201x版八年级数学下册第10章分式10.5分式方程1导学案新版苏科版

合集下载

苏科版数学八年级下册第10章《分式小结与思考》教学设计1

苏科版数学八年级下册第10章《分式小结与思考》教学设计1

苏科版数学八年级下册第10章《分式小结与思考》教学设计1一. 教材分析《苏科版数学八年级下册》第10章《分式小结与思考》主要内容包括分式的概念、分式的运算、分式的性质和分式的应用。

本章内容是八年级数学的重要内容,也是初中的难点之一。

通过本章的学习,使学生掌握分式的基本概念和运算法则,提高学生解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经学习了实数、代数式、方程等知识,具备了一定的数学基础。

但分式的概念和运算对学生来说较为抽象,需要通过实例和练习来加深理解。

同时,学生需要掌握分式运算的技巧和方法,提高解题速度和准确率。

三. 教学目标1.理解分式的概念,掌握分式的基本性质和运算法则。

2.能够运用分式解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.分式的概念和性质。

2.分式的运算方法和技巧。

3.分式在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究分式的概念和性质。

2.使用案例教学法,通过实例讲解分式的运算方法和技巧。

3.运用小组合作法,让学生在团队合作中解决实际问题。

六. 教学准备1.准备相关的教学案例和实例,用于讲解和练习。

2.准备分式的运算练习题,用于巩固和拓展。

3.准备投影仪和教学课件,用于展示和讲解。

七. 教学过程1.导入(5分钟)利用实例引入分式的概念,如面积的计算、比例问题等,引导学生思考分式的实际意义。

2.呈现(15分钟)讲解分式的概念和性质,如分式的定义、分式的基本性质等,并通过实例进行解释和展示。

3.操练(20分钟)进行分式的运算练习,如分式的加减乘除等,引导学生掌握分式的运算方法和技巧。

4.巩固(10分钟)让学生自主完成一些分式的运算题目,巩固所学知识,并找出存在的问题。

5.拓展(15分钟)利用分式解决实际问题,如工程问题、经济问题等,让学生运用所学知识解决实际问题。

6.小结(5分钟)对本节课的内容进行总结,强调分式的概念和性质,分式的运算方法和技巧,以及分式在实际问题中的应用。

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。

本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。

但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算,并能灵活运用。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算及其运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和板书。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。

请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。

2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。

同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。

3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。

教师巡回指导,解答学生遇到的问题,并给予反馈。

4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。

如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。

”教师引导学生思考和解答,巩固所学知识。

5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。

让学生举例说明,进一步拓宽视野。

2023年苏科版八年级数学下册第十章《分式的乘除(1)》导学案1

2023年苏科版八年级数学下册第十章《分式的乘除(1)》导学案1

新苏科版八年级数学下册第十章《分式的乘除(1)》导学案基本环节基本内容组织教学知识梳理学习目标:1.知道分式加、减运算的一般步骤,能熟练进行分式的加、减运算;2.通过对运算法则的探究,增强类比思想的运用,提高转化问题的能力。

学习重点:掌握分式乘除运算。

学习难点:分子、分母为多项式的分式乘除法运算。

预习导航一、预习展示:智慧碰撞一、探究新知1、猜一猜与ab×cd=ab÷cd=2、归纳:(1)分式的乘法法则:(2)分式的除法法则:(3)分式的乘方法则:二、例题讲解:例1:计算:(1)baa2284-.6312-aab(2)(cba4+)2(3)xy62÷231x(4)2244196aaaa+++-÷12412+-aa请学生自由讨论拓1、当2005=x,1949=y时,求代数式2222442yxxyyxyxyx+-•+--的值。

2、将分式22xx x+化简得1xx+,则x应满足的条件是.展延伸3、使代数式33xx+-÷24xx+-有意义的x的值是4、16.(技巧题)已知1m+1n=1m n+,求nm+mn的值.情感升华1、填空:(1)=-3)32(x(2)=⋅3242)23(16xyyx2、若代数式1324x xx x++÷++有意义,则x的取值范围是__________.3、计算3222⎪⎪⎭⎫⎝⎛-ban与2333⎪⎪⎭⎫⎝⎛-ban的结果()A.相等B.互为倒数C.互为相反数D.以上都不对4、计算:(1)46910523-⋅-aabbaa(2)222)()(baba-÷-(3)3224)3()12(yxyx-÷-(4)24222xxyxyxxyxyx--⋅+-(5)96234222++-÷+-xxxxxx(6)251025)5(22+--⋅-aaaa5、已知aba+b=13,bcb+c=14,aca+c=15,求代数式abcab+bc+ac的值反思与心得。

苏科版八年级数学下册10.5分式方程课件

苏科版八年级数学下册10.5分式方程课件
4
5
1
(3)
2 ; (4) 2
2
0.
x 1 x 1
x x x x
检测反馈
检测反馈
检测反馈
检测反馈
有增根?
x3
3 x
解:原方程可变形为
x2
m
2
x 3
x 3
方程两边同乘以(x 3),得 x 2 2( x 3) m
m=4-x

当 x 3 0 时,即 x 3时原分式方程会产生增根
把 x 3 代入①中,则 m 1
合作学习
随堂练习
3
6
x+m
当m=_____时,— + —— = ——有增根.
10.5 分式方程(2)
八年级下册
复习回顾
1.分式方程的概念: 分母中含有未知数的方程叫做分式方程
2.解分式方程的基本思想:
乘最简公分母
分式方程
转化
3.解分式方程的关键:找最简公分母.
4.解分式方程的步骤:一化二解三检验.
整式方程
学 习 目 标
1.了解分式方程产生增根的原因;
2.学会检验根的合理性;

1
随堂练习(2)
x 2 3x 6
解:两边同乘以3(x-2),得:
3(5x-4)=4x+10-3(x-2)
x=2
检验:把x=2代入3(x-2)=0
∴x=2不是原方程的根 ∴原方程无解
检测反馈
1、解下列方程:
1
2
x
2x
(1)
; (2)

1;
2x x 3
x 1 3x 3
2

初中数学章前导学设计

初中数学章前导学设计

初中数学章前导学设计作者:顾广林来源:《江苏教育·中学教学版》2021年第10期【摘要】初中数学教材在章前都设计了章前图和章前语,揭示本章的主要学习内容和方法。

章前图语具有统领全章的导学功能,为全章教学构建框架,为全章学习提供明晰的路径,有利于学生理解全章的知识架构与能力要求。

教师的章前导学设计要紧扣章前图语、站在系统思维的高度进行,针对全章内容提出问题并引导学生尝试解决,使学生明白为什么要学、学什么、怎么才能学会。

【关键词】章前导学;系统思维;问题引领【中图分类号】G633.6 【文献标志码】A 【文章编号】1005-6009(2021)71-0037-03【作者简介】顾广林,江苏省泰州市九龙实验学校(江苏泰州,225312)教师,正高级教师,江苏省特级教师。

一、章前板块的内容分析以苏科版初中数学教材为例,章前图、章前语一般由两页组成。

第一页的上半部分给出一个几何图形和简洁的说明,关联已学知识和待学知识,说明本章知识产生的逻辑性,介绍主要学习内容,指出本章学习的关键所在;下半部分给出一幅生活中涉及本章相关内容的实景图片或关于数学文化的图片或操作类图片。

对于实景图片,教师可以基于图片创设一个蕴含本章知识的数学问题情境,并通過对问题的分解与创生,引导学生了解本章所要学习的知识和方法;对于同数学文化相关的图片,教师可用以引导学生感受我国古代数学的成就,增强其自豪感;操作类的图片往往暗示本章需要“做中学”。

第二页上半部分一般给出一个图文并茂的探索活动,学生通过探索可了解本章的主要知识,感受学习方法;下半部分一般给出本章的学习内容或指明学习方法。

第二页的内容是对全章内容的概括和学法的引领,力图引起学生的好奇心,培养学生的自信心。

总之,章前图语主要以情境和问题的形式揭示全章的内容和学习方法。

二、章前导学结构章前图语的主要功能是导学,它为全章的内容和结构设定了一个框架,对后续学习起着“导航”作用。

苏科版数学八年级下册10.5《分式方程》教学设计3

苏科版数学八年级下册10.5《分式方程》教学设计3

苏科版数学八年级下册10.5《分式方程》教学设计3一. 教材分析苏科版数学八年级下册10.5《分式方程》是学生在学习了分式、方程的基础上,进一步深化对分式方程的理解和应用。

本节课通过具体的例子引导学生理解分式方程的定义、特点及解法,培养学生解决实际问题的能力。

教材内容由浅入深,循序渐进,既注重了基础知识的巩固,又提高了学生的思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了分式和方程的基础知识,对于分式方程有一定的认识。

但部分学生对分式方程的理解仍停留在表面,难以把握其本质特征。

此外,学生在解决实际问题时,往往不能灵活运用所学知识,对于分式方程的解法技巧有待提高。

三. 教学目标1.理解分式方程的定义、特点及解法。

2.培养学生解决实际问题的能力。

3.提高学生的数学思维能力和创新意识。

四. 教学重难点1.分式方程的定义和特点。

2.分式方程的解法及应用。

五. 教学方法1.情境教学法:通过生活实例引入分式方程,让学生感受到数学与实际的联系。

2.案例教学法:分析典型例题,引导学生总结解题方法。

3.小组合作学习:鼓励学生相互讨论、交流,提高解决问题的能力。

4.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。

六. 教学准备1.教学课件:制作课件,展示分式方程的相关概念、例题及解法。

2.练习题:准备分式方程的相关练习题,用于巩固所学知识。

3.教学素材:收集与分式方程相关的实际问题,用于引入和拓展。

七. 教学过程1.导入(5分钟)利用生活实例引入分式方程,激发学生的学习兴趣。

例如,讲解一个实际问题:某商品打8折后售价为120元,求原价。

2.呈现(10分钟)展示分式方程的定义、特点及解法。

通过PPT课件,让学生清晰地了解分式方程的基本概念和解题步骤。

3.操练(10分钟)让学生独立解决一些简单的分式方程问题。

教师巡视课堂,解答学生的疑问,指导学生掌握解题方法。

4.巩固(10分钟)分析典型例题,引导学生总结解题方法。

苏科版八年级数学下_10.4分式的乘除

苏科版八年级数学下_10.4分式的乘除
时先确定结果的符号,再把分子、分母分别乘方.
感悟新知
解:(1)原式=2ab; (2)原式=-6yx33; (3)原式=mn42·mn36·m14n4=nm46mn67=n13.
知1-讲
感悟新知
例2 计算:
(2a-3)2 (1) a+3
·a2+3-6a2+a 9;
2m+4 (2)m2-4m+4
·(m2-4)
进行运算.
感悟新知
知2-讲
特别提醒: 分式除法运算的基本步骤: 第1 步:将分子、分母是多项式的进行因式分解,并
约分; 第2步:将除法转化成乘法; 第3步:利用分式的乘法法则计算.
感悟新知
例 3 计算: (1)a2bc23÷-45cad2b2;(2)23xy3÷(-2xy2); -1+2a-a2 a2-1 (3) a+2 ÷a2+2a.
·m2m2--146.
知1-讲
感悟新知
知1-讲
解题秘方:先分解因式再约分.
方法点拨: 分子分母都是多项式的分式的乘法运算一般先分别对分
子分母分解因式,再运用分式的乘法法则计算,最后约分化 为最简分式或整式.
感悟新知
解:(1)原式=(2aa+-33)2·-(a(2+a-3)23)= -(2a-3)(a+3) =-2a2-3a+9; (2)原式=2(m(m-+24)2)·(m+2)(m- 2) · (m+2(m4)-(m2-) 4)=4m(m2-+126)2.
感悟新知
知3-讲
特别解读: (1)分式的乘除混合运算要注意分式中分子、分母符号的
处理,可先确定积的符号; (2)分式的乘除混合运算的结果应为最简分式或整式.
感悟新知
例4 计算:
3ab2 (1)2x3y

初中数学苏教版八年级下册《10.5 分式方程》PPT课件(示范文本)

初中数学苏教版八年级下册《10.5  分式方程》PPT课件(示范文本)
边= 右边=0, 左边=右边.
解分式方程:
试一试
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.检验:把整式方程的解代入原分式方程,如果左边=右边,则整式方程的解是原分式方程的解; 4、写出原方程的解.
情境设置
所列方程的分母中含有未知数.
分母中含有未知数的方程叫做分式方程.
问题中所列的各方程与一元一次方程(如:2x-1=0、 )有没有区别?若有,其本质区别是什么?
下列方程中,哪些是分式方程?
(1)
(2)
(3)
(4)
去分母
去分母
两边同乘分母的最小公倍数 6
方程两边同乘最简公分母 2x
解之,得x=15
经检验, x=15是所列方程的解.
答:骑自行车的学生的速度为15 km/h.
一化二解三检验
归纳 解分式方程的一般步骤:
解下列方程:
(1)
(2)
(5)
(3)
(4)
(6)
例2:我校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达.求骑自行车的学生的速度.
解:设自行车的速度为xkm/h,可得方程
等式的基本性质:等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
1.如何解一元一次方程
分式方程
整式方程
去分母
解分式方程的基本思想方法是什么?
转化
同乘各分式的最简公分母
注意:解分式方程一定要检验.
例1 解方程:
(1)
解:方程两边同乘x(x+4),得
3x-(x+4)=0
解得 x=2

八年级数学下册课后补习班辅导分式的乘除分式方程讲学案苏科版

八年级数学下册课后补习班辅导分式的乘除分式方程讲学案苏科版

分式的乘除、分式方程【本讲教育信息】一. 教学内容:分式的乘除、分式方程二. 教学目标:1. 使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.2. 掌握分式方程的概念,掌握分式的乘除运算,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.3. 培养学生分析问题、解决问题的能力,渗透数学类比转化的思想培养学生的应用意识。

三. 教学重点与难点:重点:1. 掌握分式的乘除运算2. 分式方程的解法.3. 将实际问题中的等量关系用分式方程表示难点:1. 分子、分母为多项式的分式乘除法运算.2. 列分式方程解应用题四. 课堂教学:(一)知识要点知识点1:约分根据分式的基本性质,把一个分式的分子与分母的公因式约去。

约分一定要把公因式约完。

知识点2:最简分式分子与分母没有公因式的分式叫最简分式。

分式运算的结果一定要化为最简因式。

知识点3:分式乘法法则 分式乘分式,用分子的积做积的分子,分母的积做积的分母。

即B A .DC = . 知识点4:分式除法法则:分式除以分式把除式的分子.分母颠倒位置后,与被除式相乘。

即B A ÷DC = . 知识点5:分式的混合运算 与分数混合运算类似,分式的加,减,乘,除混合运算的顺序是:先乘除,后加减。

如有括号,则先进行括号内的运算。

知识点6:分式方程的定义分母中含有未知数的方程叫做分式方程。

如:(1)01111=--+x x (2)163104245--+=--x x x x 知识点7:分式方程的解法去分母,把分式方程转化为整式方程解整式方程检验知识点8:解分式方程产生增根的原因解分式方程时我们在方程的两边同乘了一个可能使分母为0的整式。

因为解分式方程可能产生增根,所以解分式方程必须检验。

知识点9:列分式方程解应用题列分式方程解应用题与列一元一次方程和二元一次方程组相似。

但要特别注意检验。

【典型例题】例1. 计算: (1)2222.2)(x y x xy y xy x x xy -+-÷- 解:原式=y x y x y x xy x y x -=-⋅-⋅-22)()()( (2)x x x x x x x x -÷+----+4)44122(22 解:原式x4x ])2x (1x )2x (x 2x [2-⋅----+=22222)2(14)2(44)2(4--=-⋅--=-⋅-+--=x xx x x x x x x x x x x 例2. 先化简,再求值:2222222222ba )cb (a b a ab 2c )b a (ab a ac ab a ---÷++--⨯--+。

苏科版数学八年级下册 第10章 分式知识点总结

苏科版数学八年级下册 第10章 分式知识点总结

分式分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母;(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况;(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果。

(判断一个数是分数还是整数,要化简)分式有意义,无意义或等于零的条件:1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,避免分母的值为零;(2)遇到没有特殊说明的分式,都是有意义的,要注意隐含条件分式中的分母的值不等于零;(3)求分式的值,必须在分式有意义的前提下。

分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式).注意:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件;(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.分式的变号法则:对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数. 注意:根据分式的基本性质有b b a a -=-,b ba a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.分式的约分,最简分式:与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。

苏科版八年级下册10.5分式方程的增根专题训练(1)

苏科版八年级下册10.5分式方程的增根专题训练(1)

八下10.5分式方程的增根专题训练(1)姓名:___________班级:___________考号:___________一、选择题1.下列说法正确的是().A. 使分子的值为零的根是增根B. 方程的解是零就是增根C. 使所有分母为零的解是增根D. 使公分母的值为零的解是增根2.下列说法:①解分式方程一定会产生增根;②方程x−2x−4x+4=0的根为2;③方程1 2x =12x−4的最简公分母是2x(2x−4);④x+1x−1=1+1x−1是分式方程.其中正确的个数是().A. 1个B. 2个C. 3个D. 4个3.解关于x的方程xx−1−kx2−1=xx+1不会产生增根,则k的值是()A. 2B. 1C. k≠2且k≠一2D. 无法确定4.已知关于x的方程3x−1−x+ax(x−1)=0增根是1,则字母a的取值为A. 2B. −2C. 1D. −15.下列说法中,正确的有()个.(1)若a>b,则ac2>bc2(2)若ac2>bc2,则a>b(3)对于分式2x2−8x−2,当x=2时,分式的值为0(4)若关于x的分式方程x−mx−2=1x−2有增根,则m=1.A. 2B. 3C. 4D. 16.已知,关于x的分式方程2x−3+x+a3−x=2有增根,且关于x的不等式组{x>ax≤b只有4个整数解,那么b的取值范围是()A. −1<b≤3B. 2<b≤3C. 8≤b<9D. 3≤b<4二、填空题7.若分式方程xx−1−m1−x=2有增根,则这个增根是______.8.解关于x的方程x−6x−1=mx−1产生增根,则常数m的值等于________.9.解关于x的方程1−kxx−2=12−x出现增根,则增根x=________,常数k=________.10.若关于x的分式方程1ax+b =1bx+a有增根(a≠b,且a,b都不为零),则ab=________.三、解答题11.已知关于x的分式方程2x-1+mx(x-1)(x+2)=1x+2.(1)若方程的增根为x=1,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.12.先仔细看(1)题,再解答(2)题.(1)a为何值时,方程xx−3=2+ax−3会产生增根?解:方程两边同时乘以(x−3),得x=2(x−3)+a①,因为x=3是原方程的增根,并且是方程①的根,所以将x=3代入①,得3=2×(3−3)+a,所以a=3.(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?13.先仔细看(1)题,再解答(2)题.(1)a为何值时,方程xx−3=2+ax−3会产生增根?(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?14.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?x−2+3=12−x.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?15.增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.阅读以上材料后,完成下列探究:探究1:m为何值时,方程3xx−3+5=m3−x有增根?探究2:m为何值时,方程3xx−3+5=m3−x的根是−1?探究3:任意写出三个m的值,使对应的方程3xx−3+5=m3−x的三个根中两个根之和等于第三个根.探究4:你发现满足“探究3”条件的m1,m2,m3的关系是__________________________.16.阅读理解,并解决问题.分式方程的增根解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现0=0的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程1−xx−2+2=12−x时产生了增根,这个增根是______;(2)小明认为解分式方程2xx+1−32x+2=0时,不会产生增根,请你直接写出原因;(3)解方程2x−1+1x+1=4x2−1.答案和解析1.D解:分式方程的增根是使最简公分母的值为零的解.2.A3.C解:去分母得,x(x+1)−k=x(x−1),解得x=12k,∵方程xx−1−kx2−1=xx+1不会产生增根,∴x≠±1,∴12k≠±1,即k≠±2.4.A解:方程两边都乘以x(x−1)得,3x−x−a=0,2x−a=0,∵分式方程有增根x=1,∴2×1−a=0,∴a=2.5.A解:∵当c=0时,ac2=bc2=0,∴选项(1)不正确;∵ac2>bc2,∴c2>0,∴a>b,∴选项(2)正确;由{2x 2−8=0x −2≠0解得x =−2,∴当x =−2时,分式的值为0, ∴选项(3)不正确; ∵方程x−mx−2=1x−2有增根, ∴x =m +1=2, 解得m =1, ∴选项(4)正确. 综上,可得正确的结论有2个:(2)(4).6. D解:方程化简,得 2−x −a =2(x −3), 当x =3时,a =−1,{x >a x ≤b的解集是,−1<x ≤b . 由关于x 的不等式组{x >ax ≤b 只有4个整数解,得3≤b <4,7. x =1解:根据分式方程有增根,得到x −1=0,即x =1, 则方程的增根为x =1.8. −5解:两边都乘以(x −1),得 x −6=m ,由方程的增根是x =1, 得1−6=m . 解得m =−5.9. 2;1解:方程两边都乘(x−2),得1−kx=−1,∵方程有增根,∴最简公分母x−2=0,即增根是x=2,把x=2代入整式方程,得k=1.10.−1解:方程两边同乘(ax+b)(bx+a),得bx+a=ax+b.移项、合并同类项,得(b−a)x=b−a.两边同除以(b−a),得x=1.∵原分式方程有增根,∴x=1是原方程的增根,∴当x=1时,ax+b=0或bx+a=0,∴a+b=0,∴a=−b,=−1,∴ab11.解:方程两边同时乘以(x+2)(x−1),得2(x+2)+mx=x−1,整理得(m+1)x=−5,(1)∵x=1是分式方程的增根,∴1+m=−5,解得:m=−6;所以,m的值为−6;(2)∵原分式方程有增根,∴(x+2)(x−1)=0,解得:x1=−2,x2=1,当x=−2时,原分式方程有增根,代入(m+1)x=−5得m=1.5;当x=1时,原分式方程有增根,代入(m+1)x=−5得m=−6;所以,若方程有增根,m=−6或1.5;(3)当m+1=0时,该方程无解,此时m=−1;当m+1≠0时,要使原方程无解,由(2)得:m=−6或m=1.5,综上,若方程无解,则m的值为−1或−6或1.5.12.解:原方程公分母为y(y−1),方程两边同乘以y(y−1),得y2−m2=(y−1)2,y2−m2=y2+1−2y,2y−1=m2,当y=0时,m2=−1,此时m无解;当y=1时,m2=1,此时m=±1.故当m=±1时,方程有增根.13.解:(1)解方程两边同时乘(x−3),得x=2(x−3)+a,①因为x=3是原方程的增根,但却是方程①的根,所以将x=3代入①得:3=2×(3−3)+a,所以a=3;(2)原方程公分母为y(y−1),方程两边同乘y(y−1),得y2−m2=(y−1)2y2−m2=y2+1−2y2y−1=m2当y=0时,m2=−1,此时m无解;当y=1时,m2=1,此时m=±1.故当m=±1时,方程有增根.14.解:(1)方程两边同时乘以(x−2)得5+3(x−2)=−1解得x=0经检验,x=0是原分式方程的解.(2)设?为m,方程两边同时乘以(x−2)得m+3(x−2)=−1由于x=2是原分式方程的增根,所以把x=2代入上面的等式得m+3(2−2)=−1m=−1所以,原分式方程中“?”代表的数是−1.15.解:解分式方程,根据方程有增根求得m的值即可,根据规律即可得出结论.第三问设方程的三根为a,b,c且a+b=c,再求得对应的m.即可得出它们之间的关系.(1):探究1:方程两边都乘(x−3),得3x+5(x−3)=−m∵原方程有增根,∴最简公分母(x−3)=0,解得x=3,当x=3时,m=−9,故m的值是−9.(2)探究2:方程两边都乘(x−3),得3x+5(x−3)=−m∵原方程的根为x=−1,∴m=23.(3)探究3:由(1)(2)x=15−m,8方程的三个对应根为a,b,c且a+b=c,即可得出对应的m,m1=15−8a,m2=15−8b,m3=15−8c.(4)探究4:∵a+b=c,∴15−m18+15−m28=15−m38,整理得m3=m1+m2−15,故答案为m3=m1+m2−15.16.x=2解:(1)x=2;故答案为:x=2;(2)∵原分式方程的最简公分母为2(x2+1),而2(x2+1)>0,∴解这个分式方程不会产生增根.(3)方程两边同乘(x−1)(x+1),得2(x+1)+(x−1)=4解得:x=1经检验:当x=1时,(x−1)(x+1)=0所以,原分式方程无解.。

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

八年级下册数学10.5:分式方程(应用题篇)解答题训练(二)1.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天胎生产口罩数量的1.5倍,并且乙厂单独完成60万只口罩生产的时间比甲厂单独完成同样数量的口罩生产的时间要多用5天.(1)将60万只用科学记数法表示为只;(2)求甲、乙两厂每天分别可以生产多少万只口罩?2.为响应“地球熄灯一小时”的号召,某饭店在当天晚上推出烛光晚餐活动.计划用2000元购进一定数量的蜡烛,因为是批量购买,每支蜡烛的价格比原价低20%,结果用相同的费用比原计划多购进25支,则每支蜡烛的原价为多少?3.在今年的3月12日第43个植树节期间,某校组织师生开展了植树活动.在活动之前,学校决定购买甲、乙两种树苗.已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元;(2)若准备用7600元购买甲、乙两种树苗共200棵,则至少要购买乙种树苗多少棵?4.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再山两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?5.为打赢“扶贫攻坚战”,某单位计划选购甲、乙两种果树苗送给贫困户,已知甲种果树苗单价比乙种果树苗的单价高10元,若用500元单独购买甲种果树苗与300元单独购买乙种果树苗的数量相同.(1)请问甲,乙两种果树苗的单价各为多少元?(2)如果该单位计划购买甲,乙两种水果树苗共5500棵,总费用不超过92500元,则甲种果树苗最多可以购买多少棵?6.在新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.2元,且用7000元购买A型口罩的数量与用4200元购买B 型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3960元,则增加购买A型口罩的数量最多是多少个?7.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)m n每小时拣快递数量(件)1200 1000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?8.列方程或不等式解应用题:新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3200元购买B消毒液的数量是用2400元购买A消毒液数量的2倍.(1)求两种消毒液的单价;(2)学校准备用不多于6800元的资金购买A、B两种消毒液共70桶,问最多购买A 消毒液多少桶?9.某商店第一次用600元购进某种型号的水笔若干支,第二次又用600元购进该款水笔,但每支水笔的进价比第一次贵1元,所以购进数量比第一次少了30支.问第一次每支水笔的进价为多少元.10.广州某公交线路日均运送乘客总量为15600人次,实施5G快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.求实施智能调度前每趟车平均运送乘客量为多少人次.11.某中学九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.12.某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题,并写出解题过程.13.为了加强疫情防控,某学校购进了部分N95口罩和一次性医用口罩,已知购买N95口罩共花费2000元,购买一次性医用口罩共花费1000元,购买一次性医用口罩数量是购买N95口罩数量的2.5倍,且购买一个N95口罩比购买一个一次性医用口罩多花4元.(1)求购买一个N95口罩、一个一次性医用口罩各需多少元?(2)该单位决定再次购买N95口罩和一次性医用口罩共3000个,恰逢该商场对两种口罩的售价进行调整,N95口罩售价比第一次购买时降低了20%,一次性医用口罩售价比第一次购买时降低了50%,如果此次购买N95口罩和一次性医用口罩的总费用不超过3250元,那么该单位至少可购买多少个一次性医所口罩?14.2020年12月以来,各地根据疫情防控工作需要,为尽快完成检测任务,我市组织甲、乙两支医疗队开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.问甲队每小时检测多少人?15.接种疫苗是阻断病毒传播的有效途经,为了保障人民群众的身体健康,我国目前正在开展新冠疫苗大规模接种工作,现有A、B两个社区疫苗接种点,已知A社区疫苗接种点每天接种的人数是B社区疫苗接种点每天接种人数的1.2倍,A社区疫苗接种点种完6000支疫苗的时间比B社区疫苗接种点种完6000支疫苗的时间少1天.(1)求A、B两个社区疫苗接种点每天各接种多少人?(2)一段时间后,A社区接种点每天前来接种的人数比(1)中的人数减少了10m人,而B社区疫苗接种点由于加大了宣传力度,每天前来接种的人数增加到了(1)中A社区疫苗接种点每天接种的人数,这样A社区接种点3m天与B社区接种点(m+20)天一共种完了69000支疫苗,求m的值.参考答案1.解:(1)60万=600000=6×105,故答案是:6×105;(2)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只.2.解:设每支蜡烛的原价为x元,依题意得:﹣=25,解得x=20.经检验x=20是所列方程的根,且符合题意.答:每支蜡烛的原价为20元.3.解:(1)设甲种树苗每棵x元,则乙种树苗每棵(x﹣6)元.依题意列方程得,,800x﹣4800=680x,解得x=40,经检验x=40是原方程的根.答:甲种树苗每棵40元.(2)设购买乙种树苗的y棵,则购买甲种树苗的(200﹣y)棵,根据题意,得34y+40(200﹣y)≤7600,解得,∵y为整数,∴y的最小值为67.答:至少要购买乙种树苗67棵.4.解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需2x天,根据题意得:+=1.解得:x=12.经检验,x=12是原方程的解,且符合实际问题的意义,2x=24.答:甲施工队单独完成此项工程需12天,则乙施工队单独完成此项工程需24天.5.解:(1)设甲种果树苗的单价为x元,则乙种果树苗的单价为(x﹣10)元,根据题意,得=.解得x=25,经检验x=25是原方程的解.则x﹣10=15.答:甲种果树苗的单价为25元,则乙种果树苗的单价为15元.(2)设甲种果树苗可以购买y棵,根据题意,得25y+15(5500﹣y)≤92500.解得y≤1000.答:甲种果树苗最多可以购买1000棵.6.解:(1)设B型口罩的单价为x元,则A型口罩的单价为(x+1.2)元,根据题意,得:.解方程,得:x=1.8.经检验:x=1.8是原方程的根,且符合题意.所以x+1.2=3.答:A型口罩的单价为3元,则B型口罩的单价为1.8元;(2)设增加购买A型口罩的数量是a个,则购买B型口罩的数量是2a个.根据题意,得:3a+1.8×2a≤3960.解不等式,得:m≤600.答:增加购买A型口罩的数量最多是600个.7.解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得:,解得:≤a≤,∵a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32,∵k=2>0,∴w随a的增大而增大,当a=2时,w最小,w最小=2×2+32=36(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.8.解:(1)设B消毒液的单价为x元,则A消毒液的单价为(x+40)元,依题意得:=2×,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+40=120.答:A消毒液的单价为120元,B消毒液的单价为80元.(2)设购进A消毒液m桶,则购进B消毒液(70﹣m)桶,依题意得:120m+80(70﹣m)≤6800,解得:m≤30.答:最多购买A消毒液30桶.9.解:设第一次每支水笔的进价为x元,则第二次每支水笔的进价为(x+1)元,依题意得:﹣=30,整理得:x2+x﹣20=0,解得:x1=4,x2=﹣5,经检验,x1=4,x2=﹣5是原方程的解,x1=4符合题意,x2=﹣5不符合题意,舍去.答:第一次每支水笔的进价为4元.10.解:设限行期间这路公交车每天运行x车次,+26=,解得:x=100,经检验x=100是原分式方程的根,答:实施智能调度前每趟车平均运送乘客量为100人次.11.解:设骑车学生的速度为xkm/h,由题意得,﹣=,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/h.12.问题:两班各有多少人?解:设2班有x人,则1班有(x+5)人,依题意得:﹣=4,依题意得:x2+5x﹣2250=0,解得:x1=45,x2=﹣50.经检验,x1=45,x2=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+5=50(人).答:1班有50人,2班有45人.13.解:(1)设购买一个一次性医用口罩需x元,则购买一个N95口罩需(x+4)元.列方程:×2.5=,解得:x=1.经检验x=1是原方程的解,∴x+4=5.答:购买一个普通口罩需1元,购买一个N95口罩需5元.(2)设购买一次性医用口罩y个.则购买N95口罩(3000﹣y)个,依题意得:1×(1﹣50%)y+5×(1﹣20%)(3000﹣y)≤3250.解得:y≥2500.∴该单位至少可购买2500个一次性医所口罩.14.解:设甲队每小时检测x人,则乙队每小时检测(x﹣15)人,由题意可得,=×(1﹣10%).解得x=60.经检验x=60是原方程的解,且符合题意.答:甲队每小时检测60人.15.解:(1)设B社区疫苗接种点每天各接种x人,则A社区疫苗接种点每天各接种1.2x 人,根据题意,得+1=.解得x=1000.经检验x=1000是原方程的解,且符合题意.所以1.2x=1200.答:A社区疫苗接种点每天各接种1200人,B社区疫苗接种点每天各接种1000人;(2)根据题意,得(1200﹣10m)•3m+1200(m+20)=69000,整理,得m2﹣160m+1500=0.解得m1=150(舍去),m2=10,答:m的值是10.。

分式的基本性质(课件)八年级数学下册(苏科版)

分式的基本性质(课件)八年级数学下册(苏科版)

2x
x
2
5x
2
,
25
3x
x
2
2
5x
25
.
典型例题
a
b
与 2
例题6 通分: 2
2
x y
x xy
(x+y)(x-y)
x(x+y)
解:最简公分母是x(x+y)(x-y)
a
x
2
y
2
b
x
2
a
( x y)( x y)
b
xy
x( x y )
ax
x( x y)( x y)
b( x y )
x( x y)( x y )
探究新知
分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值
不变.
上述性质可以用式子表示为:
A
AC A
AC

,
(C 0)
.
B
BC B
B C
其中A,B,C是整式.
典型例题
例题1 填空:
看分母如何变化,想分子如何变化.
看分子如何变化,想分母如何变化.
3
x
()
1

D. 3
5 −2+3
−0.2−1
5.不改变分式的值,将分式
中的分子与分母的各项系数化为整数,且第一项系
−0.3+0.5
数都是最小的正整数,正确的是( A )
A.
2+1
3−5
2−10
3+5
B.
2+10
3+5
C.
D.
2+10

最新苏教版八年级数学下册10.5分式方程公开课优质教案(10)

最新苏教版八年级数学下册10.5分式方程公开课优质教案(10)

§10.5分式方程(1)教学目标:1、经历“实际问题-分式方程方程模型”地认识过程,能将实际问题中地等量关系用分式方程表示,体会分式方程地模型作用。

2、知道分式方程地意义,会解可化为一元一次方程地分式方程重点、难点:将实际问题中地等量关系用分式方程表示,会解可化为一元一次方程地分式方程。

教学过程一.【预学指导】初步感知、激发兴趣1、京沪铁路是我国东部沿海地区纵贯南北地交通大动脉,全长约1500km,是我国最繁忙地铁路干线之一。

如果货车地速度为xkm/h,快速列车地速度是货车地2倍,那么①货车从北京到上海需要多少时间?②快速列车从北京到上海需要多少时间?③已知从北京到上海快速列车比货车少用12h,你能列出一个方程吗?2、同学们列出上面以及课本中地三个方程并思考如下问题:①上面所得到地方程有什么共同特点?②与我们在七年级学过地一元一次方程或二元一次方程有什么区别? ③你能给这样地方程起一个恰当地名称吗?二. 【问题探究】师生互动、揭示通法问题 1. 在下列方程中:①322x x =-; ②1a b x y +=(,a b 是常数); ③135x-=π; ④3241x x +-+;分式方程有哪些?为什么?问题2. 尝试解分式方程:24x +1 =20x问题3. 解下列方程:(1)x x x x -++=--212253(2)2411y y y y y +-=-- 问题4.解下列方程:(1)31144x x x -=--- (2)2431422x x x x x +-+=--+ 三【变式拓展】能力提升、突破难点问题5.已知:321n m n -=+,试用含m 地代数式表示n四 【回扣目标】学有所成、悟出方法1、什么叫做分式方程?解分式方程地一般步骤是什么?2、你认为解分式方程最应注意地是什么?五.【板书】六.教学反思。

苏科版数学八年级下册10.1《分式》说课稿

苏科版数学八年级下册10.1《分式》说课稿

苏科版数学八年级下册10.1《分式》说课稿一. 教材分析苏科版数学八年级下册10.1《分式》是学生在学习了有理数、实数等知识后,进一步拓展数学知识的重要内容。

本节课主要介绍分式的概念、分式的基本性质以及分式的运算。

通过学习,使学生掌握分式的基本概念,了解分式的运算规则,提高学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、实数等知识,具备了一定的数学基础。

但部分学生对分式的概念和性质可能理解不深,分式的运算规则容易混淆。

因此,在教学过程中,要关注学生的学习差异,针对性地进行教学,提高学生的数学素养。

三. 说教学目标1.知识与技能:让学生掌握分式的概念,了解分式的基本性质和运算规则;2.过程与方法:通过自主学习、合作探讨,培养学生解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维和团队协作精神。

四. 说教学重难点1.教学重点:分式的概念、分式的基本性质和运算规则;2.教学难点:分式的运算规则,特别是分式的乘除法运算。

五. 说教学方法与手段1.采用问题驱动法,引导学生自主学习,培养学生的问题解决能力;2.利用多媒体教学手段,展示分式的图形,直观地理解分式的意义;3.运用合作探讨法,让学生在小组内交流分享,提高学生的团队协作能力。

六. 说教学过程1.导入新课:通过生活中的实际问题,引入分式的概念,激发学生的学习兴趣;2.自主学习:让学生自主探究分式的基本性质,培养学生独立解决问题的能力;3.合作探讨:引导学生分组讨论分式的运算规则,互相交流,提高团队协作能力;4.知识拓展:介绍分式的应用,让学生感受分式在实际问题中的重要性;5.课堂小结:总结本节课的主要内容,强化学生的记忆;6.课后作业:布置具有针对性的作业,巩固所学知识。

七. 说板书设计板书设计要简洁明了,突出重点。

主要包括以下几个部分:1.分式的概念;2.分式的基本性质;3.分式的运算规则;4.分式的应用。

《10.5分式方程--应用》专题提升训练(二)2020—2021学年 苏科版八年级数学下册

《10.5分式方程--应用》专题提升训练(二)2020—2021学年 苏科版八年级数学下册

八年级数学苏科版下册《10.5分式方程--应用》专题提升训练(二)1.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?2.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?3.甲、乙两个工程队同时参与一项工程建设,共同施工15天完成该项工程的,乙队另有任务调走,甲队又单独施工30天完成了剩余的工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工多少天才能完成该项工程?4.为庆祝中国共产党成立100周年,扬州漆器厂接到制作960件漆器纪念贺礼订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?5.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?8.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?9.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任.某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)若小区一次性购买A型,B型垃圾桶共60个,要使总费用不超过4000元,最少要购买多少个A型垃圾桶?10.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?11.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?12.某水果经销商购买了一批A,B两种型号包装的修文“贵长牌”猕猴桃,其中每箱A 型猕猴桃的单价比B型的单价少50元,已知该公司用2000元购买A型猕猴桃的箱数与用3000元购买B型的箱数相等.(1)求该公司购买的A,B型猕猴桃每箱的单价各是多少元?(2)若该经销商购买A,B两种型号的猕猴桃共20箱,且购买的总费用为2400元,求购买了多少箱A型猕猴桃?13.某商店第一次用600元购进一款中性笔若干支,第二次又用750元购进该款中性笔,但这次每支中性笔的进价比第一次多1元,所购进的中性笔数量与第一次相同.(1)求第一次每支中性笔的进价是多少元?(2)若要求这两次购进的中性笔按同一价格全部销售完毕后获利不低于450元,求每支中性笔售价至少是多少元?14.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲厂单独加工这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,甲、乙两个工厂每天各能加工多少个新产品?15.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?参考答案1.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.2.解:设B班每天植树x棵,那么A班每天植树1.5x棵,依题意,得=﹣2,解之得x=20,经检验,x=20是原方程的解则当x=20时,1.5x=30.答:A班每天植树30棵,B班每天植树20棵.3.解:(1)因甲队单独施工30天完成该项工程的,所以甲队单独施工90天完成该项工程.设乙队单独施工需要x天才能完成该项工程,则.解得x=30.经检验x=30是所列方程根.(2)设甲队施工y天完成该项工程,则.解得y≥51.所以y最小值=51.答:(1)若乙队单独施工,需要30天才能完成该项工程;(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工51天才能完成该项工程.4.解:设原来每天制作x件,根据题意得:﹣=10,解得:x=32,经检验x=32是原方程的解,答:原来每天制作32件.5.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,依题意,得:=2×,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:购买一个A品牌垃圾桶需100元,购买一个B品牌垃圾桶需150元.(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,依题意,得:100×0.9(50﹣m)+150×(1+20%)m≤6000,解得:m≤16.因为m是正整数,所以m最大值是16.答:该学校此次最多可购买16个B品牌垃圾桶.8.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.9.解:(1)设购买一个A型垃圾桶需x元,则一个B型垃圾桶需(x+30)元,由题意得:=×2,解得:x=50,经检验:x=50是原方程的解,且符合题意,则x+30=80,答:购买一个A型垃圾桶需50元,一个B型垃圾桶需80元.(2)设小区一次性购买A型垃圾桶y个,则购买B型垃圾桶(60﹣y)个,由题意得:50y+80(60﹣y)≤4000,解得y≥27.答:最少要购买27个A型垃圾桶.10.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.11.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.12.解:(1)设该公司购买的A型猕猴桃每箱的单价为x元,则购买的B型猕猴桃每箱的单价为(x+50)元,依题意得:=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴x+50=150.答:该公司购买的A型猕猴桃每箱的单价为100元,购买的B型猕猴桃每箱的单价为150元.(2)设购买了m箱A型猕猴桃,则购买了(20﹣m)箱B型猕猴桃,依题意得:100m+150(20﹣m)=2400,解得:m=12.答:购买了12箱A型猕猴桃.13.解:(1)设第一次每支中性笔的进价是x元,则第二次每支中性笔的进价是(x+1)元,依题意得:=,解得:x=4,经检验,x=4是原方程的解且符合题意.答:第一次每支中性笔的进价是4元.(2)第一次购进中性笔的数量为600÷4=150(支),∴第二次购进中性笔150支.设每支中性笔售价为y元,依题意得:(150+150)y﹣600﹣750≥450,解得:y≥6.答:每支中性笔售价至少是6元.14.解:设乙每天加工新产品x件,则甲每天加工新产品x件.根据题意得﹣=20,解得x=24,经检验,x=24符合题意,则x=24×=16,所以甲、乙两个工厂每天各能加工16个、24个新产品;15.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.。

八年级数学下册10_5分式方程分式方程解法易错点分析素材新版苏科版

八年级数学下册10_5分式方程分式方程解法易错点分析素材新版苏科版

分式方程解法易错点分析一、去分母时常数漏乘公分母【例1】解方程23132--=--xx x . 错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.二、去分母时,分子是多项式不加括号【例2】解方程011132=+--x x 错解:方程化为011)1)(1(3=+--+x x x , 方程两边同乘以(x +1)(x -1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x +1)(x -1),得3-(x -1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.三、方程两边同除可能为零的整式【例3】解方程323423+-=--x x x x . 错解:方程两边都除以3x-2,得3141+=-x x , 所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x +4)=0.所以7(3x-2)=0.解得x=32. 检验:当x=32时,原方程的左边=右边=0,所以x=32是原方程的解 四、忽视“双重”验根【例4】解方程627132+=++x x x 错解 去分母,得4x +1=7.程的根. 错解分析:这里求出方程的根之后,又经过检验,似乎没有问题.但只母的过程中,把方程两边都乘以最简公分母2(x +3),没有将2(x +3)与1相乘,因而所得的方程与原方程不同解了.那么,为什么“检验”没有发现呢?这是因为这种验根方法必须以解题过程没有错误为前提,否则,即使将求得的未知数的值代入所乘的整式,整式的值不为零,也不能断定未知数的这个值是原方程的根.正确解法 去分母,得4x +2x +6=7.说明解分式方程时要注意的是:检验未知数的值是不是原方程的根,不仅要检验是否有增根(代入公分母),而且要代入原方程,检验原方程两边的值是否相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版八年级数学下册第10章分式10.5分式方程1导学案新版苏科版
一、学习目标
知道分式方程的意义,会解可化为一元一次方程的分式方程。

二、预习导航
读一读:阅读课本P 113-115。

想一想:通过阅读书本,回答下列问题:
1. 什么是一元一次方程?解一元一次方程的步骤是什么?
2. 什么是分式?
3. 书上3个问题中所列的方程有什么特征?
4. 解分式方程的基本思路是什么?
三、课堂探究
1.探问新知
① 是分式方程。

②解分式方程的一般步骤有: 、 、 、 、 、 2.例题精讲
例1:解下列分式方程
(1)
(2)
2411y y y y y
+-=-- 0
4741040=-++x x
例2:已知x=3是方程11210=-++k x x 一个解,求k 的值。

例3.已知2332-+=
y y x ,求用含x 的代数式表示y 。

练一练:
1.下列方程中,分式方程有 (填序号)
(1)2
x +x -15 =1 (2)x -2=1x (3) 12x +1 -3=0 (4) 2x 3 + 5=0 2.当x=____ ___时,
3
43+-x x 的值为1; 3.小明在解分式方程12121=----x x x 时将两边同乘以)2(-x ,约去分母得:211-=--x x 你觉得他做得正确吗? (填“正确”或“不正确”)
如果不正确,那么约去分母后得: .
4.解下列分式方程
(1)
275=x (2)2
13-=x x
归纳小结:
四、随堂演练
【基础题】
1.分式方程
2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 3
1=x 2. 若分式方程21=++a
x x 的一个解是1=x ,则=a 。

3.解下列分式方程

572-=-x x

1132422x x +=-- (3)24121111x x x x +=--+-
【课后巩固】
1. 分式方程3
221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x
2. 若125x x x x
+--与互为相反数,则的值为 。

A.65 B.56 C.32 D.23
3.已知 152+-=
y y x ,试用x 的代数式表示y=______________
4. 已知x=1是分式方程x k x 311=+的解,则实数k= 。

5. 解下列分式方程
(1)
4332=+-x x (2)03211=---x x
(3)
312122332x x x x -+=-- (4)x
x x 212112--=-
学后/教后思:
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档