归系数的解释是什么?回归系数3表示自变量X每增加1个单位,因变量Y会增加3个单位。
而常数项2表示当自变量X为0时,因变量Y的取值为2。
2. 使用最小二乘法求解简单线性回归模型的参数估计值。
最小二乘法是一种常用的回归分析方法,用于估计回归模型中的参数值。
以简单线性回归模型Y = β0 + β1X 为例,最小二乘法通过最小化观测值Y与模型预测值之间的平方差来估计β0和β1。
3. 请计算多元线性回归模型的回归系数。
多元线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn。
回归系数β1、β2、...、βn可以使用最小二乘法来估计,通过最小化观测值Y与模型预测值之间的平方差来得出。
第二章回归分析中的几个基本概念
![第二章回归分析中的几个基本概念](https://img.taocdn.com/s3/m/8701e32c0812a21614791711cc7931b765ce7b26.png)
第⼆章回归分析中的⼏个基本概念第四章⼀、练习题(⼀)简答题1、多元线性回归模型的基本假设是什么?试说明在证明最⼩⼆乘估计量的⽆偏性和有效性的过程中,哪些基本假设起了作⽤?2、多元线性回归模型与⼀元线性回归模型有哪些区别?3、某地区通过⼀个样本容量为722的调查数据得到劳动⼒受教育的⼀个回归⽅程为fedu medu sibs edu 210.0131.0094.036.10++-=R 2=0.214式中,edu 为劳动⼒受教育年数,sibs 为该劳动⼒家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与⽗亲受到教育的年数。
问(1)若medu 与fedu 保持不变,为了使预测的受教育⽔平减少⼀年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。
(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个的⽗母受教育的年数为12年,另⼀个的⽗母受教育的年数为16年,则两⼈受教育的年数预期相差多少? 4、以企业研发⽀出(R&D )占销售额的⽐重为被解释变量(Y ),以企业销售额(X1)与利润占销售额的⽐重(X2)为解释变量,⼀个有32容量的样本企业的估计结果如下:099.0)046.0()22.0()37.1(05.0)log(32.0472.0221=++=R X X Y其中括号中为系数估计值的标准差。
(1)解释log(X1)的系数。
如果X1增加10%,估计Y 会变化多少个百分点?这在经济上是⼀个很⼤的影响吗?(2)针对R&D 强度随销售额的增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化的假设。
分别在5%和10%的显著性⽔平上进⾏这个检验。
(3)利润占销售额的⽐重X2对R&D 强度Y 是否在统计上有显著的影响? 5、什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y +++++=ββββΛ22110,n i ,,2,1Λ=的正规⽅程组,及其推导过程。
回归分析期末考试试卷
![回归分析期末考试试卷](https://img.taocdn.com/s3/m/1472c2c1d1d233d4b14e852458fb770bf68a3b7e.png)
回归分析期末考试试卷1. 简答题(40分)a) 请解释回归分析的基本原理和应用范围。
(10分)b) 比较线性回归和多元回归分析,包括它们的定义、特点和适用情况。
(10分)c) 什么是多重共线性?它对回归分析有什么影响?如何检测和处理多重共线性?(10分)d) 请解释R方统计量在回归分析中的作用和意义。
(10分)2. 计算题(60分)以下数据是一家公司过去10年的销售额和广告费用(单位:百万元):| 年份 | 销售额 | 广告费用 ||------|-------|---------|| 2001 | 20 | 2.5 || 2002 | 25 | 3.0 || 2003 | 30 | 3.5 || 2004 | 35 | 4.0 || 2005 | 40 | 4.5 || 2006 | 45 | 5.0 || 2007 | 50 | 5.5 || 2008 | 55 | 6.0 || 2009 | 60 | 6.5 || 2010 | 65 | 7.0 |a) 请计算销售额和广告费用的平均值和标准差。
(10分)b) 请绘制销售额和广告费用之间的散点图,并添加趋势线。
(10分)c) 进行简单线性回归分析,求出回归方程和相关系数的值。
(10分)d) 对回归方程进行假设检验,判断广告费用对销售额是否有显著影响。
(10分)e) 求出回归方程的可决系数R方,并解释其意义。
(10分)f) 利用回归方程预测2011年的销售额。
(10分)3. 应用题(60分)某医药公司想通过回归分析来预测某种药物的疗效得分(Y)。
他们收集了200个患者的数据,其中包括药物的剂量(X1,以mg为单位)、患者的年龄(X2,以岁为单位)、性别(X3,1代表女性,0代表男性)和治疗时间(X4,以周为单位)。
使用SPSS软件进行多元回归分析,得到回归方程:Y = 2.1X1 + 0.9X2 - 1.5X3 + 0.4X4 + 5.2a) 请解释回归方程中各变量的系数和常数项的含义。
高中数学选修1-2同步练习题库:回归分析的基本思想及其初步应用(简答题:容易)
![高中数学选修1-2同步练习题库:回归分析的基本思想及其初步应用(简答题:容易)](https://img.taocdn.com/s3/m/6a9489063c1ec5da50e270ea.png)
回归分析的基本思想及其初步应用(简答题:容易)1、观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:温度生长速度(1)求生长速度关于温度的线性回归方程;(斜率和截距均保留为三位有效数字);(2)利用(1)中的线性回归方程,分析气温从至时生长速度的变化情况,如果某月的平均气温是时,预测这月大约能生长多少.附:回归直线的斜率和截距的最小二乘法估计公式分别为:.2、某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应数据:(1)画出散点图;(2)求y关于x的线性回归方程。
(3)如果广告费支出为一千万元,预测销售额大约为多少百万元?参考公式用最小二乘法求线性回归方程系数公式:,.3、某公司的广告费支出与销售额(单位:万元)之间有下列对应数据,且与线性相关。
根据表中提供的数据得到线性回归方程中的b=6.5。
(1)求的值。
(2)预测销售额为115万元时,大约需要多少万元的广告费?4、已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:(1)试问这3年的前7个月中哪个月的月平均利润最高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.相关公式:,.5、某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见下表:该院确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好是不相邻的两个月的概率;(Ⅱ)已知选取的是1月与6月的两组数据.(1)请根据2到5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?(参考公式和数据:)参考答案1、(1);(2)2、(1)见解析;(2);(3)82.5.3、(1);(2)15万元.4、(1 5月和6月;(2)上升趋势.(3)940万元.5、(1)(2)该协会所得线性回归方程是理想的.【解析】1、试题分析:(1)根据所给的这组数据求出利用最小二乘法所需要的几个数据,代入求系数的公式中,求得结果,再把样本中心点代入公式,求出的值,即可得到线性回归方程;(2)根据(1)所求的线性回归方程,把代入线性回归方程,即可求出预测这月大约能生长多少.试题解析:(1)由题可知,,,则,,于是生长速度关于温度的线性回归方程为:;(2)利用(1)的线性回归方程可以发现,气温从月平均气温从至时该植物生长速度逐渐增加,如果某月的平均气温是时,预测这月大约能生长.2、试题分析:(1)根据表中所给的五组数据,得到五个点的坐标,在平面直角坐标系中画出散点图.(2)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.(3)将x=10代入回归直线方程求出y的值即为当广告费支出一千万元时的销售额的估计值.试题解析:(1).(2);于是所求的线性回归方程是(3)当时,.点睛:求解回归方程问题的三个易误点:①易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.②回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过点,可能所有的样本数据点都不在直线上.③利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).3、试题分析:(1)利用公式,,将计算代入即可;(2)将代入解出即可.试题解析:(1),(2)由,令,解得,广告费预计为15万元.点睛:求解回归方程问题的三个易误点:①易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.②回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过点,可能所有的样本数据点都不在直线上.③利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).4、试题分析:(1)由折线图,通过计算每个月的平均利润可得;(2)分别计算出第1、2、3年前七个月的总利润,由计算结果即可分析趋势;(3)由题意将数据代入公式,列出回归方程求解即可。
应用回归分析简答题
![应用回归分析简答题](https://img.taocdn.com/s3/m/5823abceac51f01dc281e53a580216fc700a530d.png)
应用回归分析简答题1. 回归分析与相关分析的区别与联系是什么?回归分析与相关分析的区别与联系是什么?答:相关分析与回归分析有密切的联系,它们都是对变量间相关关系的研究,二者可以相互补充。
相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在一定程度的相关关系时,进行回归分析去寻求相关的具体数学形式才有实际的意义。
同时,在进行相关分析时如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且相关分析中相关系数的确定也是建立在回归分析基础上的。
二者的区别:(1)相关分析中,变量x 和变量y 处于平等的地位;回归分析中,变量y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化;(2)相关分析中所涉及的变量x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量; (3)相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制。
制。
2. 线性回归模型的基本假设是什么?线性回归模型的基本假设是什么?(1)Gauss-Markov 假设:a. 误差项e i是一个期望值为0的随机变量,即()0e =i E ;b. 对于自变量12,,,p x xx 的所有值,e i的方差都相同,即2()e s =i D ; c.误差项e i 是彼此相互无关的,即(,)0,=¹i j Cov i j e e (2)解释变量12,,,p x x x 是非随机变量,观测值12,,,i i ip x x x是常数;(3)正态分布的假定:2(0,)es iN ;(4)为了便于数学上的处理,要求>n p 。
3. Gauss-Markov 假设中的三个条件的统计意义是什么?答:a. 误差项e i 是一个期望值为0的随机变量,即()0e =i E ,其统计意义是表明误差项不包含任何系统的趋势,观测值i y 小于或大于均值()i E y 的波动完全是一种随机性; b. 对于自变量12,,,p x x x 的所有值,e i 的方差都相同,即2()e s =i D ,表明要求不同次的观测i y 在其均值附近波动的程度是一样的;c.误差项e i 是彼此相互无关的,即(,)0,e e =¹i j Cov i j ,表明要求不同次的观 测i y 是互不相关的。
应用回归分析简答题及答案
![应用回归分析简答题及答案](https://img.taocdn.com/s3/m/5547630c580102020740be1e650e52ea5518cee2.png)
应用回归分析简答题及答案4.为什么要对回归模型进行检验答:当模型的未知参数估计出来后,就初步建立了一个回归模型。
建立回归模型的目的是应用他来研究经济问题,但如果马上就用这个模型去做预测、控制和分析,显然是不够慎重的。
因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。
5.讨论样本容量n与自变量个数p的关系,他们对模型的参数估计有何影响答:在多元线性回归模型中,样本容量n与自变量个数p的关系是:n>p。
如果n<=p对模型的参数估计会带来严重的影响。
因为:(1)在多元线性回归模型中,有p+1个待估参数B,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
(2)解释变量X 是确定性变量,要求rank(X)=p+1<n,表明设计矩阵X中的自变量列之间不相关,样本容量的个数应该大于解释变量的个数,X是一个满秩矩阵。
7.如何正确理解回归方程显着性检验拒绝Ho,接受Ho答:(1)一般情况下,当Ho:B1=0被接受时,表明y的取值倾向不随x的值按线性关系变化,这种状况的原因可能是变量y与x之间的相关关系不显着,也可能虽然变量y与x之间的相关关系显着,但这种相关关系不是线性的而是非线性的。
(2)当Ho:B1=0被拒绝时,没有其他信息,只能认为因变量y对自变量x是有效的,但并没有说明回归的有效程度,不能断言y与x之间就一定是线性相关关系,而不是曲线关系或其他的关系。
8.一个回归方程的复相关系数R=,样本决定系数R8=, 我们能断定这个回归方程就很理想吗答:1.在样本容量较少,变两个数较大时,决定系数的值容易接近1,而此时可能F检验或者关于回归系数的t检验,所建立的回归方程都没能通过。
2.样本决定系数和复相关系数接近1只能说明Y 与自变量XI,X2,…,Xp整体上的线性关系成立,而不能判断回归方程和每个自变量都是显着的,还需进行F检验和t检验。
3.在应用过程中发现,在样本量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得R。
统计学课后知识题目解析第七章有关分析与回归分析
![统计学课后知识题目解析第七章有关分析与回归分析](https://img.taocdn.com/s3/m/3fa70b6103768e9951e79b89680203d8ce2f6aed.png)
统计学课后知识题⽬解析第七章有关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.⾃变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪⼀个属于相关关系?A.播种量与粮⾷收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆⾯积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化⽅向相反B.两个变量⼀增⼀减C.两个变量之间的变化⽅向⼀致D.两个变量⼀减⼀增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要⽅法是A.对现象进⾏定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.⾃变量不是随机的,因变量是随机的B.两个变量均不是随机的C.⾃变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适⽤于直线相关,⼜适⽤于曲线相关B.只适⽤于直线相关C.既不适⽤于直线相关,⼜不适⽤于曲线相关D.只适⽤于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数B.愈趋近于0C.愈⼤于1D.愈⼩于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈⼤于1D.愈⼩于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全⽆关B.相关程度较⼩B.现象之间完全相关 D.⽆直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.⾼度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的⽅向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和⽆相关21.物价上涨,销售量下降,则物价与销售量之间属于A.⽆相关B.负相关C.正相关D.⽆法判断22.配合回归直线最合理的⽅法是A.随⼿画线法B.半数平均法C.最⼩平⽅法D.指数平滑法23.在回归直线⽅程y=a+bx中b表⽰A.当x增加⼀个单位时,y增加a的数量B.当y增加⼀个单位时,x增加b的数量C.当x增加⼀个单位时,y的平均增加量D.当y增加⼀个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动⽣产率(千元)和⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其⽣产成本为30000元,其中固定成本6000元,则总⽣产成本对产量的⼀元线性回归⽅程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.⽤来反映因变量估计值代表性⾼低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差⼆、多项选择题1.下列现象之间属于相关关系的有A.家庭收⼊与消费⽀出之间的关系B.农作物收获量与施肥量之间的关系C.圆的⾯积与圆的半径之间的关系D.⾝⾼与体重之间的关系E.年龄与⾎压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有⼀个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的⼀元线性回归⽅程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.⾮线性相关7.判断现象之间有⽆相关关系的⽅法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.⾼度曲线相关10.下列现象属于正相关的有A.家庭收⼊愈多,其消费⽀出也愈多B.流通费⽤率随商品销售额的增加⽽减少C.产量随⽣产⽤固定资产价值减少⽽减少D.⽣产单位产品耗⽤⼯时,随劳动⽣产率的提⾼⽽减少E.⼯⼈劳动⽣产率越⾼,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归⽅程B.回归系数有正负值C.两个变量不对等关系D.⾃变量是给定的,因变量是随机的E.利⽤⼀个回归⽅程,两个变量可以相互计算12.直线回归⽅程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是⾃变量,哪个是因变量D.⼀个是随机变量,另⼀个是给定变量E.⼀个是⾃变量,另⼀个是因变量13.从现象间相互关系的⽅向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关 14.估计标准误差是A. 说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈⼩,表明估计值愈可靠E.指标值愈⼤,表明估计值愈可靠 15.下列公式哪些是计算相关系数的公式16.⽤最⼩平⽅法配合的回归直线,必须满⾜以下条件 A.∑(y-y c )=最⼩值 B.∑(y-y c )=0 C.∑(y-y c )2=最⼩值 D.∑(y-y c )2=0E.∑(y-y c )2=最⼤值 17.⽅程y c =a+bxA. 这是⼀个直线回归⽅程B.这是⼀个以X 为⾃变量的回归⽅程C.其中a 是估计的初始值D.其中b 是回归系数E.y c 是估计值18.直线回归⽅程y c =a+bx 中的回归系数b222222)()(.)()())((...))((.y y n x x n yx xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xxxy xyyyxx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动⽅向D.其数值⼤⼩不受计量单位的影响E. 其数值⼤⼩受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B.回归系数⼩于零则相关系数⼩于零C.回归系数等于零则相关系数等于零D.回归系数⼤于零则相关系数⼩于零E.回归系数⼩于零则相关系数⼤于零20.配合直线回归⽅程的⽬的是为了A.确定两个变量之间的变动关系B.⽤因变量推算⾃变量C.⽤⾃变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值⼀致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;⽽回归分析中⾃变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;⽽相关分析中⾃变量是给定的数值,因变量是随机的C.相关系数有正负号;⽽回归系数只能取正值D.相关分析中的两个变量是对等关系;⽽回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
第十二章直线相关与回归
![第十二章直线相关与回归](https://img.taocdn.com/s3/m/d886fbe6102de2bd960588bb.png)
第十二章直线相关与回归【A1型题】1.在y和x的回归分析中,若tb<t0.05,υ可认为A. 两变量存在线性相关关系B. 两变量不存在任何关系C. 样本回归系数和总体回归系数(β=0 ) 相等的可能性P>95%D. 两变量无线性相关E. 以上都不是2. sy·x和sb分别表示A. y对的离散度和b的抽样误差B. y对x的离散度和b的离散度C. y的离散度和b的离散度D. y对的离散度和y的标准估计误差E. y的离散度和b的变异3.欲分析肺活量和身高之间的数量关系,拟用身高值预测肺活量值,则应采用A. 秩相关分析B. 相关分析C. 直线回归分析D. 多元回归分析E. 以上都不是4.若r>r0.05(ν),则A. P>0.05B. P≤0.05C. P>0.01D. P≥0.05E. P<0.055.若对两个变量进行直线相关分析,r=0.39,P>0.05,则说明两个变量之间A. 有伴随关系B. 有数量关系C. 有因果关系D. 有相关关系E. 无相关关系6.对相关系数r进行假设检验,当r>r0.05(ν),则A. 两变量之间关系密切B. 两变量之间相关有统计学意义C. 两变量之间关系不密切D. 两变量之间相关无统计学意义E. 以上都不是7.对两个数值变量同时进行了相关和回归分析,r有统计学意义(P<0.05),则A. b有高度的统计学意义B. b无统计学意义C. b有统计学意义D. 不能肯定b有无统计学意义E. 以上都不是8.某研究者测定60个中学生的身高,询问了他们每天的睡眠时间,并计算了等级相关系数,检验其统计学意义,查表时,n应为A. 2B. 1C. 58D. 60E. 599.某研究者测定了睡眠时间和焦虑症状评分,若想研究两者之间的相关性,应计算的指标是A. rB. tC. b2D. uE. b10.某医师拟制作标准曲线,用光密度值来推测食品中亚硝酸盐的含量,应选用的统计方法是A. u检验B. 回归分析C. 相关分析D. χ2检验E. q检验11.在直线回归分析中,回归系数b的绝对值越大A. 所绘散点越靠近回归线B. 所绘散点越远离回归线C. 回归线在y轴上的截距越大D. 回归线对x轴越平坦E. 回归线对x轴越陡【B型题】A.B.C.D. SbE. Sy12.直线回归分析中,反映扣除x的影响后y的变异程度的指标是13.直线回归分析中,反映在y的总变异中由于x与y的直线关系而使y变异减小的部分,也就是在总平方和中可以用x解释的部分即14.直线回归分析中,反映当x为某定数时个体y值变异程度的指标是15.直线回归分析中,反映x对y的线性影响之外的一切因素对y的变异的作用是【X型题】16. 对某样本的相关系数r和0的差别进行假设检验,结果为tr<t0.05,ν,因此A. 两变量存在直线相关的可能性小于5%B. 如果样本来自ρ=0的总体,得出该r值的概率大于5%C. 如果样本来自ρ=0的总体,得出该r值的概率小于5%D. 两变量的差别无显著性E. r≠0是抽样误差所致17.在作直线回归分析时,选定自变量x的原则一般为A. 两变量间无因果关系,以变异较小者为xB. 两变量间无因果关系,以变异较大者为xC. 两变量间有因果关系,以"因"为xD. 两变量间有因果关系,以"果"为xE. x是可以精确测量和严格控制的变量18.相关系数r的数值A. 可以为负值B. 可以为正值C. 可等于1D. 可大于1E. 可等于-1【名词解释】19. 回归系数20. 截距21. 相关系数22. 等级相关23. 直线回归【简答题】24. 直线回归与相关分析的区别与联系是什么25. 进行直线相关与回归分析时应注意哪些问题26. 什么是剩余标准差?其作用如何27. 为何应该对样本相关系数和样本回归系数都应该进行假设检验28. 直线回归方程可应用在哪些方面29. 用什么方法来确定一条回归直线【应用题】30. 现有12名糖尿病患者血糖和胰岛素的测量数据列于下表中,试对其进行直线相关与回归分析表 12名糖尿病患者血糖(mmol/L)和胰岛素(mU/L)的测量数据编号123456789101112胰岛素17141912916182124171710血糖9.511.610.811.412.49.810.18.67.911.210.612.831. 某课题组测量了16名18~22岁男大学生的肺活量与身高,结果如下表,请进行直线相关与回归分析编号身高(m)x肺活量(L)y编号身高(m)x肺活量(L)y11.7424.65091.7084.02221.7184.278101.6984.07731.7144.420111.7144.31841.7124.379 121.6744.03951.7204.365131.6833.85061.7044.222141.6703.62571.7093.973151.6793.87 481.7294.290161.6923.91132 .某省卫生防病中心对10个城市进行肺癌死亡回顾调查,并对大气中苯并(a)芘进行监测,结果如下表,试检验两者有无相关城市编号12345678910肺癌标化死亡率(1/10万)5.6018.5016.2311.4013.808.1318.0012.1015.309.70苯并(a)芘(μg/100m3)0.051.171.050.100.750.500.651.200.950.65参考答案【A1型题】26.1. D2. A3. C4. E5. E6. B7. C8. D9. A10. B11. E【B型题】12.12. C13. B14. E15. A【X型题】16.16. BE17. CE18. ABCE【应用题】30.相关系数=-0.9037,P<0.05回归方程为=15.448-0.302x ,P<0.0531.相关系数=0.874,P<0.05回归方程为=-15.392+11.464x ,P<0.0532.rs=0.676,P<0.05???? ?? ??-7-。
第二章(简单线性回归模型)2-1答案
![第二章(简单线性回归模型)2-1答案](https://img.taocdn.com/s3/m/19aafc4c27d3240c8547ef0d.png)
2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。
(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。
( F )3. 随机变量的条件期望与非条件期望是一回事。
(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。
(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。
A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。
A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。
A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。
A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。
A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。
A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。
第三章(多元线性回归模型)3-3答案
![第三章(多元线性回归模型)3-3答案](https://img.taocdn.com/s3/m/13237823bb68a98270fefa0d.png)
3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。
( F )2、在多元线性回归中,t 检验和F 检验缺一不可。
( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。
( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。
( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。
则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题30n =1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系?答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。
当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。
多元线性回归分析的线性关系指的是随机变量间的关系,因变量y与回归系数βi间存在线性关系。
多元线性回归的条件是:(1)各自变量间不存在多重共线性;(2)各自变量与残差独立;(3)各残差间相互独立并服从正态分布;(4)Y与每一自变量X有线性关系。
2、回归分析的基本思想与步骤基本思想:所谓回归分析,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。
通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。
步骤:1)确定回归方程中的解释变量和被解释变量。
2)确定回归模型根据函数拟合方式,通过观察散点图确定应通过哪种数学模型来描述回归线。
如果被解释变量和解释变量之间存在线性关系,则应进行线性回归分析,建立线性回归模型;如果被解释变量和解释变量之间存在非线性关系,则应进行非线性回归分析,建立非线性回归模型。
3)建立回归方程根据收集到的样本数据以及前步所确定的回归模型,在一定的统计拟合准则下估计出模型中的各个参数,得到一个确定的回归方程。
4)对回归方程进行各种检验由于回归方程是在样本数据基础上得到的,回归方程是否真实地反映了事物总体间的统计关系,以及回归方程能否用于预测等都需要进行检验。
5)利用回归方程进行预测3、多重共线性问题、不良后果、解决方法多重共线性是指线性回归模型中的自变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。
常见的是近似的多重共线性关系,即存在不全为0的p个常数C1,C2,…,Cp使得C1X i1+C2X i2+…+CpXip≈0,i=1,2,…n不良后果:模型存在完全的多重共线性,则资料阵X的秩<p+1,从而无法得到回归参数的估计量。
对于近似多重共线性情况,虽有r(X)=p+1,但|X T X|≈0,从而矩阵(X T X)-1的主对角线上的元素很大,使得估计的参数向量的协方差阵的对角线上的元素也很大,导致普通最小二乘参数估计量并非有效。
检验方法:方差扩大因子(VIF)法和特征根判定法方差扩大因子表达式为:VIF i=1/(1-R i2),其中R i为自变量xi对其余自变量作回归分析的复相关系数。
当VIF i很大时,表明自变量间存在多重共线性。
解决方法:当发现自变量存在严重的多重共线性时,可以通过剔除一些不重要的自变量、增大样本容量、对回归系数做有偏估计(如采用岭回归法、主成分法、偏最小二乘法等)等方法来克服多重共线性。
4、为什么要进行回归方程的显著性检验?答:对于任意给定的一组观测数据(xi1,xi2,...,xip;yi),(i=1,2,...,n) ,我们都可以建立回归方程。
但实际问题很可能y与自变量x1,x2,...,xp之间根本不存在线性关系,这时建立起来的回归方程的效果一定很差,即回归值yi实际上不能拟合真实的值yi。
即使整个回归方程的效果是显著的,在多元的情况下,是否每个变量都起着显著的作用呢?因此还需要对各个回归系数进行显著性检验,对于回归效果不显著的自变量,我们可以从回归方程中剔除,而只保留起重要作用的自变量,这样可以使回归方程更简练。
5、统计性的依据是什么?给出一个回归方程如何做显著性检验?统计性的依据是方差分析。
对于多元线性回归方程作显著性检验就是要看自变量x1,x2,...xp从整体上对随机变量y是否有明显的影响,即检验假设H0:β1=β2=...=βp=0 H1:至少有某个βi≠0,1<=i<=p如果H0被接受,则表明y与x1,x2,...xp之间不存在线性关系,为了说明如何进行检验,我们首先要建立方差分析表。
在进行显著性检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P值法做检验。
F统计量是:F=MSR/MSE=[SSR/p]/[SSE/(n-p-1)]当H0为真时,F~F(p,n-p-1)。
给定显著性水平α,查F分布表得临界值F1-α(p,n-p-1),计算F的观测值,若F0<=F1-α(p,n-p-1),则接受H0,即认为在显著性水平α之下,认为y与x1,x2,...xp之间线性关系不显著。
利用P值法做显著性检验十分方便,这里的P值是P(F>F0),定显著性水平α,若p<α,则拒绝H0,反之接受H0。
6、回归系数的显著性检验回归方程通过了显著性检验并不意味着每个自变量xi都对y有显著影响。
而回归系数的显著性检验的目的就是从回归方程中剔除那些对y的影响不显著的自变量,从而建立一个较为有效的回归方程。
如果自变量xi对y无影响,则在线性模型中,βi=0检验xi的影响是否显著等价于检验假设H0:βi=0,H1:βi≠0对给定的显著性水平α,当|ti|>tα/2(n-p-1)时,拒绝H0。
反之,则接受H0。
7、数据的中心化和标准化目的:解决利用回归方程分析实际问题时遇到的诸多自变量量纲不一致的问题。
数据中心化处理的几何意义:相当于将坐标原点移至样本中心,而坐标系的平移并不改变直线的斜率,只改变了截距。
8、通过对残差进行分析,可以在一定程度上回答下列问题:1)回归函数线性假定的可行性;2)误差项的等方差假设的合理性;3)误差项独立性假设的合理性;4)误差项是否符合正态分布;5)观测值中是否存在异常值;6)是否在模型中遗漏了某些重要的自变量。
9、标准化回归方程与非标准化回归方程有何不同?在怎样的情况下需要将变量标准化?标准化回归方程就是将自变量因变量都标准化后的方程。
在spss输出的回归系数中有一列是标准化的回归系数,由于都标准化了,因此标准化方程中没有常数项了。
对数据标准化,即将原始数据减去相应变量的均数后再除以该变量的标准差,计算得到的回归方程称为标准化回归方程,相应的回归系数为标准化回归系数。
一般情况下的回归,并不必须标准化,直接回归即可。
在做主成分分析包括因子分析时,则必须标准化。
10、回归分析和相关分析的区别和联系相关分析和回归分析都是对客观事物数量依存关系的分析,均有一元和多元,线性与非线性之分,在应用中相互结合渗透,但仍有差别,主要是:(1)相关分析主要刻画两类变量间线性相关的密切程度,而回归分析则是揭示一个变量如何与其他变量相联系,并可由回归方程进行控制和预测(2)在相关分析中,变量y与x处于平等的地位,在回归分析中,因变量y处于被解释的特殊地位(3)在相关分析中所涉及的变量y与x完全是随机变量;而在回归分析中因变量y是随机变量,自变量可以是随机变量也可以是非随机变量。
一般来说,只有存在相关关系才可以进行回归分析,相关程度越高,回归分析的结果就越可靠。
11、回归方程的基本假定?(1)回归函数的线性假设(2)误差项的等方差假设(3)误差项的独立性假设(4)误差项的正态分布假设12、运用回归分析解决问题时,回归变量的选择理论依据的什么?选择回归变量时应注意哪些问题?(1)从拟合角度考虑,可以采用修正的复相关系数达到最大的准则准则1:修正的复相关系数R a2达到最大。
因为:R a2=1-MSE/(SST/(n-1))从这个关系式容易看出,R a2达到最大时,MSE达到最小。
(2)从预测的角度考虑,可以采用预测平方和达到最小的准则及C p准则准则2:预测平方和PRESS p达到最小准则3:(C p准则)(3)从极大似然估计角度考虑,可以采用赤池信息量化准则(AIC准则)准则4:赤池信息量达到最小AIC=nln(SSE p)+2p选择AIC值最小的回归方程为最优回归方程自变量的选择问题可以看成是应该采用全模型还是选模型的问题全模型正确误用选模型:全模型相应参数为有偏估计,选模型预测也是有偏的。
选模型的参数估计和预测残差以及均方差都有较小的方差。
选模型正确误用全模型,全模型参数估计和预测是有偏估计,而全模型预测值的方差和均方差大于选模型相应的方差。
上述结论说明丢掉那些对应变量影响不大的,或虽有影响,但难于观测的自变量是有利的。
13、逐步回归方法的基本思想与步骤基本思想:有进有出。
具体做法是将变量一个一个引入,引入变量的条件是通过了偏F统计量的检验,同时,每引入一个新变量后,对已入选方程的老变量进行检测,将经检验认为不显著的变量剔除,此过程经过若干步,直到既不能引入新变量又不能剔除老变量为止。
基本步骤:(1)对于每个自变量x i(1≤i≤m),拟合m个一元线性回归模型,若F i1(1)>F E,则所选择含有自变量x i1的回归模型为当前模型,否则,没有变量引入模型,选择过程结束,即认为所有自变量对y的影响均不显著。
(2)在第一步的基础上,再将其余的m-1个自变量分别加入此模型中,得到m-1个二元回归方程,若若Fi1(2)>FE则将自变量xi2引入模型,进一步考察xi2引入模型后,xi1对y的影响是否仍显著,若Fi1(2)≤FD,则剔除xi。
(3)在第二步的基础上再将其余的m-2个自变量分别加入此模型中,拟合各个模型并计算偏F统计量值,与FE比较决定是否又新变量引入,如果有新的变量引入,还需要检验原模型中的老变量是否因为这个新变量的引入而不再显著,那样就应该被剔除。
重复以上步骤,直到没有新的变量进入模型,同时在模型中的老变量都不能被剔除,则结束选择过程。