《等腰三角形》公开课教学设计
八年级等腰三角形数学教案【优秀6篇】
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
等腰三角形专题公开课教案
一、教学目标:
1.让学生了解等腰三角形的定义,掌握其性质和判定方法。
2.培养学生的推理能力和实践能力,通过实例解析培养学生解决实际问题的
能力。
3.培养学生的合作精神和探究意识,提高学生的学习兴趣和数学素养。
二、教学内容及过程:
1.导入新课
(1)通过展示一些实物图片和图形,让学生观察并思考:什么是等腰三角形?它的定义是什么?
(2)通过引导学生观察等腰三角形的特点,让学生归纳总结出等腰三角形的定义。
(3)通过一些简单的练习题,检查学生对等腰三角形定义的掌握情况。
1.等腰三角形的性质
(1)通过引导学生观察等腰三角形的特点,让学生归纳总结出等腰三角形的性质。
(2)通过实例解析,让学生掌握等腰三角形性质的运用方法。
(3)通过一些练习题,检查学生对等腰三角形性质的掌握情况。
1.等腰三角形的判定方法
(1)通过引导学生观察等腰三角形的特点,让学生归纳总结出等腰三角形的判定方法。
(2)通过实例解析,让学生掌握等腰三角形判定方法的运用方法。
(3)通过一些练习题,检查学生对等腰三角形判定方法的掌握情况。
1.课堂活动:让学生自己动手制作一个等腰三角形,并总结制作过程中的经
验和发现。
2.课堂小结:总结本节课学到的知识,并回顾整个教学过程。
3.布置作业:布置相关练习题,巩固本节课所学知识。
《等腰三角形》教案 (公开课)2022年1
等腰三角形第1课时等腰三角形(1)教学目的1.使学生了解等腰三角形的有关概念,掌握等腰三角形的性质.2.通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动.重点、难点重点:等腰三角形等边对等角性质. 难点:通过操作,如何观察、分析、归纳得出等腰三角形性质.教学过程一、复习引入1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形?△ABC中,如果有两边AB=AC,那么它是等腰三角形.2.日常生活中,哪些物体具有等腰三角形的形象?二、新课1.指出△ABC的腰、顶角、底角.相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角.2.实验.现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论.可让学生有充分的时间观察、思考、交流,可能得到的结论:(1)等腰三角形是轴对称图形(2)∠B=∠C (3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线. (5)∠BAD=∠CAD,AD为顶角平分线.结论(2)用文字如何表述?等腰三角形的两个底角相等(简写成“等边对等角〞).结论(3)、(4)、(5)用一句话可以归结为什么?等腰三角形的顶角平分线,底边上的高和底边上的中线互相重合(简称“三线合一〞)例l:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数.此题较易,可由学生口述,教师板书解题过程.引申::在△ABC中,AB=AC,∠A=80°,求∠B和∠C的度数小结:在等腰三角形中,一个角,就可以求另外两个角.三、练习稳固P97 练习1、2、3补充:填空:在△ABC中,AB=AC,D在BC上,1.如果AD⊥BC,那么∠BAD=∠______,BD=_______2.如果∠BAD=∠CAD,那么AD⊥_____,BD=______3.如果BD=CD,那么∠BAD=∠_______,AD⊥______四、小结本节课,我们学习了等腰三角形的性质:等腰三角形的两底角相等(简写“等边对等角〞);等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一〞),它们对今后的学习十分重要,因此要牢记并能熟练应用.用数学语言表述如下:1.△ABC中,如果AB=AC,那么∠B=∠C.2.△ABC中,如果A月=AC,D在BC上,那么由条件(1)∠BAD=∠CAD,(2)AD⊥AC,(3)BD=CD中的任意一个都可以推出另外两个.五、作业P99习题第1、2、3题.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。
等腰三角形教案设计5篇
等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
等腰三角形的性质公开课大赛(省)优教案教学设计
13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质..理解并掌握等腰三角形的性质.((重点重点) )2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点难点) )一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得再把它展开得到的△ABC 有什么特点?有什么特点?二、合作探究探究点一:等腰三角形的概念探究点一:等腰三角形的概念【类型一】 利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm 和3cm 3cm,那么它的周长是,那么它的周长是,那么它的周长是( ( ( )A .9cmB .12cmC .15cm 或12cmD .15cm解析:当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.D. 方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质探究点二:等腰三角形的性质【类型一】 利用“等边对等角”求角度等腰三角形的一个内角是5050°,则这个三角形的底角的大小是°,则这个三角形的底角的大小是°,则这个三角形的底角的大小是( ( ( )A .6565°或°或50° B.808080°或°或40°40°C .6565°或°或80° D.50°或80°80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°故选A.A. 方法总结:等腰三角形的两个底角相等,等腰三角形的两个底角相等,已知一个内角,已知一个内角,已知一个内角,则这个角可能是底角也可能是则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数如图,如图,在△在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数. 解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180180°,∴°,∴x +2x +2x =180180°,∴°,∴x =3636°,∴∠°,∴∠A =3636°,∠°,∠ABC =∠ACB =7272°°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当当这种等量关系或和差关系较多时,这种等量关系或和差关系较多时,可考虑列方程解答,可考虑列方程解答,可考虑列方程解答,设未知数时,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明 如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)(1)若若AD =AE ,求证:BD =CE ;(2)(2)若若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)(1)如图①,过如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,会遇到一些添加辅助线的问题,会遇到一些添加辅助线的问题,其顶角平其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =9090°,°,BE 是∠ABC 的平分线,DE ⊥BC ,垂足为D .(1)(1)请你写出图中所有的等腰三角形;请你写出图中所有的等腰三角形;请你写出图中所有的等腰三角形;(2)(2)请你判断请你判断AD 与BE 垂直吗?并说明理由.垂直吗?并说明理由.(3)(3)如果如果BC =1010,求,求AB +AE 的长.的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE 对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.10.解:(1)△ABC ,△ABD ,△ADE ,△EDC . (2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =9090°,°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt Rt△△ABE 和Rt Rt△△DBE 中,∵îïíïìAE =DE ,BE =BE ,∴Rt Rt△△ABE ≌Rt Rt△△DBE (HL)(HL),,∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =9090°,°,∴∠C =4545°°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC =10.三、板书设计 1.等腰三角形的性质..等腰三角形的性质.2.解题方法:设辅助未知数法与拼凑法..解题方法:设辅助未知数法与拼凑法.3.重要的数学思想方法:方程思想、整体思想和转化思想..重要的数学思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,因而本节课的教学效果较好,因而本节课的教学效果较好,学生对所学的新知识学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时 含30°角的直角三角形的性质1.理解并掌握含3030°角的直角三角形的性质定理.°角的直角三角形的性质定理.°角的直角三角形的性质定理.((重点重点) )2.能灵活运用含3030°角的直角三角形的性质定理解决有关问题.°角的直角三角形的性质定理解决有关问题.°角的直角三角形的性质定理解决有关问题.((难点难点) )一、情境导入问题:问题:1.我们学习过直角三角形,直角三角形的角之间都有什么数量关系?.我们学习过直角三角形,直角三角形的角之间都有什么数量关系? 2.用你的3030°角的直角三角尺,°角的直角三角尺,把斜边和3030°角所对的直角边量一量,°角所对的直角边量一量,你有什么发现?你有什么发现? 今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含3030°角的直角三角形的性质°角的直角三角形的性质°角的直角三角形的性质【类型一】 利用含30°角的直角三角形的性质求线段长如图,如图,在在Rt Rt△△ABC 中,∠ACB =9090°,°,∠B =3030°,°,CD 是斜边AB 上的高,AD =3cm 3cm,,则AB 的长度是的长度是( ( ( )A .3cmB .6cmC .9cmD .12cm解析:在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC =90°,∴∠ACD =∠B =30°.在Rt △ACD 中,AC =2AD =6cm ,在Rt △ABC 中,AB =2AC =12cm.∴AB 的长度是12cm.故选D.D.方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】 与角平分线或垂直平分线性质的综合运用如图,∠AOP =∠BOP =1515°,°,PC ∥OA 交OB 于C ,PD ⊥OA 于D ,若PC =3,则PD 等于等于( ( ( )A .3B .2C .1.5D .1解析:如图,过点P 作PE ⊥OB 于E ,∵PC ∥OA ,∴∠AOP =∠CPO ,∴∠PCE =∠BOP +∠CPO =∠BOP +∠AOP =∠AOB =30°.又∵PC =3,∴PE =12PC =12×3=1.5.∵∠AOP =∠BOP ,PD ⊥OA ,∴PD =PE =1.5.故选C.C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】 利用含30°角的直角三角形的性质探究线段之间的倍、分关系如图,在△ABC 中,∠C =9090°,°,AD 是∠BAC 的平分线,过点D 作DE ⊥AB .DE 恰好是∠ADB 的平分线.CD 与DB 有怎样的数量关系?请说明理由.有怎样的数量关系?请说明理由.解析:由条件先证△AED ≌△BED ,得出∠BAD =∠CAD =∠B ,求得∠B =30°,即可得到CD =12DB . 解:CD =12DB .理由如下:∵DE ⊥AB ,∴∠AED =∠BED =9090°°.∵DE 是∠ADB 的平分线,∴∠ADE =∠BDE .又∵DE =DE ,∴△AED ≌△BED (ASA)(ASA),∴,∴AD =BD ,∠DAE =∠B .∵∠BAD =∠CAD =12∠BAC ,∴∠BAD =∠CAD =∠B .∵∠BAD +∠CAD +∠B =9090°,°,∴∠B =∠BAD =∠CAD =3030°°.在Rt Rt△△ACD 中,∵∠CAD =3030°,∴°,∴CD =12AD =12BD ,即CD =12DB . 方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】 利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC =50m 50m,,AB =40m 40m,∠,∠BAC =150150°,这种草皮每平方米的售价是°,这种草皮每平方米的售价是a 元,求购买这种草皮至少需要多少元?购买这种草皮至少需要多少元?解析:作BD ⊥CA 交CA 的延长线于点D .在Rt △ABD 中,利用30°角所对的直角边是斜边的一半求BD ,即△ABC 的高.运用三角形面积公式计算面积求解.解:如图所示,作BD ⊥CA 于D 点.∵∠BAC =150150°,∴∠°,∴∠DAB =3030°°.∵AB =40m 40m,∴,∴BD=12AB =20m 20m,,∴S △ABC =12×5050××2020==500(m 2).已知这种草皮每平方米a 元,所以一共需要500a 元.元.方法总结:解此题的关键在于作出CA 边上的高,根据相关的性质推出高BD 的长度,的长度,正正确的计算出△ABC 的面积.三、板书设计含3030°角的直角三角形的性质°角的直角三角形的性质°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是3030°,那么它所对的直角边等于斜边的一半.°,那么它所对的直角边等于斜边的一半.本节课借助于教学活动的开展,有效地激发了学生的探究热情和学习兴趣,从而引导学生通过自主探究以及合作交流等活动探究并归纳出本节课所学的新知识,促进了学生思维能力的提高.不足之处是部分学生的综合运用知识解决问题的能力还有待于在今后的教学和作业中进行进一步的训练和提高.业中进行进一步的训练和提高.。
《等腰三角形》 教学设计
《等腰三角形》教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义,掌握等腰三角形的性质和判定方法,并能运用这些知识解决简单的几何问题。
2、过程与方法目标通过观察、操作、猜想、证明等活动,培养学生的逻辑推理能力、动手操作能力和创新思维能力。
3、情感态度与价值观目标让学生在探索等腰三角形的性质和判定过程中,感受数学的严谨性和逻辑性,激发学生对数学的兴趣,培养学生的合作精神和探究精神。
二、教学重难点1、教学重点等腰三角形的性质和判定方法。
2、教学难点等腰三角形性质和判定的证明及应用。
三、教学方法讲授法、讨论法、探究法、直观演示法。
四、教学过程1、导入新课通过展示一些生活中常见的等腰三角形的图片,如等腰三角形的建筑、饰品等,引导学生观察这些图形的共同特征,从而引出本节课的主题——等腰三角形。
2、新课讲授(1)等腰三角形的定义结合图片,给出等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(2)等腰三角形的性质①让学生拿出事先准备好的等腰三角形纸片,通过对折,观察并猜想等腰三角形的性质。
②引导学生从边、角、线段(中线、高线、角平分线)等方面进行猜想。
③对猜想进行证明。
例如,证明等腰三角形的两个底角相等。
已知:在△ABC 中,AB = AC。
求证:∠B =∠C。
证明:作底边 BC 的中线 AD。
因为 AB = AC,BD = CD,AD = AD,所以△ABD ≌△ACD(SSS)。
所以∠B =∠C。
通过类似的方法,证明等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合(三线合一)。
(3)等腰三角形的判定引导学生思考:如果一个三角形有两个角相等,那么这两个角所对的边是否相等?已知:在△ABC 中,∠B =∠C。
求证:AB = AC。
证明:作∠BAC 的平分线 AD。
因为∠BAD =∠CAD,∠B =∠C,AD = AD,所以△ABD ≌△ACD(AAS)。
(精品教案)等腰三角形讲课稿范文(通用5篇)
(精品教案)等腰三角形讲课稿范文(通用5篇)精心整理的等腰三角形讲课稿范文(通用5篇),仅供参考,大伙儿一起来看看吧。
1、教材的地位与作用等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。
等腰三角形的性质及判定是探索线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点本着新课程标准,在吃透教材基础上,我把探究等腰三角形的性质定为本节课的重点,经过创设咨询题和解决咨询题来突出重点。
把等腰三角形性质的建立定为本课的难点,经过折纸实验和小组合作探索来突破难点。
1、学情分析我所教的学生,从认知的特点来看,好奇爱咨询,求知欲强,想象力丰富;并已初步具有对数学咨询题举行合作探索的能力。
2、三维目标依照教材结构和内容分析,思考到学生已有的认知结构、心理特征,我制定如下目标:知识与技能目标:了解等腰三角形的概念,探究并掌握等腰三角形的性质,并会举行有关的论证和计算,以及运用所学的知识去解决实际咨询题。
过程与办法目标:经过对性质的探索活动和例题的分析,培养学生多角度考虑咨询题的适应,提高学生分析咨询题和解决咨询题的能力;使学生进一步了解发觉真理的办法(探索-猜想-归纳-论证)。
情感态度与价值观目标:经过对等腰三角形的观看、试验、归纳,体验数学活动充满着探究性和制造性,数学就在我们周围。
在操作活动中,培养学生的合作精神,在独立考虑的并且可以认同他人. 感觉合作交流带来的成功感,树立自信心.1、教法依照教材分析和目标分析,我确定本课要紧的教法为探索发觉法。
采纳“咨询题情境—探究交流—猜想验证——建立模型”的模式安排教学,并在各个环节举行分层施教。
2、学法我们常讲:“现代的文盲别是别识字的人,而是没有掌握学习办法的人”,因而在教学中我特殊重视学法的指导。
本课采纳小组合作的学习方式,让学生遵循“观看——猜想——归纳——验证——反馈——实践”的主线举行学习。
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。
等腰三角形的教学设计(9篇)
等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点熟练地掌握等腰三角形的判定定理。
教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出图形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。
八年级数学上册《等腰三角形》教案、教学设计
在教学过程中,引导学生通过观察、分析、实践等环节,培养几何逻辑思维能力和解决问题的能力。
1.通过观察等腰三角形的实物或图形,培养学生的观察能力和几何直觉。
2.引导学生运用已学的几何知识,发现并证明等腰三角形的性质,提高学生的逻辑推理能力。
3.通过解决等腰三角形的相关问题,培养学生运用几何知识解决实际问题的能力。
2.学生回答:两边相等,两个角相等。
3.教师总结:这个三角形是我们今天要学习的等腰三角形。它有什么特殊的性质和判定方法呢?接下来,我们一起来探究。
(二)讲授新知
1.教师引导学生复习三角形的分类,回顾已学的全等三角形知识。
2.提出问题:等腰三角形有什么性质?如何判断一个三角形是等腰三角形?
3.教师通过画图、演示,引导学生发现等腰三角形的性质:两腰相等,两底角相等,底边上的中线、高线、角平分线互相重合。
a.等腰三角形在几何图形中的应用;
b.等腰三角形在实际生活中的例子;
c.等腰三角形与其他几何图形的关系。
请将探讨结果以书面形式提交,以促进同学们之间的交流与合作。
4.结合本节课所学知识,设计一道关于等腰三角形的证明题或应用题,并给出解题步骤。这个作业旨在提高同学们的几何逻辑思维能力和创新意识。
5.完成课后拓展题:在等腰三角形ABC中,若AB=AC,∠BAC=50°,求∠ABC和∠ACB的度数。请同学们尝试用不同的方法解决问题,并说明解题思路。
5.练习巩固,提高能力:设计不同难度的练习题,让学生分层练习,巩固所学知识,提高几何逻辑思维能力。
6.小组合作,交流提升:鼓励学生进行小组合作,共同探讨等腰三角形相关问题,培养学生的合作精神和团队意识。
7.总结反思,拓展延伸:在课堂尾声,引导学生总结所学知识,反思学习过程中的收获和不足,并进行适当的拓展延伸,激发学生的学习欲望。
等腰三角形教学设计(公开课)
《等腰三角形》教学设计王文转教学目标(一)知识与技能1.经历观察实验、猜想证明,掌握等腰三角形的性质,会运用性质进行证明和计算。
(二)过程与方法1.经历观察实验、猜想证明,发展合情推理能力和演绎推理能力。
2.通过运用等腰三角形的性质解决问题,发展应用意识。
(三)情感态度与价值观经历同学间的合作与交流,体会在解决问题过程中与他人合作的益处。
教学重点、难点等腰三角形性质的发现、证明及应用。
教学过程[活动1] 动手操作,得出概念问题(1)如图,把一张长方形的纸按图中虚线对折,并减去阴影部分,再把它展开,得到一个什么图形?(2)你能归纳出等腰三角形的定义吗?(3)你能命名等腰三角形的边角吗?(1)活动1中剪出的等腰三角形是轴对称图形吗?(2)把剪出的等腰三角形ABC沿折痕对折,折痕为AD,找出其中重合的线段和能试着对你的猜想进行证明吗?[活动3] 推理证明,论证性质问题(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?写出证明过程?(小组讨论,组代表上黑板展示)(2)受性质1的证明的启发,你能证明性质2(等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合)吗?(3)你能把性质2分解为三个命题吗?(4)如果已知△ABC 中,AB=AC ,AD 平分∠BAC ,你能推出什么结论? 在证明性质1的过程中口述性质2的证明[活动4] 运用性质,解决问题 练习1 运用性质2填空如图,在ABC 中,AB=AC(1)∵AD ⊥BD ∴∠ = ∠ ; = (等腰三角形底边上的高与 、 重合)(2)∵AD 是中线 ∴ ⊥ ;∠ = ∠ (等腰三角形底边上的中线与 、 重合)(3)∵AD 是角平分线 ∴ ⊥ ; = (等腰三角形顶角的平分线与、重合)练习21、如果等腰三角形的底角是70°,那么它的顶角的度数是_____2、等腰三角形一个角为70°,它的另外两个角的度数是_____3、等腰三角形一个角为110°,它的另外两个角度数是_____结论:在等腰三角形中,① 顶角度数+2×底角度数=180°② 0°<顶角度数<180°③ 0°<底角度数<90°[活动5] 探究例题已知:如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD. 求:△ABC 各角的度数.(先独立思考,在合作交流)分解问题1、图中有哪几个等腰三角形? 2、有哪些相等的角?3、这两组相等的角之间还有什么关系?[活动6] 梳理反思,布置作业谈谈你本节课的收获。
《等腰三角形》word教案 (公开课获奖)2022浙教版
知识与技能:1、了解等腰三角形的有关概念。
2、掌握等腰三角形的轴对称性。
3、灵活运用等腰三角形的概念和轴对称性解决简单几何问题。
过程与方法:1、让学生经历从生活中提炼出等腰三角形的过程。
2、与人合作,并获得合理推理,抽象概括等方法。
重点:认识等腰三角形,理解等腰三角形的轴对称性。
难点:根据等腰三角形的轴对称性解决点与点,直线与直线的位置关系。
教学设计:〔一〕、图片欣赏,感觉新知1、欣赏图片,让学生感受学习等腰三角形的必要,感受等腰三角形的美。
2、认识等腰三角形。
借助课件,根据它们各自的特征,所在位置,在理解的根底上识别等腰三角形的腰,底边,顶角,底角。
〔二〕、自主练习,稳固所知找一找:1、〔课本P53 T1〕2、三边相等的三角形是 。
等边三角形是等腰三角形吗?为什么? 归纳:等边三角形是特殊的等腰三角形。
画一画:3、〔课本P53 T2〕〔三〕、合作学习,探究新知1、思考:等腰三角形是轴对称图形吗?假设是,你能找出它的对称轴吗?假设不是,请说明理由。
拿出刚画好的等腰三角形验证一下。
通过操作,相信学生能够发现对折后角的平分线的两侧互相重合,从而可以追问:由此你能得出什么结论?性质归纳:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
2、追问:等边三角形是轴对称图形吗?有几条对称轴?是哪几条?性质归纳:等边三角形有3条对称轴,各角平分线所在的直线是它的对称轴底边 顶角 腰 腰 底角底角〔四〕例题学习,活学活用例1如图,在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 上的点,且AD =AE ,AP 是△ABC的角平分线,点D ,E 关于AP 对称吗?DE 与BC 有怎样的位置关系?请说明你的判断。
课内练习:课本P55 T2〔五〕学以致用,闯关练习 1、等腰三角形的两边长分别为4和6,那么它的周长是 。
变式:假设等腰三角形的两边分别为3和6,那么它的周长是 。
方法归纳:假设等腰三角形中的没有指出谁是腰或底边,应分情况讨论,但一定要利用 “三边之间的关系〞进行检验2、等腰三角形的周长是13,一边长是5,是另两边长是3、求证:等腰三角形两腰上的中线相等〔六〕回忆小结,布置作业1、让学生畅所欲言,谈谈不同的收获,掌握了哪些知识,获得怎样的学习方法和策略?周围哪些同学是你值得学习的?教师总结:等腰三角形的概念,轴对称性以及应用 2、布置作用,必做题:书上作业题A 组,作业本 选做题:〔1〕书上作业题B 、C 〔2〕搜集生活中等腰三角形的应用。
最新版-等腰三角形的教学设计(优秀4篇)
等腰三角形的教学设计(优秀4篇)等腰三角形篇一14.3 课时安排4课时从容说课前面两节中,通过对生活中的轴对称现象的认识,进一步对轴对称的性质作了研究,还探讨了轴对称变换,能够作出一些简单的平面图形关于一条直线的对称图形,所以学生对这些结论已经有所了解。
本节在我们已学过的知识的基础上,进一步认识特殊的轴对称图形──等腰三角形,并探究等腰三角形的性质及等腰三角形的判定。
在探究等腰三角形的相关问题时,再对等边三角形的相关内容进行深入探讨。
本节的重点是探索等腰三角形和等边三角形的性质及判定,并利用这些性质和判定求解相关的问题,进一步发展学生的数学思维。
本节的重点同时也是本节的难点。
教师在教学中,不可操之过急,应逐步引导,让学生去发现去探索这些性质,学生对它的理解要有一个过程,对它的应用也要慢慢去认识,并且在教学中要注意对学生数学思想的渗透以及分析问题、解决问题能力的培养。
§14.3.1.1等腰三角形(一)第七课时教学目标(一)教学知识点1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
2.探索并掌握等腰三角形的性质。
(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。
教学重点1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点等腰三角形三线合一的性质的理解及其应用。
教学方法探究归纳法。
教具准备师:多媒体课件、投影仪;生:硬纸、剪刀。
教学过程ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。
这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。
来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是。
《等腰三角形》word教案 (公开课获奖)2022冀教版 (6)
17.1 等腰三角形(第一课时)一、教材分析本节是在轴对称知识基础上,探索等腰三角形的性质,主要通过实践、观察、证明等腰三角形的性质以及等边三角形的性质,以及解决相关的实际问题.二、学情分析学生已经能够识别轴对称图形,并且学习了三角形的有关概念,全等三角形的有关定理,因此对于等腰三角形的性质的研究已有了较为充分的准备.通过学习等腰三角形的性质,主要是培养和提高学生应用性质解决问题的能力.三、教学目标1.了解等腰三角形、等边三角形的概念.2.探索并掌握等腰三角形的性质.3. 运用等腰三角形、等边三角形性质进行证明和计算.四、重点、难点重点:等腰三角形、等边三角形的性质.难点:等腰三角形、等边三角形的性质应用.教学环节教学活动设计设计意图说明创设问题情境师:思考并解决下面的问题:1、什么是等腰三角形?什么叫等腰直角三角形?2、在练习本上任意画一等腰三角形,请指出它的腰、底边、顶角、底角。
3、准备一张长方形纸片,按教材63页所示步骤剪出一个三角形。
(学生动手剪纸)通过问题一让学生回忆等腰三角形,问题二通过学生动手画图认识相关元素,问题三通过动手体会等腰三角形的对称性。
一起探究师:观察剪出的三角形,回答下列问题,并说明理由.1.△ABC是等腰三角形吗?如果是,请指出它的两条腰.2.△ABC是轴对称图形吗?如果是,请指出它的对称轴.3. ∠B和∠C什么关系?4. BC边上的高、中线以及△ABC顶角的角平分线与线段AD有什么关系?在独立思考的基础上,学生小组进行合作、交流,教师巡视参与讨论.尽可能地让学生思考和交流,发展学生的辨析和判断能力.归纳总结通过学生汇报交流合作成果,生生评价,师生交流得出等腰三角形的性质:1、等腰三角形两个底角相等。
(简称“等边对等角”).2、顶角的角平分线底边上的中线三线合一底边上的高师:等腰三角形的性质1、2是怎样得到的?说明理由.生:(回答)学生通过独立思考、合作交流,能利用轴对称的性质或利用全等得出结论.(引导学生完整说出过程利用轴对称的性质或全等说明理由,通过不同学生的回答,给予肯定并表扬,培养学生逻辑推理能力).随堂练习练习一:1、如果等腰三角形的一个底角75°那么它的顶角等于多少度?2、如果等腰三角形的一个角为70°那么其余两角多少度?3、如果等腰三角形的一个角为110°那么其余两角多少度?练习二:根据等腰三角形性质定理的推论填空:已知:如图,在△ABC中,AB=AC。
《等腰三角形》word教案 (公开课获奖)2022沪科版 (3)
16.3等腰三角形性质教学目标:1、知识与技能1)探究并掌握等腰三角形的性质定理及推论;2)能根据等腰三角形的性质解决有关计算和证明的问题2、过程与方法采用探究学习法,学生在折叠的过程中观察、发现问题,猜测结论,并进行证明,形成定理3、情感态度与价值观1)通过探究性学习实验,使学生发现等腰三角形“等边对等角”及“顶角的平分线、底边上的中线、底边上的高互相重合”的性质;2)通过性质的证明和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;3)使学生进一步了解发现真理的方法(探究- 猜想--论证).教学重点等腰三角形性质的探索、证明和应用;教学难点:等腰三角形性质的证明教学方法:实验探究法教学用具:三角板,用纸做的一个等腰三角形,几何画板,多媒体教学过程:有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
2、通过实例,探究出有理数除法法则。
会把有理数除法转化为有理数乘法,培养学生的化归思想。
重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。
教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。
初中数学初二数学上册《等腰三角形》教案、教学设计
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。
等腰三角形性质教学设计(共5篇)
第 1 篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标〔一〕、知识目标1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
〔2〕、能力目标1、培养学生“转化〞的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论〞的思想。
2、培养学生进行独立思量,提高独立解决问题的能力。
〔三〕、德育目标通过本节课教学,激发学生探索在现实生活中与数学有关的实际问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学重点:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:〔一〕、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形)〔二〕、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.〔三〕、普通三角形有那些性质?〔两边之和大于第三边.三个内角的和等于180°〕 . 〔四〕、图片展示等腰三角形在日常生活中的实例。
新课讲解〔一〕、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两个底角还有什么关系?〔二〕、〔电脑或者几何画板演示〕结论:折叠等腰三角形或者改变等腰三角形的腰长后,两底角之间依旧保持相等关系。
〔三〕、证明结论,得出性质1、性质定理的证明。
〔1〕学生找出文字命题的题设、结论、画图,换成符号语言。
〔2〕引导学生寻觅辅助线、如何添加辅助线。
〔3〕电脑显示证明过程。
〔4〕说明“等边对等角〞的作用。
2、推论 1 的证明。
〔1〕进一步启示学生得到“等腰三角形三线合一〞的性质。
〔2〕说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
《等腰三角形》第2课时示范公开课教案【八年级数学下册北师大版】
《等腰三角形》教学设计第2课时一、教学目标1.能够正确的运用等腰三角形的性质及判定定理证明一些相等关系.2.掌握等腰三角形中常用的辅助线,并且运用到证明中.3.掌握等边三角形的性质,并熟悉其证明过程.4.要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作中感受几何应用美.二、教学重难点重点:能够正确的运用等腰三角形的性质及判定定理证明一些相等关系,了解等边三角形的性质.难点:掌握等腰三角形中常用的辅助线,并且运用到证明中.三、教学用具电脑、多媒体、课件等.四、教学过程设计【情境引入】教师活动:教师准备好纸张,带领同学深刻理解等腰三角形角平分线、高线、中线特点.试一试:自己动手用纸制作一个等腰三角形.提问:你能利用折叠的方法找出它两个底角的平分线、两条腰上的中线和高线吗三种折叠方法:①角平分线的折法②中线的折法③高线的折法学生展示自己折叠的方式,并指出它的底角平分线、腰上的中线和高线.教师活动:针对上方同学的回答,教师进行提问,根据同学的答案,做出最后答案,然后根据答案让同学进行进一步思考,引出证明.【问题】①等腰三角形的两底角的平分线、两条腰上的中线、两条腰上的高线有什么关系?答案:相等② 你能怎么证明?【探究】证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC中,AB=AC,BD,CE是△ABC 的角平分线.求证:BD =CE .思路:证明线段相等可以考虑证明两个线段所在三角形全等,即:△BCD ≌△CBE三角形里的已知条件:BC =BC∠ABC =∠ACB补充条件:∠1=∠2(通过角平分线得到) 判定依据:ASA 证明:∵AB =AC ,∴∠ABC =∠ACB (等边对等角) ∵∠1=21∠ABC ,∠2=21∠ACB ,∴∠1=∠2 在△BDC 和△CEB 中,∵∠ACB =∠ABC ,BC =CB ,∠1=∠2. ∴△BDC ≌△CEB (ASA).∴BD =CE (全等三角形的对应边相等) 得出结论:等腰三角形两底角的平分线相等. 【思考】动动脑,想一想:等腰三角形两条腰上的中线相等吗?高呢? 【猜想】1、等腰三角形两条腰上的中线相等.2、等腰三角形两条腰上的高线相等. 【思考】证明猜想:等腰三角形两条腰上的中线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的中线.证明:CD =BE .思路:① 想证明CD =BE , 可以证明:△BCE ≌△CBD②两个三角形里的已知条件:BC =BC ;∠ABC =∠ACB ③需要补充的条件: BD =CE (通过中线得到) 证明:②BE 和CD 分别是AC 、AB 上的中线②CE =21AC ,BD =21AB②AB =AC②②ABC =②ACB ,CE =BD , 在②BCE 和②CBD 中②CE =BD ,②ABC =②ACB ,BC =BC ②②BCE ②②CBD (SAS ) ②CD =BE提示:还可以证明②ABD ②②ACE ,依据为:(SAS ) 得出结论:等腰三角形两条腰上的中线相等. 证明猜想:等腰三角形两条腰上的高线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的高线.证明:CD =BE .思路:想证明CD=BE①需要找到:②BCE ②②CBD②两个三角形里的已知条件:BC=BC;∠ABC=∠ACB③需要补充的条件:②CDB=②CEB=90°(通过高线得到)证明:②BE和CD分别是AC、AB上的高线②②CDB=②CEB=90°②AB=AC②②ABC=②ACB在②BCE和②CBD中②②CDB=②CEB,②ABC=②ACB,BC=BC②②BCE②②CBD(AAS)②CD=BE提示:还可以证明△ABD≌△ACE,依据为:(AAS)得出结论:等腰三角形两条腰上的高线相等.【议一议】如图,在△ABC中,AB=AC,点D,E分别在AC和AB上.(1)如果∠ABD=13∠ABC,∠ACE=13∠ACB,那么BD=CE吗?如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?由此你能得到一个什么结论?(2)如果AD=12AC,AE=12AB,那么BD=CE吗?如果AD=1 3AC,∠AE=13AB呢?由此你能得到一个什么结论?分析:(1)由∠ABD =13∠ABC,∠ACE =13∠ACB,易得∠1=∠2.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(ASA).∴BD=CE.追问:如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,∠ABD=∠ACE,那么BD=CE.分析:(2) AD=12AC,AE=12AB,易得AD=AE.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(SAS).∴BD=CE.追问:如果AD=13AC,∠AE=13AB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,AD=AE,那么BD=CE.【想一想】提出问题:等边三角形是特殊的等腰三角形,那么等腰三角形的内角有什么特征呢?预设:三个内角都相等、每个角都等于60°、……追问:你能试着证明一下吗?已知,如图,在△ABC中,AB=AC=BC.求证:∠A= ∠B= ∠C.证明:∵AB=AC,∴∠B=∠C(等边对等角).又∵AC=BC,∴∠A=∠B(等边对等角).∴∠A=∠B =∠C.在△ABC中,∠A+∠B+∠C =180°,∴∠A=∠B =∠C=60°.总结定理:等边三角形的三个内角都相等,并且每个角都等于60°.【典型例题】教师活动:教师通过提问的方式,先带领同学理解问题抽象,让同学们找到解决问题的思路,之后提问同学补充解答过程,最后由教师完善解题步骤.例:已知:如图.点D、E在ΔABC的边BC上,AB=AC,AD=AE.求证:BD=CE.思路:因为△ABC和△ADE是有公共顶点,并且底边在同一直线上的等腰三角形,所以作△ABC(或△ADE)的高AF,可同时平分BC,DE.证明:作AF⊥BC,垂足为点F,则AF⊥DE∵AB=AC∴BF=CF(等腰三角形底边上的中线、底边上的高互相重合)【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1、已知:如图,D是△ABC内的一点,BD平分∠ABC,CD平分∠ACB,且BD=CD.求证:AB=AC.提示:先由DB=DC,证明∠DBC=∠DCB,再证∠ABC=∠ACB.证明:∵DB=DC∴∠DBC=∠DCB∵BD平分∠ABC,CD平分∠ACB∴∠ABC=2∠DBC,∠ACB=2∠DCB∴∠ABC=∠ACB∴AB=AC(等角对等边)2、已知:如图,∠CAE是△ABC的外角,AD∥BC,且∠1=∠2求证:AB=AC.提示:由∠1=∠B,∠2=∠C,可得∠B=∠C 证明:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C∴AB=AC(等角对等边)思维导图的形式呈现本节课的主要内容:教科书第7页习题1.2。
等腰三角形优质课教案
等腰三角形优质课教案一、教学目标同学们,咱为啥要学等腰三角形呢?这就好比盖房子得先知道砖头咋用一样。
等腰三角形在生活里到处都是呀!像那金字塔的侧面,不就有点等腰三角形的样子嘛。
咱们这节课的目标呢,就是让大家能清楚地认识等腰三角形,知道它的边和角的特点,还能熟练运用这些知识去解题,就像玩游戏闯关一样顺利。
二、导入部分来,同学们,我先给你们看个小玩意儿。
(拿出一个等腰三角形的小模型)看这个,像不像一个小山峰?这就是等腰三角形啦。
我问问你们,在生活中你们还在哪里见过类似的形状呀?小明,你来说说。
(小明回答)嘿,小明说的路灯架很对呢!那大家想不想更深入地了解这个像小山峰一样的等腰三角形呀?这就跟你想知道你最喜欢的游戏角色的技能一样迫切吧。
三、探究等腰三角形的定义那啥是等腰三角形呢?简单来说,有两条边相等的三角形就是等腰三角形啦。
这就像一双筷子,两根一样长的筷子加上一根短一点的筷子就能组成一个等腰三角形的样子啦。
那你们想想,是不是只要有两条边相等就行呢?小红,你有啥想法?(小红回答)对啦,小红说对顶角也很关键,真聪明!四、等腰三角形的性质探究1. 边的性质等腰三角形的两条腰相等,这就像是双胞胎一样,总是有着相同的特征。
那如果我知道一条腰的长度是5厘米,那另一条腰呢?肯定也是5厘米呀,这就像一加一等于二那么确定。
2. 角的性质等腰三角形的两个底角相等。
这就好比两个好朋友,总是形影不离,有着同样的地位。
我给你们出个小问题啊,如果一个等腰三角形的顶角是80度,那底角是多少度呢?这就像在迷宫里找出口一样,需要咱们用学过的知识去探索。
五、证明等腰三角形的性质咱们可不能光说不练呀。
怎么证明等腰三角形的这些性质呢?这就像侦探破案一样,得有证据。
我们可以通过做辅助线,把等腰三角形分成两个全等的三角形来证明。
这就像是把一个大蛋糕切成两块一模一样的小蛋糕,很神奇吧。
六、等腰三角形性质的应用1. 计算角度咱们现在就用刚学的知识来做做题。
人教版八年级上册13.3《等腰三角形》优秀教学案例
1.设计具有针对性的作业,让学生巩固所学知识。
2.鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。
3.对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。
在作业小结环节,我会设计具有针对性的作业,让学生巩固所学知识。同时,我会鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。最后,我会对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。通过这些措施,帮助学生更好地理解和掌握等腰三角形的性质。
五、案例亮点
1.情景创设贴近生活:通过实物模型、图片等直观教具,以及生动的生活实例,我成功吸引了学生的注意力,让他们在轻松愉快的氛围中学习等腰三角形的性质。这种情景创设的方式不仅提高了学生的学习兴趣,还使他们更加深刻地理解了数学在实际生活中的运用。
2.问题导向激发学生思考:我设计了一系列具有启发性的问题,引导学生独立思考、主动探究。这种问题导向的教学策略,使学生在思考和解决问题的过程中,提高了自己的逻辑思维和问题解决能力。
三、教学策略
(一)情景创设
1.利用实物模型、图片等直观教具,为学生创设生动、具体的主动探究等腰三角形的性质。
3.通过数学软件(如几何画板)动态演示等腰三角形的性质,让学生在直观感受中理解知识。
在教学过程中,我会充分利用实物模型、图片等直观教具,为学生创设生动、具体的学习情境。例如,我可以让学生观察一些生活中的等腰三角形物体,如金字塔、腰带等,从而引出等腰三角形的概念。同时,我会设计一些有趣的问题,如“等腰三角形为什么叫等腰三角形?”“等腰三角形的底角是否相等?”等,引导学生主动探究等腰三角形的性质。此外,我还会利用几何画板等数学软件,动态演示等腰三角形的性质,让学生在直观感受中理解知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等腰三角形》公开课教学设计
贵定县第三中学文普
一、教材依据
人教版八年级上册第十四章第14.3节
二、设计思想
本课容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
教材通过学生对等腰三角形的叠合操作,得出等腰三角形的轴对称性,给出了等腰三角形的性质1,并对性质1进行了证明,从性质1的证明过程中,得出等边三角形性质及等腰三角形性质2,这里“等边对等角是今后证明两角相等常用方法之一,而等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据。
运用观察、操作来领悟规律,以全等三角形为推理工具,在交流中突破难点。
采用直观教学发现法和启发诱导教学法,与学生实践操作、合作探究。
三、教学目标
1、知识与能力目标:
①掌握等腰三角形的性质及其两个推论。
②运用等腰三角形的性质及其推论进行有关证明和计算。
2、过程与方法目标:
①让学生体验等腰三角形是一个轴对称性图形。
②经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力。
3、情感、态度、价值观目标:
培养学生协作学习精神,使学生理解事物之间是相互联系和运动变化,培养学生辩证唯物主义观念。
四、教学重点
等腰三角形的性质定理及其证明
五、教学难点
“三线合一”的理解及例1的讲解
六、教学准备
长方形纸片、剪刀、自制等腰三角形纸片
七、教学过程
(一)、创设情景,引入新知
活动1:请同学们把一长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形?教师示操作,然后学生跟着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,板书:等腰三角形
师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想
学生思考并发表自已的看法,教师提出本节课所要解决的问题
师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴(板书)
教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。
(二)、合作交流,探索新知
活动2:教师出示刚才剪下的等腰三角形纸片,标上字母如图所示:
把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?AD与BC垂直吗?为什么?
学生回答:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD
活动3:由上面的性质我们可以得到等腰三角形如下性质:
性质1:等腰三角形的两个底角相等,简称:等边对等角(板书)
教师提问:这个命题的题设是什么?结论是什么?学生可结合图形回答
(板书)已知:在△ABC中,AB=AC,求证:∠B=∠C 说明:将等腰三角形写成已知时,通常写成“在△ABC 中,AB=AC”而不写成“等腰”两个字
教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?
通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正。
同学们思考一下,还有没有其它辅助线的作法,教师可作提示:作中线AD,由学生口答,或者指导学生看课本证明。
教师归纳等腰三角形性质1,并指出它的几何符号语言的书写:
如上图:∵ AB=AC(已知)
∴∠B=∠C(等边对等角)
教师提出问题:练习1(口答)
1、等腰直角三角形每一个锐角的度数是多少度?
2、如果等腰三角形的底角等于40°,那么它的顶角的度数是多少?
3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?
1、如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?
2、如果等腰三角形的一个角是120°,则其它的两个角各是多少度?
3、等边三角形各角有什么关系?各等于多少度?
要求学生完成教师提出的问题,教师归纳:
(1)等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180°
(2)推论:等边三角形三个角相等,每一个角都等于60°(板书)
教师与学生合作分析,口述(2)的证明过程。
活动4:提出问题:从性质1的证明过程可以知道,BD=CD,∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?
让学生运用数学语言表述所发现的规律,师生共同归纳得出:
性质2 等腰三角形的顶角的平分线垂直平分底边(板书)
即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相重合三线合一(板书)
活动5:教师出示课本例1(小黑板显示)
例1 如图在△ABC中,AB=AC,∠BAC=120°,点D、E 是底边的两点,且BD=AD,CE=AE,求∠DAE的度数
分析例1,剖析推理方法及依据,提出讨论问题,引导学生思考,根据学生回答教师板书例1过程,解略(三)、巩固练习,强化新知
练习2:(出示小黑板)
如图,在ABC中,AB=AC
(1)∵AD⊥BD ∴∠______ = ∠_____; ______ = ______(等腰三角形底边上的高与______、______重合)(2)∵AD是中线∴_____ ⊥_____;∠_____= ∠
_____(等腰三角形底边上的中线与_____、_____重合)(3)∵AD是角平分线∴____ ⊥ ____;____= ____(等腰三角形顶角的平分线与______、_____重合)
(四)、师生互动,总结新知
请同学们回顾本节课所学的容,有哪些收获?
师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等边三角形性质;4、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)(五)、作业设计,深化新知
课本P143页练习第2题、P149页习题14.3第1、3、4题。