2014届高三数学每日一练15(含答案)

合集下载

完整word版2014届高三数学天天练1教师版

完整word版2014届高三数学天天练1教师版

2021届高三数学每日练11、不等式x-11的解集是_____________________0,22、不等式1的解是_______________x0或x1x13、假定会合A xx2,B xx a,知足AB2,那么实数a______24、假定函数f(x)的反函数f1x log2x,那么f(x)_________f(x)2x xR5、假定正四棱柱ABCDA1B1C1D1的底面边长为2,高位4,那么异面直线BD1与AD所成角的大小是_________________〔结果用反三角函数值表示〕arctan56、假定球O1,O2表面积之比S14,那么它们的半径之比R1_______2 S2R27、函数y2sinxcosx的最大值为___________58、函数y2cos2xsin2x的最小值是_____________1-29、函数f(x)log3(x 3)的反函数的图像与y轴的交点坐标是__________0,-210、在相距2千米的A,B两点处丈量目标点C,假定CAB75,CBA60,那么A,C两点之间的距离为______________千米11、一个高为2的圆柱,底面周长为62 ,该圆柱的表面积为__________612、假定函数函数的分析式f(x) x abx 2a常数a,b R是偶函数,且它的值域为,4,那么该f(x) _________ f(x) 2x2 413、0x2,化简:lgcosxtanx12sin2x lg2cosx lg1sin2x24答案:014、函数f(x)log a 1mx是奇函数a0,a1 x1〔1〕求m值〔2〕解对于x的不等式f x0答案:〔1〕m1〔2〕当a1时,x1;当0a1时,x115、设函数f(x)2cos2x23sinxcosx mxR〔1〕化简函数f x的表达式,并求函数fx的最小正周期〔2〕假定,能否存在实数m,使函数17假定存在,恳求出mx0,fx的值域恰为,?222的值;假定不存在,请说明原因。

2014石景山高考一模数学理(附答案)

2014石景山高考一模数学理(附答案)

2014年石景山区高三统一测试数学(理科)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x =B .1y x =+C .lg ||y x =-D .2x y =3.在251()x x-的展开式中,x 的系数为( )A .10B .10-C .20D .20-4.已知Rt △ABC 中,o 9054C AB BC ∠===,,,以BC 为直径的圆交AB 于D则BD 的长为( )5.在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为( )A .2B .8CD .46.右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是( )7.阅读右面的程序框图,运行相应的程序,输出的结果为( A .2- B .12C .1-D .2A .4B .95C .125D .165A .12B .3CD ACB 主视图左视图8.已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM 的最小值为( )AB .3C .125D .1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________.11.已知圆C 的极坐标方程为=2ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则圆C 的直角坐标方程为_______________,若直线:30l kx y ++=与圆C 相切,则实数k 的值为_____________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则x y 的取值范围是_________.13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_____________种不同的填报专业志愿的方法(用数字作答).14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<2sin b A =. (Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =c 边的长和△ABC 的面积.16.(本小题满分13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm.(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...这批数量很大的鱼的总体数据,求ξ的分布列及数学期望Eξ.01235567889135567罗非鱼的汞含量(ppm)17.(本小题满分14分)如图,正三棱柱111ABC A B C -的底面边长是2D 是AC 的中点. (Ⅰ)求证:1B C ∥平面1A BD ; (Ⅱ)求二面角1A BD A --的大小;(Ⅲ)在线段1AA 上是否存在一点E ,使得平面11B C E ⊥平面1A BD ,若存在,求出AE 的长;若不存在,说明理由.A1A1B1CCDB18.(本小题满分13分)设函数2()ln ()f x x ax x a =+-∈R . (Ⅰ)若1a =,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间(01],上是减函数,求实数a 的取值范围; (Ⅲ)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1.19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,C 的“准圆”.若椭圆C的一个焦点为0)F ,,其短轴上的一个端点到F. (Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值; (Ⅱ)若生成数列{}n b 满足311(1)78n n S =-,求数列{}n b 的通项公式; (Ⅲ)证明:对于给定的n *∈N ,n S 的所有可能值组成的集合为121{|2}2n n k x x k k *--=∈≤N ,,.2014年石景山区高三统一测试 高三数学(理科)参考答案二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:2sin b A =,2sin sin A B A =, …………………………2分因为0A π<<,所以sin 0A ≠,所以sin 2B =, ………………………… 4分 因为0B π<<,且a b c <<,所以60B = . …………………………6分 (Ⅱ)因为2a =,b=所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=,解得3c =或1c =-(舍),所以c 边的长为3. …………………………10分11=sin 232222ABC S ac B ∆=⨯⨯⨯=. …………………………13分 16.(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则1251031545()91C C P A C ==,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为4591. …………………………4分 (Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率51()153P B ==, ………………5分 ξ可能取0,1,2,3. …………………………6分则30318(0)1327P C ξ⎛⎫==-= ⎪⎝⎭ ,213114(1)1339P C ξ⎛⎫==⨯⨯-=⎪⎝⎭, 223112(2)1339P C ξ⎛⎫⎛⎫==⨯-= ⎪⎪⎝⎭⎝⎭,33311(3)327P C ξ⎛⎫=== ⎪⎝⎭.……………………10分分所以842101231279927E ξ=⨯+⨯+⨯+⨯=. …………………………13分 17.(本小题满分14分)(Ⅰ)证明:连结1AB 交1A B 于M ,连结1B C DM ,, 因为三棱柱111ABC A B C -是正三棱柱, 所以四边形11AA B B 是矩形, 所以M 为1A B 的中点.因为D 是AC 的中点,所以MD 是三角形1AB C 的中位线,…………………………2分所以MD ∥1B C . …………………………3分 因为MD ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1B C ∥平面1A BD . …………………………4分 (Ⅱ)解:作CO AB ⊥于O ,所以CO ⊥平面11ABB A ,所以在正三棱柱111ABC A B C -中如图建立空间直角坐标系O xyz -.因为2AB =,1AA =D 是AC 的中点.所以(100)A ,,,(100)B -,,,(00C ,,1(1A 所以1(02D ,,,3(022BD = ,,, 1(20)BA =.设()n x y z =,,是平面1A BD 的法向量,所以100n BD n BA ⎧⋅=⎪⎨⋅=⎪⎩ ,,即30220x z x ⎧+=⎪⎨⎪+=⎩,, 令x =2y =,3z =, 所以(23)n =,是平面1A BD 的一个法向量. …………………………6分 由题意可知1(00)AA =是平面ABD 的一个法向量, …………………………7分所以11cos 2n AA <>== ,. …………………………8分所以二面角1A BD A --的大小为π. …………………………9分 (Ⅲ)设(10)E x ,,,则1(1C E x =- ,11(10C B,,=-- 设平面11B C E 的法向量1111()n x y z ,,=, 所以111100n C E n C B,,⎧⋅=⎪⎨⋅=⎪⎩即11111)00x x y x ,,⎧-+=⎪⎨-=⎪⎩ 令1z =13x =,1y =,MA1A 1B1CBCD1(3n =-, …………………………12分又10n n ⋅=,即0--=,解得x =所以存在点E ,使得平面11B C E ⊥平面1A BD 且AE = …………………………14分 18.(本小题满分13分)解: (Ⅰ)1a =时, 2()ln (0)f x x ax xx =+->,1(21)(1)()21x x f x x x x-+'∴=+-=, …………………………1分 11(0)()0()()022x f x x f x ''∈<∈+∞>,,,,,,()f x 的减区间为1(0)2,,增区间1()2+∞,. …………………………3分(Ⅱ)1()2f x x a x'=+-()f x 在区间(01],上是减函数, ()0f x '∴≤对任意(01]x ∈,恒成立,即120x a x +-≤对任意(01]x ∈,恒成立, …………………………5分 12a x x ∴≤-对任意(01]x ∈,恒成立, 令1()2g x x x=-,min ()a g x ∴≤, …………………………7分易知()g x 在(01],单调递减,min ()(1)1g x g ∴==-. 1a ∴≤-. …………………………8分(Ⅲ)设切点为(())M t f t ,,1()2f x x a x'=+-, 切线的斜率12k t a t=+-,又切线过原点()f t k t=,()22212ln 211ln 0f t t a t at t t at t t t t=+-+-=+-∴-+=,即:, 存在性:1t =满足方程21ln 0t t -+=,所以,1t =是方程21ln 0t t -+=的根. …………………………11分再证唯一性:设()21ln t t t ϕ=-+,()1'20t t tϕ=+>,()t ϕ在(0,)+∞单调递增,且()1=0ϕ,所以方程21ln 0t t -+=有唯一解.综上,切点的横坐标为1. …………………………13分19.(本小题满分14分)解:(Ⅰ)1c a b ==∴= ,∴椭圆方程为2213x y +=, ………………………………2分准圆方程为224x y +=. ………………………………3分(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………………………6分所以12l l ,方程为22y x y x =+=-+,. ………………………………7分 121l l k k ⋅=- ,12l l ∴⊥. ………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =当1l:x =1l与准圆交于点1)1)-,此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =12l l ,垂直. ………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由0∆=化简整理得 2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………………………12分 综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l , 垂直. 所以线段MN 为准圆224x y +=的直径, ||4MN =,所以线段MN 的长为定值. ………………………………14分20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(,2)2n n b n n *=∈≥N , ∴231148b b =±=±,, 由于1117111511131111,2488248824882488++=+-=-+=--=,,,∴3S 可能值为13578888,,,. …………………………3分(Ⅱ)∵311(1)78n n S =-, 当1n =时,1233111(1)788a a a S ++==-=, 当2n ≥时,32313333111111(1)(1)78788n n n n n n n n a a a S S ----++=-=---=,3231318n n n n a a a --∴++=,*n ∈N , …………………………5分∵{}n b 是1()2n n *⎧⎫∈⎨⎬⎩⎭N 的生成数列,∴323212n n b --=±;313112n n b --=±;3312n n b =±;∴323133231311111(421)()22288n n n n n n n n b b b n *----++=±±±=±±±=∈N ,在以上各种组合中,当且仅当32313421()888n n n n n n b b b n *--==-=-∈N ,,时,才成立. ∴132213 2.2nn nn k b k n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩N ,,(),. …………………………8分(Ⅲ)2311112222n n S =±±±± 共有12n -种情形.23231111111122222222n n n S ----≤≤++++ ,即12122n n n n S -≤≤, 又12322212n n n n nS ---±±±±= ,分子必是奇数, 满足条件121222n n n nx -≤≤的奇数x 共有12n -个. …………………………10分 设数列{}n a 与数列{}n b 为两个生成数列,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,从第二项开始比较两个数列,设第一个不相等的项为第k 项.由于1||||2k k k a b ==,不妨设00k k a b ><,, 则11()()n n k k n k k n S T a a a b b b ++-=+++-+++12111122()2222k k k n ++≤⨯-⨯+++ 1111122()02222k k n n -=⨯-⨯-=>, 所以,只有当数列{}n a 与数列{}n b 的前n 项完全相同时,才有n n S T =.……12分∴2311112222n n S =±±±± 共有12n -种情形,其值各不相同.∴n S 可能值必恰为135212222n n n n n - ,,,,,共12n -个.即n S 所有可能值集合为121{|2}2n n k x x k k *--=∈≤N ,,. …………………………13分【注:若有其它解法,请酌情给分】。

2014年高三数学高考模拟卷(附详细答案)

2014年高三数学高考模拟卷(附详细答案)

2014届高三数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合11,2xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭3{|log 0}B x x =>,则()U A C B ⋂=A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥- 3. 下列函数中,满足22()[()]f x f x =的是A .()ln f x x =B .()|1|f x x =+C .3()f x x = D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“sin 2A >”的充要条件。

④命题 “00,0xx R e ∃∈≤”是真命题. 其中正确的命题的个数是A. 3B. 2C. 1D. 06. 定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3;将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6B.π3C.5π6D.2π37. 函数x x e x y e x+=-的一段图象是8. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩ 其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题:本大题共6小题,每小题5分,满分30分.9. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10. 已知1sin()33πα-=,则5cos()6πα-=_____________. 11. 曲线0,,2y y x y x ===-所围成的封闭图形的面积为 .12. 已知函数2()1,f x x mx =++若命题“000,()0x f x ∃><”为真,则m 的取值范围是___. 13. 设25a b m ==,且112a b+=,则m = _________. 14. 若关于x 的方程24xkx x =+有四个不同的实数解,则实数k 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 已知函数R x x x x f ∈--=,21cos 2sin 23)(2(I )求函数)(x f 的最小正周期;(II )确定函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的单调性并求在此区间上)(x f 的最小值.16.(本小题满分12分)已知函数f (x )=A sin ⎝⎛⎭⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.17. (本小题满分14分)已知等比数列{}n a 中,232a =,812a =,1n n a a +<. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n T a a a =++⋅⋅⋅+,求n T 的最大值及相应的n 值.18. (本小题满分14分)设二次函数2()(0)f x ax bx c a =++≠满足条件:(1)(1)(1)f x f x -+=--;(2)函数在y 轴上的截距为1,且3(1)()2f x f x x +-=+. (1)求()f x 的解析式;(2)若[,1],()x t t f x ∈+的最小值为()h t ,请写出()h t 的表达式; (3)若不等式()11()f x tx ππ->在[2,2]t ∈-时恒成立,求实数x 的取值范围.19.(本题满分14分)已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.20.(本小题满分14分)已知函数()ln f x x x a x =--,a ∈R .(Ⅰ)若2a =,求函数()f x 在区间[]1e ,上的最值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围. 注:e 是自然对数的底数2014届高三数学(理)试题数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合112xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,3{|log 0}B x x =>则()U A C B ⋂=( C )A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( A ) A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3. 下列函数中,满足22()[()]f x f x =的是 ( C ) A .()ln f x x =B .()|1|f x x =+C .3()f x x =D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 ( C ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。

2014届高三数学每日一练16(含答案)

2014届高三数学每日一练16(含答案)

1、已知全集{}{}2,03,2>=<-==x x B x x x A R U ,则_____=B C A U (]2,02、方程08329=-⋅-x x 的解为___________2log 3=x3、已知全集R U =,集合⎭⎬⎫⎩⎨⎧≤-+=021x x x A ,则集合__________=A C U {}21≥-<x x x 或 4、已知函数()x xx f 212+=,则________311=⎪⎭⎫ ⎝⎛-f -1 5、函数()()2log 1220+++-=x x x y x 的定义域为____________________()∞+,22,11,0 6、若函数()174c o s 2-⎪⎭⎫ ⎝⎛+=πx x f 与函数()()21t a n 5+-=ax x g 的最小正周期相同,则实数_______=a 2±7、已知定义在R 上的奇函数()x f 满足()()x f x f -=+2,则()______8=f 08、(文)已知变量y x ,满足条件⎪⎩⎪⎨⎧≤-+≤-≥0401y x y x x ,则y x z 2+=的最大值是__________7(理)在ABC ∆中,若552sin ,5,1===A BC AB ,则________sin =C 254 9、设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值是________210、已知集合⎭⎬⎫⎩⎨⎧<--=01a x ax x A ,且A A ∉∈3,2,则实数a 的取值范围是__________(]3,221,31 ⎪⎭⎫⎢⎣⎡ 11、不等式3502≤++≤mx x 恰好有一个实数解,则实数m 的取值范围是____{}22±∈m 12、已知0,0>>b a ,则不等式a xb <<-1的解集是______⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,11,a b 13、(理)在实数R 中定义一种运算”“*,具有下列性质:(1)对任意a b b a R b a *=*∈,, (2)对任意a a R b a =*∈0,,(3)对任意()()c c b c a ab c c b a R c b a 2)()(,,-*+*+*=**∈,则函数()()R x x x x f ∈*=2的单调递减区间是_________________⎥⎦⎤ ⎝⎛∞23--,14、已知函数()R x x x x f ∈--=,21cos 2sin 232 (1)求函数()x f 的最小值和最小正周期;(2)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且()0,3==c f c ,若A B sin 2sin =,求b a ,的值. 解答:(1)T=()2m in -=x f ,π (2)3π=C ,a=1,b=215、已知函数()()021>+-=x xa x f (1)判断()x f 在()+∞,0的增减性,并证明你的结论;(2)解关于x 的不等式()0>x f ;(3)若()02≥+x x f 在()+∞,0上恒成立,求a 的取值范围.解:(1)f(x)在(0,+∞)上为减函数,设0<x1<x2,f(x1)-f(x2)=⎝ ⎛⎭⎪⎫-1a +2x1-⎝ ⎛⎭⎪⎫-1a +2x2 =2x1-2x2=2(x2-x1)x1x2>0, ∴f(x1)>f(x2),∴f(x)在(0,+∞)上为减函数.(2)不等式f(x)>0,即-1a +2x>0, 即-x +2a ax>0.整理成(x -2a)·ax<0. ①当a>0时,不等式x(x -2a)<0,不等式的解为0<x<2a.②当a<0时,不等式x(x -2a)>0,不等式的解为x>0或x<2a(舍去).综上,a>0时,不等式解集为{x|0<x<2a},a<0时,解集为{x|x>0}.(3)若f(x)+2x ≥0在(0,+∞)上恒成立,即-1a +2x +2x ≥0,∴1a ≤2⎝ ⎛⎭⎪⎫x +1x . ∵2⎝⎛⎭⎪⎫x +1x 的最小值为4, 故1a ≤4,解得a<0或a ≥14.。

2014届高三数学每日一练7(含答案)

2014届高三数学每日一练7(含答案)

富顺一中高2014届1班王和远 高三数学天天练71、不等式123<-x 的解集为____________⎪⎭⎫ ⎝⎛131, 2、已知全集,R U =集合{}{},,22,,0322R x x x B R x x x x A ∈<-=∈≤--=则____=B A (]3,03、在ABC ∆中,ABC B AB ∆==,3,4π的面积为3,则______=AC 134、函数()()1log 2-=x x f 的反函数是________________12+=x y5、设{}{},01,02<-=<-=x x N m x x M 若,N N M = 则实数m 的取值范围是_____________1≤m6、函数()ax ax x f cos sin 3+=的最大值是____________27、函数()()R x x f y ∈=的图像恒过定点()1,0,若()x f y =存在反函数)(1x f y -=,则1)(1+=-x f y 的图像必过定点__________(1,1)8、若⎪⎭⎫ ⎝⎛∈20πα,,且426cos -=⎪⎭⎫ ⎝⎛+πα,则_______cos =α8146-+ 9、条件”的”是““____________12x x x >> 充分非必要 10、若y x y x R y x 22,0,,+=+∈则且的最小值为______________211、在正方体1111D C B A ABCD -中,异面直线1AC 与1BB 所成角的正切值是___________212、{}{}1,03522===--=mx x N x x x M ,若M N ≠⊂,则实数m 取值所组成集合是______⎭⎬⎫⎩⎨⎧2-310,, 13、设()112+-=x x f 的定义域为集合A ,函数()()a x x g --=1lg 的定义域为集合B , (1)求A C R (2)若R B A = ,求实数a 的取值范围 答案:(1)⎪⎭⎫⎢⎣⎡21-1-, (2)⎪⎭⎫⎢⎣⎡023-, 14、如图,ABCD ABCD PA ,平面⊥为正方形,且F E AD PA ,,=分别是线段CD PA ,中点,求异面直线BD EF 和所成角的大小 答案:63arccos15、设幂函数()()()Q k R a x a x f k ∈∈-=,1的图像过点()22,(1)求 k a ,的值(2)求函数()()x f x f y 1+=的最小值 答案:(1)2,2==k a (2)216、在C B A ABC ,,中,角∆的对应边分别为c b a ,,,若A B b a cos lg cos lg lg lg -=-,判断ABC ∆的形状 答案:等腰或直角 PA B C DE F。

2014届高三数学区一检理科试题(带答案)

2014届高三数学区一检理科试题(带答案)

2014届高三数学区一检理科试题(带答案)高三理科数学质量检测试题(卷)2013.10本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案写在答题卡上,在本试卷上答题无效,本试卷满分150分,考试时间为120分钟.注意事项:1.考生答题前,先将条形码贴在条形码区,并将本人姓名、学校、准考证号填写在相应位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试题卷上答题无效.参考公式:,,,,,.第Ⅰ卷(选择题)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知,函数的定义域为集合,则A.B.C.D.3.在一次投掷链球比赛中,甲、乙两位运动员各投掷一次,设命题是“甲投掷在80米之外”,是“乙投掷在80米之外”,则命题“至少有一位运动员没有投掷在80米之外”可表示为A.非或非B.或非C.非且非D.或4.设,,,则A.B.C.D.5.的内角的对边分别是,若,,,则A.B.C.D.6.已知,则的值等于A.B.C.D.7.函数的零点个数为A.B.C.D.8.已知函数,下列结论中错误的是A.存在,B.若是的极小值点,则在区间上单调递减C.若是的极值点,则D.函数无最大值9.已知函数为奇函数,且当时,,则A.B.C.D.10.若函数的图像关于直线对称,则的最大值是A.B.C.或D.不存在第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.计算:;12.若直线与幂函数的图像相切于点,则直线的方程为;13.已知函数,其导函数的部分图像如图所示,则函数的解析式为;14.观察下列不等式:①;②;③;…则第个不等式为;15.给出下列三个命题中,其中所有正确命题的序号是.①函数在上的最小值是.②命题“函数,当,且时,有”是真命题.③函数,若,且,则动点到直线的最小距离是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)叙述并证明余弦定理.17.(本小题满分12分)已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.18.(本小题满分12分)已知关于的不等式的解集为.(1)当时,求集合;(2)当且时,求实数的范围.19.(本小题满分12分)甲厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是元.(1)求证:生产千克该产品所获得的利润为元;(2)要使生产千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.20.(本小题满分13分)设函数且是定义域为的奇函数.(1)求的值;(2)若,且在上的最小值为,求的值.21.(本小题满分14分)已知为函数图像上一点,为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数的取值范围;(2)当时,不等式恒成立,求实数的取值范围.高三理科数学质量检测试题答案2013.10一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.D3.A4.C5.B6.D7.B8.B9.C10.B二、填空题:本大题共5小题,每小题5分,共25分.11.2912.13.14.15.②三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC中,为A,B,C的对边,有,,.(5分)证明:在△ABC中,(8分)∴(10分)∴同理可证:,.(12分)注:此题还有其它证法,酌情按步骤给分.17.(本小题满分12分)解:(1)(4分)的最小正周期.即函数的最小正周期为.(6分)(2),,(8分)由正弦函数的性质,当,即时,取得最大值1.(10分)当,即时,取得最小值.(12分)18.(本小题满分12分)解:解:(1)当时,……5分(2),①……8分,②……11分由①②知……12分19.(本小题满分12分)解:(1)每小时生产千克产品,获利,生产千克该产品用时间为,………3分所获利润为元.………6分(2)生产900千克该产品,所获利润为………9分所以,最大利润为元.………12分20.(本小题满分13分)解:(1)(法一)由题意,对任意,,即,………2分即,,………4分因为为任意实数,所以.………5分(法二)因为且是定义域为的奇函数.………2分所以,即,………4分解得………5分(2)由(1),因为,所以,解得.………7分故,,………8分令,则,………10分由,得,所以,………11分当时,在上是增函数,则,,解得(舍去).………12分当时,则,,解得,或(舍去).(13分)21.(本题满分14分)解:(1)由题意,……………2分所以………………4分当时,;当时,.所以在上单调递增,在上单调递减,故在处取得极大值.………………5分因为函数在区间(其中)上存在极值,所以,得.即实数的取值范围是.……………7分(2)由得,……………8分令,则.……………10分令,则,……………………11分因为所以,故在上单调递增.所以,从而……………………12分在上单调递增,所以实数的取值范围是.…………………………………………14分。

(完整版)高三数学三角函数计算题

(完整版)高三数学三角函数计算题

(2014东城二模)15.(本小题共13分)已知函数2()sin sin()2f x x x x π=+. (Ⅰ)求()12f π的值; (Ⅱ)当[0,]2x π∈时,求函数()f x 的最大值和最小值.15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-。

(Ⅰ)求()f x 的最小正周期:(Ⅰ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。

15.(本小题13分)已知函数2()cos 222x xxf x =-. (Ⅰ) 求()f x 的最小正周期;(Ⅰ) 求()f x 在区间[π0]-,上的最小值.15.(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.(2014朝阳一模)(15)(本小题满分13分)已知函数,.(Ⅰ)求的值及函数的最小正周期;(Ⅱ)求函数在上的单调减区间.(2014丰台一模)(15)(本小题共13分)已知函数2()cos(2)2sin 13f x x x =--+π.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.22()2sin()cos sin cos f x x x x x =π-⋅+-x ∈R ()2f π()f x ()f x []0,π(2016东城二模)15.(本小题共13分)已知函数2111()3sin()cos()2cos ()222f x x x x ωωω=⋅+(0>ω),且函数()f x 的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间π[0,]2上的最大值和最小值.(2017海淀二模)15.(本小题满分13分)已知函数3π3π()sin 2coscos2sin 55f x x x =-. (Ⅰ)求()f x 的最小正周期和对称轴的方程; (Ⅱ)求()f x 在区间π[0,]2上的最小值.(2018东城一模)(本题满分13分)已知函数22()sin 2sin cos cos f x x x x x =+- (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2015西城一模)15.(本小题满分13分)设函数π()4cos sin()3f x x x =-x ∈R .(Ⅰ)当π[0,]2x ∈时,求函数()f x 的值域;(Ⅱ)已知函数()y f x =的图象与直线1=y 有交点,求相邻两个交点间的最短距离.(2016西城二模)15.(本小题满分13分)已知函数2()(1)cos f x x x =. (Ⅰ)若α是第二象限角,且sin α=()f α的值; (Ⅱ)求函数()f x 的定义域和值域.(2014海淀一模)15.(本小题满分13分) 已知函数,过两点的直线的斜率记为. (Ⅰ)求的值;(II )写出函数的解析式,求在上的取值范围.ππ()2sincos 66f x x x =(,()),(1,(1))A t f t B t f t ++()g t (0)g ()g t ()g t 33[,]22-(15)(本小题共13分)已知函数(x)f 22cos 2sin 4cos x x x =+-。

山东省聊城市莘县一中2014届高三下学期第十五周综合练习数学(文)试题含解析

山东省聊城市莘县一中2014届高三下学期第十五周综合练习数学(文)试题含解析

第十五周综合练习(文)2014-05-28一.选择题1.双曲线2212x y -= 的焦点坐标是( ) A.(1,0),(-1,0) B.(0,1),(0,-1)C. D. 2.复数13z i=- (i 为虚数单位)的模为( ) A.2B.3D.43.下列推理是归纳推理的是( )A. A B 、为定点,动点P 满足2PA PB a AB +=>,则P 点的轨迹为椭圆B.由11,31n a a n ==-,求出123,,S S S ,猜想出数列的前n 项和n S 的表达式C.由圆222x y r +=的面积2r π,猜想出椭圆22221x y a b+=的面积S ab π=D.以上均不正确4.抛物线的顶点在坐标原点,焦点与双曲线22154y x -=的一个焦点重合,则该抛物线的标准方程可能是( ) A.x 2=4y B.x 2=-4y C.y 2=-12xD.x 2=-12y5. 直线3y x =-与抛物线2=4y x 交于A B 、两点,过A B 、两点向抛物线的准线作垂线,垂足分别为P Q 、,则梯形APQB 的面积为( ) A.48 B.56 C.64 D.726.过点(2,0)M -作斜率为11 (0)k k ≠的直线与双曲线2213y x -=交于A B 、两点,线段AB 的中点为P ,O 为坐标原点,OP 的斜率为2k ,则12k k 等于( )A.13 B.3 C.13- D.-37. 点P 在双曲线22221x y a b-=上,12F F 、是这条双曲线的两个焦点,12=90F PF ︒∠,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是( ) A.2B.3C.4D.58.已知定义在R 上的函数()f x 满足(4)(2)1f f =-=,'()f x 为()f x 的导函数,且导函数'()y f x =的图象如图所示,则不等式()1f x <的解集是( ) A.(-2,0)B.(-2,4)C.(0,4)D.(-∞,-2)∪(4,+∞)9.函数321y x =+的图象与函数23y x b =-的图象有三个不相同的交点,则实数b 的取值范围是( ) A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)10.如图,某农场要修建3个养鱼塘,每个面积为10000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长、宽分别为( )A.长102米,宽500051米 B.长150米,宽66米C.长、宽均为100米D.长150米,宽2003米二.填空题11.在复平面内,表示复数(3)z m i =-+的点位于直线y x =上,则实数m = .12.抛物线22 (0)x py p =>的焦点为F ,其准线与双曲线22133x y -=相交于A B 、两点,若ABF ∆为等边三角形,则p = .13.电动自行车的耗电量y 与速度x 之间的关系为3213940 (0)32y x x x x =-->,为使耗电量最小,则其速度应定为 .14.已知函数3()31f x ax x =-+对(]0,1x ∈总有()0f x ≥成立,则实数a 的取值范围是 .15.已知函数()ln f x ax x =+,2()22g x x x =-+.若对任意1(0,)x ∈+∞,存在2[0,1]x ∈,使得12()()f x g x <,则实数a 的取值范围是 . 三.解答题16.(1) 已知椭圆过点(0,3)P 且3a b =,求椭圆的标准方程.(2) 焦点在x 轴上的双曲线过点3)P -,且点(0,5)Q 与两焦点的连线相互垂直,求此双曲线的方程.17.求下列函数的导数(1) 7y x = (2) 1y x=-(3) ln3y =18.已知复数 ()z bi b R =∈,21z i-+是实数,i 是虚数单位. (1)求复数z ;(2)若复数2()m z +所表示的点在第一象限,求实数m 的取值范围.19.旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含量提高,市场分析的结果表明,如果产品的销售价提高的百分率为(01)x x <<.那么月平均销售量减少的百分率为2x .改进工艺后,旅游部门销售该纪念品的平均利润是y (元). (1)写出y 与x 的函数关系式.(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.20.21()ln (1) (0)2f x a x a x x a =-++≥ . (1)若直线l 与曲线()y f x =相切,切点是(2,0)P ,求直线l 的方程. (2)讨论()f x 的单调性.21.设双曲线222: 1 (0)x C y a a-=>与:1l x y +=相交于两个不同的点A B 、.(Ⅰ)求双曲线C 的离心率e 的取值范围;(Ⅱ)设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值。

2014 高三一模 石景山 理

2014 高三一模 石景山 理

2014年石景山区高三统一测试数学(理科)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么U A B = ð( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x =B .1y x =+C .lg ||y x =-D .2x y =3.在251()x x-的展开式中,x 的系数为( )A .10B .10-C .20D .20-4.已知Rt △ABC 中,o 9054C AB BC ∠===,,,以BC 为直径的圆交AB 于,则BD 的长为( )5.在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的点到焦点的距离为3,则焦点到准线的距离为( ) A .2B .8C .3D .46.右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的体积是( )7.阅读右面的程序框图,运行相应的程序,输出的结果为( )A .4B .95 C .125D .165A .612 B .33 C .64D .36ACDB开始1主视图左视图俯视图A .2-B .12 C .1- D .28.已知动点()P x y ,在椭圆22:12516x y C +=上, F 为椭圆C 的右焦点,若点M 满足||1MF = 且0MP MF ⋅=,则||PM的最小值为( )A .3B .3C .125D .1第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________.11.已知圆C 的极坐标方程为=2ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则圆C 的直角坐标方程为_______________,若直线:30l k xy ++=与圆C 相切,则实数k 的值为_____________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则x y 的取值范围是_________.13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_____________种不同的填报专业志愿的方法(用数字作答).14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,32sin a b A =. (Ⅰ)求角B 的大小;(Ⅱ)若2a =,7b =,求c 边的长和△ABC 的面积.16.(本小题满分13分)经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm .(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;(Ⅱ)若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...这批数量很大的鱼的总体数据,求ξ的分布列及数学期望E ξ.17.(本小题满分14分)1235567889 1 35567 罗非鱼的汞含量(ppm )如图,正三棱柱111ABC A B C -的底面边长是2,侧棱长是3,D 是AC 的中点. (Ⅰ)求证:1B C ∥平面1A BD ; (Ⅱ)求二面角1A BD A --的大小;(Ⅲ)在线段1AA 上是否存在一点E ,使得平面11B C E ⊥平面1A BD ,若存在,求出AE 的长;若不存在,说明理由. 18.(本小题满分13分)设函数2()ln ()f x x ax x a =+-∈R . (Ⅰ)若1a =,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间(01],上是减函数,求实数a 的取值范围; (Ⅲ)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1.A1A1B1CCDB19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为(20)F ,,其短轴上的一个端点到F 的距离为3. (Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n = ,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值; (Ⅱ)若生成数列{}n b 满足311(1)78n n S =-,求数列{}n b 的通项公式; (Ⅲ)证明:对于给定的n *∈N ,n S 的所有可能值组成的集合为121{|2}2n n k x x k k *--=∈≤N ,,. xOyP1l2lMN2014年石景山区高三统一测试 高三数学(理科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.题号1 2 3 4 5 6 7 8 答案ACBDDBCA二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分.三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:(Ⅰ)因为32sin a b A =,所以3sin 2sin sin A B A =, …………………………2分因为0A π<<,所以sin 0A ≠,所以3sin 2B =, ………………………… 4分 因为0B π<<,且a b c <<,所以60B = . …………………………6分(Ⅱ)因为2a =,7b =,所以由余弦定理得2221(7)2222c c =+-⨯⨯⨯,即2230c c --=, 解得3c =或1c =-(舍),所以c 边的长为3. …………………………10分11333=sin 232222ABC S ac B ∆=⨯⨯⨯=. …………………………13分 16.(本小题满分13分)解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则1251031545()91C C P A C ==,∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为4591. …………………………4分 (Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率51()153P B ==, ………………5分 ξ可能取0,1,2,3. …………………………6分题号9 10 11 12 13 14 答案 0x x e ∀∈≥R , 2n;(1)2n n + 22+=4x y ;52k =± [59,6] 18022y x =-则30318(0)1327P C ξ⎛⎫==-= ⎪⎝⎭ ,213114(1)1339P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭,223112(2)1339P C ξ⎛⎫⎛⎫==⨯-= ⎪⎪⎝⎭⎝⎭,33311(3)327P C ξ⎛⎫=== ⎪⎝⎭.……………………10分 其分布列如下:ξ0 1 2 3P827 49 29 127…………………………12分所以842101231279927E ξ=⨯+⨯+⨯+⨯=. …………………………13分 17.(本小题满分14分)(Ⅰ)证明:连结1AB 交1A B 于M ,连结1B C DM ,, 因为三棱柱111ABC A B C -是正三棱柱, 所以四边形11AA B B 是矩形, 所以M 为1A B 的中点. 因为D 是AC 的中点,所以MD 是三角形1AB C 的中位线, …………………………2分 所以MD ∥1B C . …………………………3分因为MD ⊂平面1A BD ,1B C ⊄平面1A BD ,所以1B C ∥平面1A BD . …………………………4分 (Ⅱ)解:作CO AB ⊥于O ,所以CO ⊥平面11ABB A ,所以在正三棱柱111ABC A B C -中如图建立空间直角坐标系O xyz -.因为2AB =,13AA =,D 是AC 的中点. 所以(100)A ,,,(100)B -,,,(003)C ,,,1(130)A ,,, …………………………5分 所以13(0)22D ,,,33(0)22BD = ,,,1(230)BA =,,.yz OBD1B1CCMA1A1B1CBCD设()n x y z =,,是平面1A BD 的法向量,所以100n BD n BA ⎧⋅=⎪⎨⋅=⎪⎩ ,,即33022230x z x y ⎧+=⎪⎨⎪+=⎩,,令3x =-,则2y =,3z =,所以(323)n =-,,是平面1A BD 的一个法向量. …………………………6分由题意可知1(030)AA = ,,是平面ABD 的一个法向量, …………………………7分 所以1231cos 243n AA <>==,. …………………………8分 所以二面角1A BD A --的大小为3π. …………………………9分 (Ⅲ)设(10)E x ,,,则1(133)C E x =-- ,,,11(103)C B,,=--设平面11B C E 的法向量1111()n x y z,,=,所以111100n C E n C B,,⎧⋅=⎪⎨⋅=⎪⎩即11111(3)3030x x y z x z ,,⎧-+-+=⎪⎨--=⎪⎩ 令13z =-,则13x =,163y x=-, 16(33)3n x,,=--, …………………………12分又10n n ⋅=,即1233+3303x --=-,解得33x =, 所以存在点E ,使得平面11B C E ⊥平面1A BD 且33AE =. …………………………14分 18.(本小题满分13分)解: (Ⅰ)1a =时, 2()ln (0)f x x ax xx =+->,1(21)(1)()21x x f x x x x-+'∴=+-= , …………………………1分11(0)()0()()022x f x x f x ''∈<∈+∞>,,,,,,()f x 的减区间为1(0)2,,增区间1()2+∞,. …………………………3分(Ⅱ)1()2f x x a x'=+-()f x 在区间(01],上是减函数,()0f x '∴≤对任意(01]x ∈,恒成立,即120x a x+-≤对任意(01]x ∈,恒成立, …………………………5分 12a x x ∴≤-对任意(01]x ∈,恒成立, 令1()2g x x x=-,min ()a g x ∴≤, …………………………7分易知()g x 在(01],单调递减,min ()(1)1g x g ∴==-. 1a ∴≤-. …………………………8分(Ⅲ)设切点为(())M t f t ,,1()2f x x a x'=+-, 切线的斜率12k t a t=+-,又切线过原点()f t k t=, ()22212ln 211ln 0f t t a t at t t at t t t t=+-+-=+-∴-+=,即:, 存在性:1t =满足方程21ln 0t t -+=,所以,1t =是方程21ln 0t t -+=的根. …………………………11分 再证唯一性:设()21ln t t t ϕ=-+,()1'20t t tϕ=+>,()t ϕ在(0,)+∞单调递增,且()1=0ϕ,所以方程21ln 0t t -+=有唯一解.综上,切点的横坐标为1. …………………………13分19.(本小题满分14分) 解:(Ⅰ)231c a b ==∴= ,,,∴椭圆方程为2213x y +=, ………………………………2分准圆方程为224x y +=. ………………………………3分(Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………………………6分所以12l l ,方程为22y x y x =+=-+,. ………………………………7分 121l l k k ⋅=- ,12l l ∴⊥. ………………………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l :3x =±, 当1l :3x =时,1l 与准圆交于点(31)(31)-,,,, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l :3x =-时,直线12l l ,垂直. ………………………………10分 ②当12l l ,斜率存在时,设点00()P x y ,,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由0∆=化简整理得 2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………………………12分综合①②知:因为12l l ,经过点00(,)P x y ,又分别交其准圆于点M N ,,且12l l , 垂直. 所以线段MN 为准圆224x y +=的直径, ||4MN =,所以线段MN 的长为定值. ………………………………14分 20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(,2)2n n b n n *=∈≥N , ∴231148b b =±=±,, 由于1117111511131111,2488248824882488++=+-=-+=--=,,, ∴3S 可能值为13578888,,,. …………………………3分 (Ⅱ)∵311(1)78n n S =-, 当1n =时,1233111(1)788a a a S ++==-=, 当2n ≥时,32313333111111(1)(1)78788n n n n n n n n a a a S S ----++=-=---=, 3231318n n n n a a a --∴++=,*n ∈N , …………………………5分 ∵{}n b 是1()2n n *⎧⎫∈⎨⎬⎩⎭N 的生成数列, ∴323212n n b --=±;313112n n b --=±;3312n nb =±; ∴323133231311111(421)()22288n n n n n n n n b b b n *----++=±±±=±±±=∈N , 在以上各种组合中, 当且仅当32313421()888n n n n n n b b b n *--==-=-∈N ,,时,才成立. ∴132213 2.2n n nn k b k n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩N ,,(),. …………………………8分 (Ⅲ)2311112222n n S =±±±± 共有12n -种情形. 23231111111122222222n n n S ----≤≤++++ ,即12122n n n n S -≤≤, 又12322212n n n n n S ---±±±±= ,分子必是奇数, 满足条件121222n n n n x -≤≤的奇数x 共有12n -个. …………………………10分 设数列{}n a 与数列{}n b 为两个生成数列,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,从第二项开始比较两个数列,设第一个不相等的项为第k 项. 由于1||||2k k k a b ==,不妨设00k k a b ><,, 则11()()n n k k n k k n S T a a a b b b ++-=+++-+++ 12111122()2222k k k n++≤⨯-⨯+++1111122()02222k k n n -=⨯-⨯-=>, 所以,只有当数列{}n a 与数列{}n b 的前n 项完全相同时,才有n n S T =.……12分 ∴2311112222n n S =±±±± 共有12n -种情形,其值各不相同. ∴n S 可能值必恰为135212222n n n n n - ,,,,,共12n -个. 即n S 所有可能值集合为121{|2}2n n k x x k k *--=∈≤N ,,. …………………………13分 【注:若有其它解法,请酌情给分】。

2014年高考新课标 I 数学(理)真题试题及答案

2014年高考新课标 I 数学(理)真题试题及答案

2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学试题卷(理工类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={x |2230x x --≥},B={x |-2≤x <2﹜,则A B ⋂=A .[2,1]--B .[1,2)-C .[1,1]-D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为M OPA7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .32παβ+= C .22παβ-=D .22παβ+=9.不等式组⎩⎨⎧≤-≥+42,1y x y x 的解集记为D ,有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3p :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中的真命题是A .2p ,3pB .1p ,2pC .1p ,4pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .3 C .52D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(,2)-∞-D .(,1)-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多 面体的三视图,则该多面体的六条棱中,最长的棱的长度为A .62B .42C .6D .4开始 结束ba M 1+← n←n+1是n ≤k输出M 否n ←1 输入a ,b,k a ←b b ←M OAx y 1 π OBx y1π OCx y1π ODxy1π第Ⅱ卷本卷包括必考题和选考题两个部分.第13题-第21题为必考题,每个考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC ∆的三个内角A ,B ,C 的对边,a =2,且(2)(s i n s i n )(b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18.(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间)2.212,8.187(的产品件数,利用(i )的结果,求EX .附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB =BC ,求二面角111A A B C --的余弦值.AA 1C 1B 1CB0.008 165 175 185 195 205 215 225 235 0.009 0.0220.024 0.033 质量指标值频率组距0.00220.(本小题满分12分)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分)设函数()xbe x ae x f x x1ln -+=,曲线()y f x =在点(1,(1)f )处的切线方程为(1)2y e x =-+. (Ⅰ)求a ,b ; (Ⅱ)证明:()1f x >.请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (Ⅰ)证明:∠D =∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :⎩⎨⎧-=+=ty t x 22,2(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在a ,b ,使得632=+b a ?并说明理由.AB EC DMO2014年普通高等学校招生全国统一考试(课标卷Ⅰ卷)数学(理科)参考答案一、选择题1.A 解析:{}{}223013A x x x x x x =--≥=≤-≥或,又{}22B x x =-≤<,AB =[]2,1--,故选A .2.D 解析:()()()()()()3222111211211i i i i i i i i i ⋅===---++++--,故选D . 3.C 解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A .()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B . ()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确.()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D .4.A 解析:双曲线的焦点到渐近线的距离为虚半轴长b ,故距离为3,选A .5.D 解析:周六没有同学的方法数为1,周日没有同学的方法数为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D . 6.C 解析:由已知1,sin ,cos OP PM x OM x ===.又()1122f x OP OM MP ⋅=, 所以()1sin cos sin 22f x x x x ==,故选C . 7.D 解析:当1n =时,1331,2,222M a b =+===;当2n =时,28382,,3323M a b =+===;当3n =时,3315815,,28838M a b =+===;当4n =时,结束,故158M =,选D . 8.C 解析:由1sin tan cos βαβ+=得sin 1sin ,sin cos cos cos sin ,cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=-⎪⎝⎭. 由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<, sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C .9.B 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以1,22,m n m n +=⎧⎨-=⎩解得4,31,3m n ⎧=⎪⎪⎨⎪=-⎪⎩所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B .10.B 解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=. 过Q 作QD 垂直于l ,垂足为D ,所以3QF QD ==,故选B .11.C 解析:'()3(2)f x x ax =-.当0a =时,2()13f x x =-,不合题意; 当0a >时,()f x 在(,0)-∞上是增函数,且(0)1f =,不合题意;当0a <时,()f x 在2(,)a -∞上是减函数,2(,0)a上是增函数,(0,)+∞是减函数,且(0)1f =,故只需2()0f a>,24a >,2a <-.选C .12.B 解析:几何体为如图所示的一个三棱锥P ABC -,底面ABC 为等腰三角形,,4,AB BC AC ==顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB 最长,长度为6,故选B .ACPB二、填空题13.20- 解析:888()()()()x y x y x x y y x y -+=+-+,故展开式中72y x 的系数为128882820C C -=-=-.14.A 解析:乙没去过C 城市,甲没去过B 城市,但去过的城市比乙多,所以甲去过A ,C ,三人都去过同一个城市,一定是A ,所以填A . 15.2π 解析:1()2AO AB AC =+,O 为BC 中点,即BC 为直径,所以AB 与AC 的夹角为2π.16.3 解析:222(2)(sin sin )()sin (2)()()b A B c b C b a b c b c a b c bc +-=-⇒+-=-⇒-=-,所以2222221cos 223b c a b c a bc A A bc π+-+-=⇒==⇒=. 又2244b c bc bc +-=⇒≤.所以13sin 324S bc A bc ==≤. 三、解答题17.解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.因为a n +1≠0,所以a n +2-a n =λ. (Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知,a 3=λ+1. 若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.18.解:(Ⅰ)0.021700.091800.221900.332000.242100.082200.02230200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()()()()()222222220.021702000.091802000.221902000.332002000.242102000.082202000.022********.s =⨯-+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-=(Ⅱ)(i )由(Ⅰ)知,2δ=2s =150,所以15012.2δ=≈,(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=.(ii )100件产品中质量指标值位于区间(187.8,212.2)的产品件数X 服从二项分布()100,0.6826B ,所以1000.682668.26EX =⨯=.19.解:(Ⅰ)连结1BC ,交1B C 于点O ,连结AO . 侧面11BB C C 为菱形,∴11BC B C ⊥. 又1AB B C ⊥,1ABBC B =,11.B C ABC ∴⊥面1AO ABC ⊂面,1AO B C ∴⊥,又O 为1B C 中点,所以1AC AB =.(Ⅱ)1AC AB ⊥,且O 是B 1C 中点,所以AO =CO .又因为AB =BC ,所以BOA ∆BOC ≅∆,故OA OB ⊥,从而OA ,OB ,OB 1两两垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长, 建立如图所示空间直角坐标系O xyz -.因为o 160CBB ∠=,所以1CBB ∆为等边三角形,又AB =BC , 则()13330,0,,1,0,0,0,,0,0,,0333A B B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1330,,33AB ⎛⎫∴=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭,1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭.设(),,n x y z =为平面11AA B 的一个法向量,则()111330,0,331,3,30,30,3y z n AB n n A B x z ⎧-=⎪⎧⋅=⎪⎪=⎨⎨⋅=⎪⎪⎩-=⎪⎩即所以可取.设(),,m a b c =为平面111A B C 的一个法向量,则()11110,1,3,30.m B C m m A B ⎧⋅=⎪=-⎨⋅=⎪⎩同理可取. 则1cos ,7n m n m n m⋅<>==,所以二面角111A ABC --的余弦值为17. 20.解:(Ⅰ)由已知得223,2,2143,223,3c a x a E y c c⎧=⎪=⎧⎪⎪∴+=⎨⎨=⎪⎩⎪=⎪⎩解得椭圆的方程.(Ⅱ)当l x ⊥轴时不合题意,故设l :2y kx =-,()()1122,,,.P x y Q x y将2y kx =-代入2214x y +=得()224116120k x kx +-+=, 当()()222164411264480k k k ∆=--⨯+⨯=->,即234k >时, 21,22824341k k x k ±-=+,从而2121||PQ k x x =+-222414341k k k +-=+. AA 1C 1B 1CBOyx z又点O 到直线l 的距离221d k =+,所以OPQ ∆的面积()221443241k S k PQ d k -==+. 设()2430k t t -=>,()244712,424t S k t k t t t ⎛⎫==≤==± ⎪ ⎪+⎝⎭+当且仅当即时取到, 所以,当OPQ ∆的面积最大时,l 的方程为722y x =-或722y x =--. 21.解:(Ⅰ)函数()f x 的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(Ⅱ)由(Ⅰ)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ), 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,()()g x h x >,即()1f x >.22.解:(Ⅰ)由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠,由已知得CBE E ∠=∠,故.D E ∠=∠(Ⅱ)设BC 的中点为N ,连接MN ,则由MB =MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM AD ⊥,即.MN AD ⊥所以//AD BC ,故.A CBE ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(Ⅰ)知,D E ∠=∠,所以ADE ∆为等边三角形. A B EC D M O N23.解:(Ⅰ)曲线C 的参数方程为2cos ,3sin .x y θθ=⎧⎨=⎩直线l 的普通方程为260x y +-=; (Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d . ()55sin 64cos 3sin 64tan 535d θφθθφ+-+-⎛⎫=== ⎪⎝⎭,||2sin 30d PA d ==︒, 所以()max max max 225||225PA d d ===;()min min min 25||225PA d d ===. 24.解析:(Ⅰ)由112ab a b ab=+≥得2ab ≥,且当2a b ==时等号成立. 故3333242a b a b +≥≥,且当2a b ==时等号成立.所以33a b +的最小值为42.(Ⅱ)由(Ⅰ)知,23264 3.a b ab +≥≥ 由于436>,从而不存在a ,b ,使得236a b +=.。

2014年高三一模数学(文)北京市丰台区试题Word版带答案

2014年高三一模数学(文)北京市丰台区试题Word版带答案

(9)已知
tan
2
,则
sin sin
cos cos
的值为_______________.
(10)复数 i 在复平面内对应的点的坐标是____________. 2i
(11) 以点(-1,1)为圆心且与直线 x y 0 相切的圆的方程为
____________________.
(12)已知函数 f (x) 2x ,点 P( a, b )在函数 y 1 (x 0) 图象上,那么 f (a) f (b) x
(Ⅰ) an 22n1 (若只写出 2,8,32 三项.给满分).----------------------------------5 分
(Ⅱ)证明:假设存在是等差数列的子列bn ,
a1 1, 0 q 1
an qn1 (0,1] ,且数列{an}是递减数列,
所以bn 也为递减数列且 bn ∈(0,1], d 0 ,
f (x) a ex , f (0) a 1,
所以曲线在点( 0, f (0) )处的切线方程为:y=(a-1)x-1.---------------4 分
(Ⅱ)因为 a>0,由 f (x) 0 得,x ln a ,由 f (x) 0 得,x ln a ,所以函数 f (x)
在 (, ln a) 上 单 调 递 增 , 在 (ln a, ) 上 单 调 递 减 , 所 以 f (x) 的 最 大 值 为
公里.
3/9
x y 4 0,
( 14 ) 设 不 等 式 组
x
y
4
0,
表示的平面区域为
M,不等式组
y 0
t x t, 0 y 4
t
(0
t
4)

2014年高三一模数学(理)北京市西城区试题Word版带答案.doc

2014年高三一模数学(理)北京市西城区试题Word版带答案.doc

北京市西城区2014年高三一模试卷数 学(理科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()UA B =( )(A )(,2]-∞(B )(,1]-∞(C )(2,)+∞(D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) (A )2(B )12(C )114(D )114-3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( ) (A )2ρ=(B )2θπ=(C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4(C )5(D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个BADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:○1 当2a =时,函数()f x 的值域为[1,4]; ○2 (0,)a ∀∈+∞,都有(1)1f =成立;○3 (0,)a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.A BD CP三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,求线段1D E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.120.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos =B ,(0,π)∈B ,所以 sin B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 22S bc A ==. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. ……………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X 的分布列为:………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. (13)分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以1//EF B C . ………………6分又因为 1⊄B C 平面1BED ,⊂EF 平面1BED ,所以 1//BC 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,1所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x=,得(1,1,0)=-n . ………………11分 设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分 由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. ……………… 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e上单调递减,在1(,)e+∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412km x x k -+=+, 21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, (10)分解得2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =.所以12|x x -= ……………… 12分即12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =或y x =±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠. 所以 112b ≤, ……………… 6分因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. ……………… 10分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL. 因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=-≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。

2014年高三一模数学(文)北京市石景山区试题Word版带答案

2014年高三一模数学(文)北京市石景山区试题Word版带答案

2014年石景山区高三统一测试数学(文科)本试卷共6页,满分为150分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效,考试结束后上交答题卡.第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,那么UAB =( )A .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x = B .1y x =+ C .lg ||y x =-D .2x y =3.直线:40l x +-=与圆22:+=4C x y 的位置关系是( )A .相交B .相切C .相离D .无法确定4.双曲线22221x y a b-=(00)a b >>,的渐近线方程是2y x =±,则其离心率为( )A .5B .2C D5.下列函数中周期为π且图象关于直线3x π=对称的函数是( ) A .2sin()23x y π=+B .2sin(2)6y x π=-C .2sin(2)6y x π=+D .2sin()23x y π=-6.正三棱柱的左视图如右图所示,则该正三棱柱的侧面积为(7.阅读右面的程序框图,运行相应的程序, 输出的结果为( )8.已知动点()P x y ,在椭圆22:12516x y C +=上,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为( )A B .3C .125D .1A .4B .12 CD .24A .2-B .12C .1-D .2第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.i 是虚数单位,计算41ii+=+_________. 10.在等比数列}{n a 中,14=2=16a a ,,则数列}{n a 的通项公式=n a _____________,设2log n n b a =,则数列}{n b 的前n 项和=n S _____________. 11.已知命题p :0x x e ∃∈<R ,,则p ⌝是____________________.12.已知变量x y ,满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则2z x y =+的最大值是_________. 13.一艘轮船在匀速行驶过程中每小时的燃料费与它速度的平方成正比,除燃料费外其它费用为每小时96元. 当速度为10海里/小时时,每小时的燃料费是6元. 若匀速行驶10海里,当这艘轮船的速度为___________海里/小时时,费用总和最小. 14.若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域内的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知函数2()1f x x =-和函数()2ln g x x =,那么函数()f x 和函数()g x 的隔离直线方程为_________.分数频率组距0.0440.0280.0120.00810090807060500三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,32sin a b A =.(Ⅰ)求角B 的大小; (Ⅱ)若2a =,7b =,求c 边的长和△ABC 的面积.16.(本小题满分13分)某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(Ⅰ)求分数在[5060),的频率及全班人数; (Ⅱ)求分数在[8090),之间的频数,并计算频率分布直方图中[8090),间矩形的高; (Ⅲ)若要从分数在[80100),之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90100),之间的概率.17.(本小题满分14分)如图,已知四棱锥A BCDE -,1AB BC AC BE ====,2CD =,CD ⊥平面ABC ,BE ∥CD ,F 为AD 的中点.(Ⅰ)求证:EF ∥平面ABC ; (Ⅱ)求证:平面ADE ⊥平面ACD ; (Ⅲ)求四棱锥A BCDE -的体积.18.(本小题满分13分)已知函数22()2ln (0)f x x a x a =->.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若()f x 在[1]e ,上没有零点,求实数a 的取值范围. CDBAF E19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O的圆是椭圆C 的“准圆”.若椭圆C的一个焦点为0)F ,,其短轴上的一个端点到F 的(Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,. (ⅰ)当点P 为“准圆”与y求直线12l l ,的方程并证明12l l ⊥; (ⅱ)求证:线段MN 的长为定值.20.(本小题满分13分)对于数列{}n a ,把1a 作为新数列{}n b 的第一项,把i a 或i a -(234i n =,,,,)作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列12345,,,,的一个生成数列是12345--,,,,.已知数列{}n b 为数列1{}()2n n *∈N 的生成数列,n S 为数列{}n b 的前n 项和. (Ⅰ)写出3S 的所有可能值;(Ⅱ)若生成数列{}n b 满足的通项公式为1312(1312nn n n k b k n k ⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,,求n S .2014年石景山区高三统一测试高三数学(文科)参考答案一、选择题:本大题共8个小题,每小题5分,共40分.二、填空题:本大题共6个小题,每小题5分,共30分.两空的题目,第一空2分,第二空3分. 三、解答题:本大题共6个小题,共80分.应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分) 解:2sinb A =,2sin sin A B A =, ………………2分因为0A π<<,所以sin 0A ≠, 所以sin B =, ………………4分 因为0B π<<,且a b c <<,所以60B =. ………………6分 (Ⅱ)因为2a =,b =所以由余弦定理得22212222c c =+-⨯⨯⨯,即2230c c --=, ………………8分解得3c =或1c =-(舍),所以c 边的长为3. ………………10分11=sin 2322ABC S ac B ∆=⨯⨯=. ………………13分 16.(本小题满分13分)解:(Ⅰ)分数在[5060),的频率为0.008100.08⨯=, ………………2分 由茎叶图知:分数在[5060),之间的频数为2,所以全班人数为2250.08=. ………………4分(Ⅱ)分数在[8090),之间的频数为25223-=; 频率分布直方图中[8090),间的矩形的高为3100.01225÷=.……………7分 (Ⅲ)将[8090),之间的3个分数编号为123a a a ,,, [90100),之间的2个分数编号为12b b ,, ………………8分 在[80100),之间的试卷中任取两份的基本事件为: 1213111223()()()()()a a a a a b a b a a ,,,,,,,,,,2122313212()()()()()a b a b a b a b b b ,,,,,,,,,共10个, ………………10分 其中,至少有一个在[90100),之间的基本事件有7个, 故至少有一份分数在[90100),之间的概率是70.710=. ……………13分 17.(本小题满分14分)解:(Ⅰ)取AC 中点G ,连结FG ,BG ,F G ,分别是AD ,AC 的中点, FG ∴∥CD ,且112FG DC ==. BE ∥CD , ………………2分FG ∴与BE 平行且相等. ∴四边形BEFG 为平行四边形,EF ∴∥BG . ………………3分CDBAFEGH又EF ⊄平面ABC ,BG ⊂平面ABC .EF ∴∥平面ABC . ………………4分(Ⅱ)ABC ∆为等边三角形,G 为AC 的中点,BG AC ∴⊥. ………………5分又DC ⊥平面ABC ,BG ⊂平面ABC .DC BG ∴⊥, ………………6分又ACDC C =,BG ∴⊥平面ADC . ………………7分EF ∥BG ,EF ∴⊥平面ADC , ………………8分 EF ⊂平面ADE ,∴平面ADE ⊥平面ADC . ………………10分(Ⅲ)取BC 中点H ,连结AH .AB BC AC ==, AH BC ∴⊥.DC ⊥平面ABC ,AH ⊂平面ABC DC AH ∴⊥,又BCDC C =,∴AH ⊥平面BCDE ,AH ∴是四棱锥A BCDE -的高,且AH =………………12分11(12)1332BCDE V S AH +⨯=⋅=⨯=梯形………………14分 18.(本小题满分13分)解:(Ⅰ)22()2ln (0)f x x a x a =->的定义域为(0)+∞,. ………………1分 22()2a f x x x '=-2222x a x-=2()()x a x a x +-=. ………………2分()f x 在1x =处取得极值,(1)0f '∴=,解得1a =或1a =-(舍). ………………3分当1a =时,()01x ∈,,()0f x '<;()1x ∈+∞,,()0f x '>, 所以a 的值为1. ………………4分 (Ⅱ)令()0f x '=,解得x a =或x a =-(舍). ………………5分当x 在(0)+∞,内变化时,()()f x f x ',的变化情况如下:由上表知()f x 的单调递增区间为()a +∞,,单调递减区间为(0)a ,. ……………8分 (Ⅲ)要使()f x 在[1]e ,上没有零点,只需在[1]e ,上min ()0f x >或max ()0f x <, 又(1)10f =>,只须在区间[1]e ,上min ()0f x >. (ⅰ)当a e ≥时,()f x 在区间[1]e ,上单调递减, 22min ()()20f x f e e a ==->,解得 02a <<与a e ≥矛盾. ………………10分 (ⅱ) 当1a e <<时,()f x 在区间[1)a ,上单调递减,在区间(]a e ,上单调递增, 2min ()()(12ln )0f x f a a a ==->,解得0a <<,所以1a <<………………12分(ⅲ)当01a <≤时,()f x 在区间[1]e ,上单调递增,min ()(1)0f x f =>,满足题意. 综上,a的取值范围为0a <<. ………………13分 19.(本小题满分14分)解:(Ⅰ)21c a b ==∴=,,∴椭圆方程为2213x y +=, ………………2分 准圆方程为224x y +=. ………………3分 (Ⅱ)(ⅰ)因为准圆224x y +=与y 轴正半轴的交点为(02)P ,, 设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=. 因为直线2y kx =+与椭圆相切,所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………6分 所以12l l ,方程为22y x y x =+=-+,. ………………7分 121l l k k ⋅=-,12l l ∴⊥. ………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l斜率不存在, 则1l :x =当1l :x =1l与准圆交于点1)1)-, 此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l :x =12l l ,垂直. ………………10分②当12l l ,斜率存在时,设点00(,)P x y ,其中22004x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,, 得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由0∆=化简整理得 2220000(3)210x t x y t y -++-=,因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(3)2(3)0x t x y t x -++-=, 所以121t t ⋅=-,即12l l ,垂直. ………………12分 综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l , 垂直.所以线段MN 为准圆224x y +=的直径,||4MN =,所以线段MN 的长为定值. ………………14分20.(本小题满分13分)解:(Ⅰ)由已知,112b =,1||(2)2n n b n n *=∈≥N ,, ∴231148b b =±=±,, 由于11171115111311112488248824882488++=+-=-+=--=,,,, ∴3S 可能值为13578888,,,. ………………5分(Ⅱ)∵1312(1312n n nn k b k n k ⎧=+⎪⎪=∈⎨⎪-≠+⎪⎩N),,,,. ∴3()n k k *=∈N 时, 12345632313111111111()()()222222222n k k kS --=--+--++-- 14322531363111111111()()()222222222k k k --=+++-+++-+++ 32333333111111[1()][1()][1()]222222*********k k k ---=----- 38111111[1()]()[1()]7824872k k =---=-. 11[1()]72n n S ∴=-. 31()n k k =+∈N 时,1n n n S S a -=+111111[1()][15()]72272n n n -=-+=+ ; 32()n k k =+∈N 时,11n n n S S a ++=-1111111[1()][13()]72272n n n ++=-+=+ ; *11(1)3()7215(1)31()7213(1)3 2.()72n n n n n k k S n k k n k k ⎧-=∈⎪⎪⎪∴=+=+∈⎨⎪⎪+=+∈⎪⎩N N N ,,,,, ………………13分 【注:若有其它解法,请酌情给分】。

2014年北京市海淀区高三一模数学(理)试题和答案

2014年北京市海淀区高三一模数学(理)试题和答案

海淀区高三年级第二学期期中练习数学(理科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 A. (1,0) B. (0,2) C.()1,0 D. (2,0)1((2)f >的只可能是A BC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有 A. 4种 B.5种 C.6种 D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为 线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点 的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______. 10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______. 11.如图,AB 切圆O 于B ,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=________. 14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围. 16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、10天的数据,制表如下:35件以内(含35AB D俯视图主视图侧视图件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望; (Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费. 17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB=30°,∠ABC=90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1) 处的切线为2y x m =+,求实数a 和m 的值;(Ⅱ)对任意实数a , 曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围. 19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点, 点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2014年高考数学—函数(解答+答案)

2014年高考数学—函数(解答+答案)

2014年高考数学—函数1.(14安徽文20.(本小题满分13分)设函数23()1(1)f x a x x x =++--,其中0a >(1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.2.(14北京文20. (本小题满分13分))已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)3.(14福建文22.(本小题满分14分))已知函数a ax e x f x ()(-=为常数)的图像与y 轴交于点A ,曲线)(x f y =在点处的切线斜率为1-。

(I ) 求a 的值及函数)(x f 的极值;(II ) 证明:当0>x 时,x e x <2;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当),(0+∞∈x x 时,恒有x ce x <。

4.(14广东文21.)已知函数321()1()3f x x x ax a R =+++∈ (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈U ,使得01()=()2f x f5.(14湖北文21.(本小题满分14分))π为圆周率,e 2.71828=L 为自然对数的底数. (Ⅰ)求函数ln ()x f x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.6.(14湖南文21.(本小题满分13分))已知函数()cos sin 1(0)f x x x x x =-+>. (1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<L7.(14江西文18.(本小题满分12分))已知函数x a ax x x f )44()(22++=,其中0<a .(1)当4-=a 时,求)(x f 的单调递增区间;(2)若)(x f 在区间]4,1[上的最小值为8,求a 的值.已知函数()(cos )2sin 2f x x x x π=---,2()(1x g x x ππ=--. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.9.(14大纲文21. (本小题满分12分))函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围.10.(14山东文(20) (本小题满分13分)) 设函数1()ln 1x f x a x x -=++ ,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(II )讨论函数()f x 的单调性.设函数()ln ,m f x x m R x=+∈ (Ⅰ)m e =(e 为自然对数的底数)时,求()f x 的极小值; (Ⅱ)讨论函数()()3g x f x π'=-零点的个数; (Ⅲ)若对任意()()0,1f b f a b a b a->><-恒成立,求m 的取值范围。

高考数学 东城区2014-2015一模理答案2.0

高考数学 东城区2014-2015一模理答案2.0

北京市东城区2014-2015学年度第二学期综合练习(一)高三数学参考答案及评分标准 (理科)一、选择题(本大题共8小题,每小题5分,共40分) (1)C (2)D (3)A (4)D (5)B (6)D (7)A (8)B 二、填空题(本大题共6小题,每小题5分,共30分) (9)1- (10)2(11)2 (12 (13)12 (14)1(,1]2 5(1,]4注:两个空的填空题第一个空填对得3分,第二个空填对得2分. 三、解答题(本大题共6小题,共80分) (15)(共13分) 解:(Ⅰ)因为3cos 4C =,且0C <<π,所以sin 4C =. 因为1sin 2S a b C =⋅⋅, 得1a =. …………………6分 (Ⅱ)由余弦定理,2222cos c b a b a C =+-⋅⋅所以c =由正弦定理,sin sin c aC A=,得sin 8A =.所以cos A =.所以sin 22sin cos A A A =⋅=. …………………13分(16)(共13分)解:(Ⅰ)由直方图知,(0.010.020.060.07)51a ++++⨯=,解得0.04a =. …………3分 (Ⅱ)设事件A “某名学员交通法规考试合格” .由直方图知,()(0.060.02)50.4P A =+⨯=. …………6分 (Ⅲ)依题意,X 的取值为012,3,,.3(0)(10.4)0.216P X ==-=,123(1)C 0.4(10.4)0.432P X ==⋅⋅-=, 223(2)C 0.4(10.4)0.288P X ==⋅⋅-=,3(3)0.40.064P X ===.所以X 的分布列为00.21610.43220.28830.064 1.2EX =⨯+⨯+⨯+⨯=.…………13分(17)(共14分)(Ⅰ)证明:因为,D E 分别为,AB AC 的中点,所以DE ∥BC .因为BC ⊂平面PBC ,DE ⊄平面PBC , 所以DE ∥平面PBC .因为平面DENM I 平面PBC MN =, 所以DE ∥MN .所以MN ∥BC . …………………5分(Ⅱ)解:如图,在平面PAB 内,作BZ ∥AP ,则,,BA BC BZ 两两互相垂直,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)C ,(0,2,0)A ,(0,2,2)P .最新整理(2,0,0)BC =u u u r ,(0,2,2)BP =u u u r ,(2,2,0)AC =-u u u r设平面BPC 的法向量为(,,)x y z =n ,则0,0.BC BP ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 所以0,220.x y z =⎧⎨+=⎩令1z =-,得1y =,0x =,(0,1,1)=-n .设直线AC 与平面PBC 所成角为α,则1sin |cos ,|||2||||AC AC AC α⋅=<>==u u u ru u u r u u u r n n n .又[0,]2απ∈, 所以直线AC 与平面PBC 所成角为6π. …………………10分 (Ⅲ)解:设点M 的坐标为(,,)u v w .因为点M 在棱PB 上,所以可设(01)BM BP λλ=<<u u u u r u u u r.因为(,,)(0,2,2)u v w λ=,所以(0,2,2)M λλ.(1,21,2)EM λλ=--u u u u r ,(0,0,2)AP =u u u r.因为直线EM 与直线AP所成角的余弦值为14, 设直线EM 与直线AP 所成角为θ,所以cos ||14||||EM AP EM AP θ⋅==u u u u r u u u r u u u u r u u u r所以281890λλ-+=. 所以34λ=或32λ=. 因为01λ<<, 所以34λ=. 所以33(0,,)22M .因为(2,0,0)C,所以2MC =. …………………14分 (18)(共13分)解:(Ⅰ)因为22211)('xax x x x a x f -+=+-=, 由已知()f x 在1x =处取得极值, 所以'(1)0f =.解得2a =,经检验2a =时,()f x 在1x =处取得极小值.所以2a =. ……3分(Ⅱ)由(Ⅰ)知,22211)('xax x x x a x f -+=+-=,0x >. 因为)(x f 在区间)2,1(上单调递增,所以0)('≥x f 在区间)2,1(上恒成立. 即x x a +≤2在区间)2,1(上恒成立.所以2≤a . ……8分(Ⅱ)因为x x f x g -'=)()(, 所以21()1a g x x x x=-+-,0>x . 令0)(=x g 得x x x a ++-=23, 令x x x x h ++-=23)(,0>x .)1)(13(123)(2-+-=++-='x x x x x h .当)1,0(∈x 时,0)(>'x h ,)(x h 在)1,0(上单调递增, ),1(+∞∈x 时,0)(<'x h ,)(x h 在),1(+∞上单调递减. 所以max ()(1)1h x h ==.综上:当1>a 时,函数)(x g 无零点,当1=a 或0≤a 时,函数)(x g 有一个零点,当10<<a 时,函数)(x g 有两个零点. ……13分(19)(共13分)解:(Ⅰ)设动点E 的坐标为(,)x y .由抛物线定义知,动点E 的轨迹为以(1,0)为焦点,1x =-为准线抛物线.所以动点E 的轨迹C 的方程为:24y x =. ……………4分(Ⅱ)设直线l 的方程为:y kx b =+.(显然0k ≠)由 24,,y x y kx b ⎧=⎨=+⎩得2440ky y b -+=.因为直线l 与抛物线相切, 所以16160kb ∆=-=,1b k =. 所以直线l 的方程为1y kx k=+. 令1x =-,得1y k k=-+, 所以1(1,)Q k k--+.设切点坐标00(,)P x y ,则200440ky y k -+=,解得212(,)P k k. 设(,0)M m ,则2121()(1)()MQ MP m m k k k k⋅=---+-+u u u u r u u u r2222122m m m k k k=-+-++-. 21(1)(2)m m k=---. 当1m =时,0MQ MP ⋅=u u u u r u u u r . 所以以PQ 为直径的圆恒过x 轴上定点(1,0)M . ……………13分(20)(共14分) 解:(Ⅰ)1,1,1,2,3.………………4分(Ⅱ)由13n n a m -=≤,得*31log ()n m m ≤+∈N所以当*12,m m ≤≤∈N 时,121b b ==.当*38,m m ≤≤∈N 时,3482b b b ====L . 当*920,m m ≤≤∈N 时,910203b b b ====L .所以1220122631250b b b +++=⨯+⨯+⨯=L . …………9分 (Ⅲ)由32n a n m =-≤,得*2()3m n m +≤∈N . 因为使得n a m ≤成立的n 的最大值为m b ,所以*123456323131,2,,()t t t b b b b b b b b b t t --======⋅⋅⋅===∈N .当*32()n t t =-∈N 时,21(1)313(1)(1)(2)226n t t t S t t n n +--=⨯-+==++.当*31()n t t =-∈N 时,21(1)313(1)2(1)(2)226n t t t S t t n n +-+=⨯-+==++.当*3()n t t =∈N 时,213()13(3)226n t t t S t n n ++=⨯⨯==+.所以(1)(2)(3231,*),6(3)(3,*).6n n n n t n t t S n n n t t ++⎧=-=-∈⎪⎪=⎨+⎪=∈⎪⎩N N 或…………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、函数()x x f lg 1-=的定义域为______________(]10,0
2、函数()()0sin 22>+=w wx x f 最小正周期与函数()2
tan x x g =最小正周期相等,则正实数w 为____21 3、锐角ABC ∆,角B 所对边长10=b ,ABC ∆面积为10,外接圆半径13=R ,ABC ∆周长为_ __31010+
4、已知314cos =⎪⎭⎫ ⎝⎛-απ,则_______4sin =⎪⎭
⎫ ⎝⎛+απ31 5、若集合{}1,a A =是集合{}a B ,2,1=的子集,则实数a 的值为______4或0
6、偶函数()x f 在()∞+,0上为减函数,且()02=f ,则不等式
()()0>-+x x f x f 解集为____()()2,02-- ,∞ 7、函数2()(21)13f x x m x m =-+-+-在(2,3]x ∈-上是减函数,实数m 取值范围为 . 3,2⎛⎤-∞- ⎥⎝⎦ 8、对于任意实数x ,()x f 满足()()x f x f =-,若()x f 有2011个零点,则这2011个零点之和为____0
9、函数()()01lg 2≥+=x x y 的反函数__________)(1=-x f 0,110≥-x x
10、(文)若y x ,满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
9382y x y x y x ,则y x z 2+=的最大值为__________7
(理)设cos x α=,2,63ππα⎡⎤∈-⎢⎥⎣⎦,则arcsin x 的取值范围为___________.,62ππ⎡⎤-⎢⎥⎣⎦
11、(理科)若函数)(x f 满足1()1(1)
f x f x +=+,当[0,1]x ∈时, ()f x x =,若在区间(1,1]-上,()()
g x f x m x m =--有两个零点,则实数m 的取值范围是 。

1(0,]2
(文科))(x f 是定义在R 上的偶函数,且对任意x R ∈,都有(2)()f x f x +=。

当01x ≤≤时,2()f x x =。

若直线y x a =+与函数()y f x =的图象在[]0,2内恰有两个不同的公共点,则实数a = 10,4
- 12、设函数)2lg()(2--=x x x f 的定义域为集合A ,函数3()1g x x
=-的定义域为集合B 。

已知α:x A B ∈ ,β:x 满足20x p +<,且α是β的充分条件,求实数p 的取值范围.
解:220x x -->,()(),12,A =-∞-+∞ -------------------------3分
310x
-≥, (]0,3B =-------------------------------------------3分 (]:2,3A B α= ,---------------2分 :2
p x β<------------2分 3,62
p p ->∴<- -------------------------------------------------2分
13、已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点(3,3)P -.
⑴求sin 2tan αα-的值;
⑵若()cos()cos sin()sin f x x x αααα=---,求函数23(2)2()2y f x f x π=--在区间2π03⎡⎤⎢⎥⎣⎦
,上取值范围. 解:(1)因为角α终边经过点(3,3)P -,所以1sin 2
α= ,3cos 2α=-,3tan 3α=----------3分 333sin 2tan 2sin cos tan 236
ααααα∴-=-=-+=------------------3分 (2) ()cos()cos sin()sin cos f x x x x αααα=---= ,x R ∈---------------1分
23cos(2)2cos 3sin 21cos 22sin(2)126
y x x x x x ππ
∴=--=--=------2分 2470,02,233666x x x πππππ≤≤∴≤≤∴-≤-≤ 1sin(2)126x π∴-≤-≤,22sin(2)116
x π∴-≤--≤----3分 函数23(2)2()2y f x f x π=--在区间2π03⎡⎤⎢⎥⎣⎦
,上的取值范围是[2,1]-----2分 14、已知函数b
ax x x f +=2
)((,a b 为常数)且方程()120f x x -+=有两个实根为123,4x x ==. (1)求函数()f x 的解析式;(2)当0k >时,解关于x 的不等式:()()2x x k f x x
-<-. [解]:(1)将0124,32
21=+-+==x b
ax x x x 分别代入方程得 9931684a b a b
⎧=-⎪⎪+⎨⎪=-⎪+⎩,解得12a b =-⎧⎨=⎩,所以2()(2)2x f x x x =≠-(8分) (2)不等式即为()2
22x x k x x x
-<--, 可化为()20kx x ->. 当0k >时,不等式的解集为()(),02,-∞⋃+∞.(14分) 15、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b a =52,cos B =55.
(1)求sin A ; (2)若c =5,求△ABC 的面积.
解:(1)在△ABC 中,因为a sin A =b sin B ,所以b a =sin B sin A .
因为b a =52,所以sin B sin A =52. 因为cos B =55,B ∈(0,π),所以sin B =255. 所以sin A =45. (2)因为b a =52>1,所以b >a ,所以B >A ,
所以A ∈(0,π2).
因为sin A =45,所以cos A =35. 所以cos C =cos[π-(A +B )]=-cos(A +B )
=-(cos A cos B -sin A sin B )
=-35×55+45×255=55.
所以cos C =cos B ,所以C =B ,即c =b .
所以S △ABC =12bc sin A =12×5×5×45=10.。

相关文档
最新文档