初三数学圆的经典讲义
初三九年级上册_圆的概念和性质辅导讲义(学生版)
初三九年级上册_圆的概念和性质辅导讲义知识图谱圆的相关概念知识精讲知识精讲一.圆的相关概念1.圆的概念(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径;(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,定点叫做圆心,定长叫做半径;(3)圆的表示方法:用符号 表示圆,定义中以O为圆心,OA为半径的圆记作“O”,读作“圆O”;(4)同圆、同心圆、等圆:①圆心相同且半径相等的圆叫同圆;②圆心相同,半径不相等的两个圆叫做同心圆;③能够重合的两个圆叫做等圆.2.弦与弧的相关概念:(1)弦:连结圆上任意两点的线段叫做弦;(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍;(3)弦心距:从圆心到弦的距离叫做弦心距;(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作 AB,读作弧AB;(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧;(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角与圆周角(1)圆心角:顶点在圆心的角叫做圆心角;①将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧;②圆心角的度数和它所对的弧的度数相等;(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三点剖析一.考点:圆的相关概念二.重难点:1.圆的两种定义的理解;2.弦心距、优弧、圆周角等陌生概念的理解与记忆.三.易错点:1.圆是一条封闭曲线并不包含所围成图形内部部分;2.弓形只是由弧和弦所构成不包含半径;3.同圆、等圆、同心圆的联系与区别.圆的相关概念例题例题1、判断:(1)直径是弦,弦是直径()(2)半圆是圆弧()(3)长度相等的弧是等弧()(4)能够重合的弧是等弧()(5)圆弧分为优弧和劣弧()(6)优弧一定大于劣弧()(7)半径相等的圆是等圆()例题2、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了15米,并使得铁丝均匀地离开地面.则下面说法中比较合理的是()A.你只能塞过一张纸 B.你只能塞过一只书包C.你能钻过铁丝 D.你能直起身体走过铁丝随练随练1、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随练2、过圆上一点可以做出圆的最长弦的条数是()A.1条 B.2条 C.3条D.无数条随练3、如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,74AOC ∠=︒,则E ∠=.垂径定理知识精讲一.垂径定理1.定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论1:(1)平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.补充说明:做题过程中,定理与推论1(1)可以直接使用,而推论1(2)、(3)需证明后再使用.三点剖析一.考点:垂径定理二.重难点:利用垂径定理求圆的半径、弦长和弦心距.三.易错点:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题垂径定理例题例题1、在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为()A.40cmB.60cmC.80cmD.100cm例题2、如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O 的直径,弦AB CD ⊥于E ,1CE =寸,10AB =寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸例题3、如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD =,6EM =,求O 的半径.例题4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm例题5、⊙O 的半径为10,两平行弦AC ,BD 的长分别为12,16,则两弦间的距离是()A.2B.14C.6或8D.2或14随练随练1、如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA=30°,OC=3cm ,则弦AB 的长为()A.9cmB.3cmC.cmD.cm随练2、如图,ABC ∆内接于O ,D 为线段AB 的中点,延长OD 交O 于点E ,连接AE ,BE ,则下列五个结论AB DE AE BE OD DE AEO C ⊥==∠=∠①,②,③,④, 12AE AEB=⑤,正确结论的是随练3、如图,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰为半圆.当水面上涨1米时,桥孔中的水面宽度A B ''为()15米 B.215米 C.217米 D.不能计算随练4、如图,在梯形ABCD 中,AB DC ∥,AB BC ⊥,2cm AB =,4cm CD =.以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离是多少?弧,弦,圆心角之间的关系知一推二知识精讲一.圆心角、弧、弦之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弧也相等.若AOB A OB ''∠=∠,则 AB A B ''=,AB A B ''=,AM A M ''=.2.推论:同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.二.应用1.在解答圆的问题时,若遇弧相等常转化为它们所对的圆心角相等或弦相等来解答;2.有弦的中点时常作弦心距,利用垂径定理及圆心角、弧、弦、弦心距之间的关系来证题;另外,证明两弦相等也常作弦心距;3.在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角;4.有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:(1)连过弧中点的半径;(2)连等弧对的弦;(3)作等弧所对的圆心角三点剖析一.考点:弧、弦、圆心角、弦心距的关系二.重难点:弧、弦、圆心角、弦心距的关系三.易错点:1.两条弧存在倍数关系,但所对应的弦并不是存在相同的倍数关系;2.判断题中,注意题中前提条件,必须是在等圆或同圆中.弧,弦,圆心角之间的关系知一推二例题例题1、下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A.①③ B.②④ C.①④ D.②③例题2、如图,以ABC ∆的边BC 为直径的O 分别交AB AC 、于点D E 、,连结OD OE 、,若65A ∠=︒,则DOE ∠=.例题3、如图,AB 、CD 为⊙O 的直径, AC CE=,(1)试说明BD CE =;(2)若连结BE ,问BE 与CD 平行吗?请说明理由.随练随练1、如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定正确的是()A.CD ⊥ABB.∠OAD=2∠CBDC.∠AOD=2∠BCDD.弧AC=弧BC随练2、如图,A ,B ,C ,D 均为⊙O 上的点,且AB CD =,则下列说法不正确的是()A.AOB COD ∠=∠B.AOC BOD ∠=∠C.AC BD =D.OC CD=随练3、如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC ,则∠ABC=___________.拓展拓展1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.45()cm B.9cm C.45 D.62cm拓展2、下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤拓展3、如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,则OP的长度范围为____cm≤OP≤____cm.拓展4、如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与A、B重合),当PA=时,△PAD为等腰三角形.拓展5、在⊙O中,AB是⊙O的直径,AB=8cm,^^^AC CD BD==,M是AB上一动点,CM+DM的最小值是__________.拓展6、如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.拓展7、在⊙O 中,点C 是劣弧AB 的中点,则线段AB 和线段AC 的大小为()A.2AB AC =B.2AB AC >C.2AB AC< D.无法确定拓展8、如图,在⊙O 中,∠AOB 的度数为m ,C 是弧ACB 上一点,D 、E 是弧AB 上不同的两点(不与A 、B 两点重合),则D E ∠+∠的度数为()A.mB.1802m︒-C.902m ︒+D.2m 拓展9、如图,在半径为2的⊙O 中,弦AB=2,⊙O 上存在点C ,使得弦AC=22BOC=______________°.拓展10、如图9A 、B 是⊙O 上的两点,∠AOB =120°,C 是弧 AB 的中点,求证四边形OACB 是菱形.图9。
初中九年级数学圆的讲义
初中九年级数学圆的讲义圆一、基本概念与性质在平面内把线段OP绕着端点O旋转一周,端点P所形成的图形叫做圆。
其中,点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作⊙O ,读作圆O 。
点和圆的位置关系:如果⊙O的半径是r,点P到圆心O的距离为d,则d>r时,点P在__________d=r时,点P在__________d<r时,点p在__________< p="">圆是中心对称图形,圆心是它的对称中心。
圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
弦与弧连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,是圆最长的弦。
圆上任意两点间的部分叫圆弧,简称弧,符号:以C、D为端点的弧,记作,读作圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
顶点在圆心的角叫做圆心角,顶点在圆上且两边与圆相交的角叫做圆周角。
圆心相同,半径不相等的两个圆叫做同心圆,能够互相重合的两个圆叫做等圆,能够互相重合的弧叫做等弧。
同圆或等圆的半径相等。
圆心角、弧、弦之间的关系:1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
2.推论:在同圆或等圆中,若两条弧相等,那么它们所对的圆心角和弦都相等。
在同圆或等圆中,若两条弦相等,则它们所对的圆心角和弧都相等。
3.圆心角的度数与它所对的弧的度数相等。
圆心角与圆周角的关系:1.同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
2.推论:半圆(或直径)所对的圆周角是直角,90°圆周角所对的弦是直径。
垂径定理:1.垂直弦的直径平分弦,并且平分弦所对的两条弧。
2.推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧确定圆的条件:1.经过一点A作圆2.经过A、B两点作圆3.经过A、B、C三点作圆——a)当三点位于一条直线时b)当三点不在一条直线上时4.结论:不在同一条直线上的三点确定一个圆三角形的三个顶点确定一个圆。
中考数学-圆讲义及练习
第3讲圆知识点1 圆周角定理1. 圆的有关概念(1)圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
以点O 为圆心的圆记作“⊙O”,读作“圆O”.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;圆是以圆心为对称中心的中心对称图形.(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”.大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示).2. 圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”.3. 圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.典例剖析例(1)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°(例(1)图)(例(2)图)(2)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.跟踪训练1.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.50°C.40°D.30°(第1题图)(第2题图)(第3题图)2.如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.3.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.过关精练1.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°(第1题图)(第2题图)(第3题图)(第4题图)2.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60°B.50°C.40°D.30°3.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为()A.30°B.45°C.60°D.90°4.如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°(第5题图)(第6题图)(第7题图)(第8题图)6.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°7.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.9.如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为.(第9题图)(第10题图)10.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.知识点2 垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.典例剖析例(1)如图⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2(例(1)图)(例(2)图)(2)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.跟踪训练1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1(第1题图)(第2题图)2.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.3.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm(第1题图)(第2题图)(第3题图)2.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.83.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD =20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.4(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在直径为10cm的⊙O中,BC是弦,半径OA⊥BC于点D,AD=2cm,则BC的长为cm.6.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=.7.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.知识点3 切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线性质的运用见切点,连半径,见垂直.例(1)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°(例(1)图)(例(2)图)(2)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.跟踪训练1.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°(第1题图)(第2题图)2.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B 作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.5过关精练1.如图AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为()A.60°B.50°C.40°D.30°(第1题图)(第2题图)2.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB 的度数为()A.40°B.50°C.65°D.75°(第3题图)(第4题图)(第5题图)4.如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°5.如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6.如图,P是⊙O外一点,P A是⊙O的切线,PO=26cm,P A=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm(第6题图)(第7题图)7.如图,AB是⊙O的直径,P A切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5D.8.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.(第8题图)(第9题图)9.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.410.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.(第10题图)(第11题图)(第12题图)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=.12.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.13.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC =.(第13题图)(第14题图)(第15题图)14.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠B=26°,则∠OCA=度.16.如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC=.(第16题图)(第17题图)17.已知:如图,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=10,则AB=.知识点4 扇形面积的计算(1)圆面积公式:S=πr2(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(3)扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长)(4)求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.(5)求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.例(1)如图,四边形ABCD是矩形,AB=4,AD=2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是.(2)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).跟踪训练1.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.(第1题图)(第2题图)(第3题图)2.如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A.B.(2﹣)πC.πD.π3.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).1.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π(第1题图)(第2题图)(第3题图)2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+3.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣24.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1B.4﹣πC.D.2(第4题图)(第5题图)(第6题图)(第7题图)5.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣6.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4B.C.π﹣2D.8.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4(第8题图)(第8 题图)(第10题图)9.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣10.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)11.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).(第11题图)(第12题图)(第13题图)12.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).13.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).14.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为第 11 页 共 12 页半径作弧,交AB 于点D ,则图中阴影部分的面积是 .(结果保留π)15.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)(第14题图) (第15题图)16.如图,一个圆心角为90°的扇形,半径OA =2,那么图中阴影部分的面积为 (结果保留π).(第16题图) (第17题图) (第18题图)17.如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为 .18.如图,在扇形OAB 中,∠AOB =90°.D ,E 分别是半径OA ,OB 上的点,以OD ,OE 为邻边的▱ODCE 的顶点C 在上.若OD =8,OE =6,则阴影部分图形的面积是 (结果保留π).19.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为 .(第19题图) (第20题图)20.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,则图中阴影部分的面积为 .21.如图,在▱ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).22.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB.为半径画弧,交AC于点D,则阴影部分的面积是第12 页共12 页。
(完整版)初三数学圆的经典讲义
圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
九年级圆基础知识点圆讲义
一对一讲课教案一、圆的概念:1. 描述性概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.2 圆的表示方式:通经常使用符号⊙表示圆,概念中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”.3 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.1. 弦:连结圆上任意两点的线段叫做弦.2. 直径:通过圆心的弦叫做圆的直径,直径等于半径的2倍.3. 弦心距:从圆心到弦的距离叫做弦心距.4. 弧:圆上任意两点间的部份叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.5. 等弧:在同圆或等圆中,能够相互重合的弧叫做等弧.6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8. 弓形:由弦及其所对的弧组成的图形叫做弓形.1. 圆心角:极点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,咱们也称如此的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2. 圆周角:极点在圆上,而且两边都和圆相交的角叫做圆周角.3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:若是三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,若是两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量别离相等.一、圆的对称性1. 圆的轴对称性:圆是轴对称图形,对称轴是通过圆心的任意一条直线.2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.3. 圆的旋转对称性:圆是旋转对称图形,不管绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1. 垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的两条弧.2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,而且平分弦所对的两条弧;⑵弦的垂直平分线通过圆心,而且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,而且平分弦所对的另一条弧.3. 推论2:圆的两条平行弦所夹的弧相等.练习题;1.判定:(1)直径是弦,是圆中最长的弦。
初三数学-圆讲解省公开课获奖课件说课比赛一等奖课件
连结圆上任意两点旳线段叫做弦。
A
如图,弦有 AB、BC、AC
B O●
直径是圆中 最长旳弦
C
弦心距:圆心到弦旳距离叫做弦心距。
A
曲作线:BC、BBA⌒CC、都是B⌒A⊙CO旳弧分别记
B⌒C、B⌒AC有什么区别?
A
B
一种比半圆大一种比半圆小!
不小于半圆旳弧叫做优弧,不
O●
不小于半圆旳弧叫做劣弧
劣弧有: A⌒B B⌒C
这个以点O为圆心旳圆叫作“圆O”,记为“⊙ O”.
B
C
rr
· r O r
r
A E
1.圆上各点到定点(圆心O)旳距 离都等于定长(半径r)
2.到定点(圆心O)旳距离都等于定
D
长(半径r)旳点都在同一种圆上。
圆心为O,半径为r旳圆能够看成是全部到定点旳距 离等于定长r旳点旳集合。
我国古人很早对圆就有这么旳认识了,战国时旳《墨 经》就有“圆,一中同长也”旳记载.它旳意思是圆 上各点到圆心旳距离都等于半径.
• 课后作业: “学生用书”旳“课后作业”部 分.
C
半圆有 : 优弧有: A⌒CB
A⌒BC
B⌒AC
等弧:在同圆或等圆中,能够完全重叠旳弧。
注意:
①线段OA所形成旳图形叫做圆面,而圆是一种封
闭旳曲线图形,指旳是圆周. ②在平面内画出圆,必须明确圆心和半径两个要
素,圆心拟定位置,半径拟定大小.
③以点O为圆心旳圆,记作“⊙O”,读作“圆 O”.那么以点A为圆心旳圆,记作⊙O,读作圆O.
思索:
①“直径是弦,弦是直径”这种说法正确吗 ?直径是圆中最长旳弦吗?
②“半圆是弧,弧是半圆”这种说法正确吗 ?③面积相等旳两个圆等圆吗?周长相等旳 两个圆呢?
初三数学圆地经典讲义
适用标准文档圆目录圆的定义及有关观点垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线 ,能证切线切线长定理三角形的内切圆认识弦切角与圆幂定理〔选学〕圆与圆的地点关系圆的有关计算一.圆的定义及有关观点【考点速览】考点 1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点 2:确立圆的条件;圆心和半径①圆心确立圆的地点,半径确立圆的大小;②不在同一条直线上的三点确立一个圆;考点 3:弦:连结圆上随意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上随意两点间的局部叫做弧。
弧分为半圆,优弧、劣弧三种。
〔请务必注意区分等弧,等弦,等圆的观点〕弓形:弦与它所对应的弧所组成的关闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
〔请务必注意在圆中一条弦将圆切割为两个弓形,对应两个弓高〕固定的已经不可以再固定的方法:直角三角形。
如以下列图:考点 4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点 5点和圆的地点关系设圆的半径为r ,点到圆心的距离为d,那么点与圆的地点关系有三种。
①点在圆外d> r ;②点在圆上d=r ;③点在圆内 d <r ;【典型例题】例 1 在⊿ABC中,∠ACB=90° , AC=2, BC=4,CM是AB边上的中线,以点C为圆心,以5为半径作圆,试确立 A,B,M 三点分别与⊙ C有如何的地点关系,并说明你的原因。
AMB C例 2.,如图, CD是直径,EOD84 ,AE交⊙O于B,且AB=OC,求∠A的度数。
EBDO C A例 3⊙ O平面内一点P 和⊙ O上一点的距离最小为3cm,最大为8cm,那么这圆的半径是_________cm。
例 4 在半径为 5cm的圆中,弦 AB∥ CD, AB=6cm, CD=8cm,那么 AB 和 CD的距离是多少?例 5如图,⊙ O的直径AB和弦CD订交于点E, AE=6cm,EB=2cm,CEA 30 ,求 CD的长.CA·E BOD例6.:⊙O的半径0A=1AB AC的长分别为2, 3,求BAC的度数.,弦、二.垂径定理及其推论【考点速览】考点 1垂径定理:垂直于弦的直径均分这条弦,而且均分弦所对的两条孤.推论 1:①均分弦〔不是直径〕的直径重直于弦,而且均分弦所对的两条孤.②弦的垂直均分线经过圆心,而且均分弦所对的两条孤.③均分弦所对的一条孤的直径, 垂直均分弦,而且均分弦所对的另一条孤.推论 2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可归纳为:①经过圆心;②垂直于弦;③均分弦 ( 不是直径 ) ;④均分弦所对的优弧;⑤均分弦所对的劣弧.以上五点此中的随意两点,都能够推得其他两点适用标准文档例 1如图AB、CD是⊙ O的弦,M、N分别是AB、CD的中点,且AMN C NM .求证: AB=CD.A CM N·OB D例 2 ,可是圆心的直线l交⊙ O于 C、D两点, AB是⊙ O的直径, AE⊥l于 E,BF⊥l于F。
初三数学圆的经典讲义
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理〔选学〕十.圆与圆的位置关系十一.圆的有关计算十二.圆的根底综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的局部叫做弧。
弧分为半圆,优弧、劣弧三种。
〔请务必注意区分等弧,等弦,等圆的概念〕弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
〔请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高〕固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如以下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 那么点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M AB C DOEB C例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,那么这圆的半径是_________cm 。
圆 初三 ppt课件ppt课件
CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆
初三数学圆的经典讲义(K12教育文档)
初三数学圆的经典讲义(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学圆的经典讲义(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学圆的经典讲义(word版可编辑修改)的全部内容。
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线,能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形.经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦.弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧.弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形.如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
九年级数学上册教学课件《圆》
C
O
A
B
半径是弦吗?
知识点2
与圆有关的概念
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
C
O
A
B
弧
劣弧与优弧
C
O
A
B
例1 矩形ABCD的对角线AC,BD相交于点O.求证:A、B、C、D四个点在以点O为圆心的圆上.
பைடு நூலகம்
基础巩固
1.下列说法正确的是( )A.直径是弦,弦是直径 B.半圆是弧,弧是半圆C.弦是圆上两点之间的部分 D.半径不是弦,直径是最长的弦
解:23÷20=1.15(cm)
1.15÷2=0.575(cm)
∴这棵树的半径平均每年增加0.575 cm.
3. △ABC中,∠C=90°.求证。A, B, C三点在同一个圆上.
【教材P81练习 第3题】
证明:作斜边上的中线CD交AB于点D.
∵ CD = AB = BD = AD
∴ A, B, C三点在同一个圆上.
圆的基本概念
圆的定义
与圆有关的概念
形成性定义:
集合性定义:
弦:直径:圆弧(弧):半圆:等圆、等弧:优弧、劣弧:
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.
圆心为O、半径为r的圆可以看成是平面内所有到定点O的距离等定长r的点的集合.
连接圆上任意两点的线段叫做弦.
·
r
O
A
形成性定义(动态):在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
集合性定义(静态):圆心为 O、半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.
初三数学圆的经典讲义精编版
圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。
M A B C DOEBAC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
《初三数学圆》课件
圆和其他几何图形
总结词
利用圆的性质解决其他几何图形问题
详细描述
除了三角形和四边形,圆的性质还可以应用于其他几何图形问题中。例如,在解决与球 体、柱体、锥体等相关的问题时,可以通过引入辅助圆或利用圆的相关性质来简化问题
,提高解题效率。
THANKS
切线的性质
切线与半径垂直,切线与 半径相交于切点。
切线的判定
如果直线经过半径的外端 并且垂直于半径,那么这 条直线就是圆的切线。
切线的判定定理
01
切线的判定定理:如果一条直线同时满足以下 两个条件,则它是圆的切线
03
2. 与半径垂直。
02
1. 经过半径的外端;
04
应用:利用切线的判定定理可以判断一条直线是否 为圆的切线,从而确定切点。
圆心和半径
总结词
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
详细描述
圆心位于圆的中心,是圆的对称轴。 半径是从圆心到圆上任一点的线段, 所有的半径长度都相等。半径的长度 决定了圆的大小。
圆的性质
总结词
圆的性质包括其对称性、旋转不变性和相似性等。
详细描述
圆具有旋转不变性和对称性,这意味着旋转一个圆或其任何部分不会改变其形 状或大小。此外,相似的圆具有相同的面积和周长,但可以有不同的半径或圆 心位置。
《初三数学圆》ppt课件
$number {01}
目录
• 圆的基本性质 • 圆的周长和面积 • 圆和直线的位置关系 • 圆的切线定理 • 圆的定理和推论 • 圆的综合应用
01
圆的基本性质
圆的定义
总结词
通过一个定点,在平面上作所有 与定点等距离的点的集合形成的 图形称为圆。
人教版九年级数学上册圆课件
F
优弧:AFC, AFB,ADE,ADF.
B
E
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC,AD.其中弦AD是直径. C
D
(3)请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦AF,它所对的弧是 AF、ADF .
练习、判断下列说法的正误,并说明理由或举反例. (1)弦是直径;
(2)半圆是弧; (3)过圆心的线段是直径; (4)过圆心的直线是直径; (5)半圆是最长的弧; (6)直径是最长的弦; (7)长度相等的弧是等弧.
确定一个圆的要素
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
O
同心圆
圆心相同,半径不同
等圆
半径相同,圆心不同
问题1:圆也可以看成是由多个 2、平面上到定点的距离等于 点组成的,这些点有什么规律?定长的点都在同一个圆上吗?
·r O
A
圆可以看成到定点距离等于 定长的所有点组成的.
想一想:从画圆的过程可以看出什么呢? (1)圆上各点到定点(圆心O)的距离都等于定长r. (2)到定点的距离等于定长的点都在 同一个圆上.
圆的集合定义 圆心为O、半径为r的圆可以看成
是所有到定点O的距离等于定长r的点 的集合.
圆的基本性质 同圆半径相等
D
r
A
C
r O· r
r r
E
典例精析
例1 矩形ABCD的对角线AC、BD相交于O,求证:A、B、 C、D在以O为圆心的同一圆上。
证明:∵四边形ABCD是矩形,
A
OA OC 1 AC,OB OD 1 BD,
顶点A在圆弧上,求正方形ABCD的边长.
N
A
D
《圆的标准方程》 讲义
《圆的标准方程》讲义一、引入在我们的日常生活中,圆是一种非常常见的几何图形,比如车轮、盘子、月亮等等。
那么如何用数学的语言来精确地描述一个圆呢?这就需要用到圆的方程。
今天,我们就来学习圆的标准方程。
二、圆的定义在平面直角坐标系中,圆是到定点的距离等于定长的点的集合。
定点称为圆心,定长称为半径。
设圆心的坐标为$(a,b)$,半径为$r$,圆上任意一点的坐标为$(x,y)$,那么根据两点间的距离公式,圆心到圆上任意一点的距离都等于半径$r$,我们可以得到:\\begin{align}\sqrt{(x a)^2 +(y b)^2}&=r\\(x a)^2 +(y b)^2&=r^2\end{align}\这就是圆的标准方程。
三、圆的标准方程的形式圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a,b)$是圆心的坐标,$r$是圆的半径。
当圆心在原点$(0,0)$时,圆的标准方程就变成了$x^2 + y^2 =r^2$。
四、圆的标准方程的特点1、方程中有三个参数$a$、$b$、$r$,分别表示圆心的横纵坐标和圆的半径。
2、圆的标准方程明确地给出了圆心的位置和半径的大小,使我们能够直观地了解圆的特征。
3、对于给定的圆心和半径,可以很容易地写出圆的标准方程;反之,对于给定的圆的标准方程,也能快速确定圆心和半径。
五、用圆的标准方程解决问题例 1:已知圆的圆心为$(2,-3)$,半径为 5,求圆的标准方程。
解:因为圆心为$(2,-3)$,半径为 5,所以圆的标准方程为$(x 2)^2 +(y + 3)^2 = 25$。
例 2:求以点$(-1, 4)$为圆心,且过点$(3, 0)$的圆的标准方程。
首先,计算圆心到已知点的距离,即半径$r$:\\begin{align}r&=\sqrt{(-1 3)^2 +(4 0)^2}\\&=\sqrt{(-4)^2 + 4^2}\\&=\sqrt{16 + 16}\\&=\sqrt{32}\\&=4\sqrt{2}\end{align}\所以圆的标准方程为$(x + 1)^2 +(y 4)^2 = 32$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。
考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d, 则点与圆的位置关系有三种。
①点在圆外⇔d>r ;②点在圆上⇔d=r;③点在圆内⇔ d<r ;【典型例题】例1 在⊿ABC 中,∠A CB =90°,A C=2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B,且AB=OC,求∠A 的度数。
M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm,最大为8cm ,则这圆的半径是_________cm 。
例4 在半径为5cm 的圆中,弦AB∥CD,A B=6c m,CD=8cm,则AB 和CD 的距离是多少?例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm,EB=2cm, 30=∠CEA , 求C D的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.二.垂径定理及其推论【考点速览】考点1垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤. 推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤. ②弦的垂直平分线经过圆心,并且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤. 推论2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可概括为:① 经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点AB DCO· E【典型例题】例1 如图AB 、C D是⊙O 的弦,M、N 分别是A B、CD 的中点,且CNM AMN ∠=∠. 求证:AB=CD .例2已知,不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O的直径,A E⊥l 于E ,BF ⊥l 于F 。
求证:C E=DF.l•问题一图1OHFE D CBA l•问题一图2O H F E DC BAl•问题一图3OH FE D C BA【考点速练】1.已知⊙O的半径为2cm ,弦AB 长cm 32,则这条弦的中点到弦所对劣孤的中点的距离为( ).A.1cm B.2cm C.cm 2 D .cm 3cm 3.如图1,⊙O 的半径为6c m,AB 、CD 为两弦,且AB ⊥C D,垂足为点E,若CE=3cm ,D E=7cm,则AB 的长为( )A.10cm B .8cm C.cm 24 D.cm 28 4.有下列判断:①直径是圆的对称轴;②圆的对称轴是一条直径;③直径平分弦与弦所对的孤;④圆的对称轴有无数条.其中正确的判断有( )A.0个B.1个C.2个 D.3个5.如图2,同心圆中,大圆的弦交AB 于C 、D 若AB=4,C D=2,圆心O 到AB 的距离等于1,那么两个同心圆的半径之比为( )A BDC O· NMABDCO 800A.3:2 B.5:2 C .5:2 D.5:46.如图,⊙O 的直径为10,弦A B=8,P 是弦A B上的一个动点,那么OP 长的取值范围是 .7.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD =4cm,那么拱形的半径是_ ___m.8.如图,直径为1000m m的圆柱形水管有积水(阴影部分),水面的宽度AB 为800m m,求水的最大深度CD .三.圆周角与圆心角【考点速览】 考点1圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。
Eg: 判别下列各图中的角是不是圆心角,并说明理由。
BPAO D CA圆周角:顶点在圆周上,角两边和圆相交的角叫圆周角。
两个条件缺一不可.Eg:判断下列图示中,各图形中的角是不是圆周角,并说明理由考点2定理:一条弧所对的圆周角等于它所对的圆心角的一半.Eg: 如下三图,请证明。
考点34. 推论:①同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等.90的圆周角所对的弦是直径.②半圆(或直径)所对的圆周角是直角,③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.经典例题例1:下图中是圆周角的有.是圆心角的有。
①②③例2:如图,∠A是⊙O的圆周角,且∠A=35°,则∠OBC=_____.例3:如图,圆心角∠AOB=100°,则∠ACB=.例4:如图1,AB是⊙O的直径,点C D E,,都在⊙O上,若C D E==∠∠∠,则A B+=∠∠º.例如图2,⊙O的直径CD过弦EF的中点G,40EOD∠=,则DCF∠=.例6:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.OA BC(例1)BE FCDGO例2例7:已知⊙O中,30C ∠=,2cm AB =,则⊙O的半径为cm ﻩﻩ四.圆心角、弧、弦、弦心距关系定理【考点速览】圆心角, 弧,弦,弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的孤相等,所对的弦相等,所对的弦的弦心距相等推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.(务必注意前提为:在同圆或等圆中)例1.如图所示,点O是∠EPF 的平分线上一点,以O为圆心的圆和角的两边分别交于A 、B 和C 、D,求证:A B=CD.例2、已知:如图,E F为⊙O 的直径,过E F上一点P 作弦AB、CD,且∠A PF=∠CPF 。
求证:PA =PC 。
例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC.例4.如图,⊙O 的弦CB 、ED 的延长线交于点A ,且例5.如图所示,已知在⊙O 中,弦AB=CB,∠A BC=︒120,O D⊥AB 于D,OE⊥BC 于E. 求证:ODE ∆是等边三角形.五.圆内接四边形·OABCO ·CAE B D·O A DE BC【考点速览】圆内接四边形对角互补,外角等于内对角。
圆内接梯形为等腰梯形,圆内接平行四边形为矩形。
判断四点共圆的方法之一:四边形对角互补即可。
【典型例题】例1 (1)已知圆内接四边形ABCD 中,∠A:∠B:∠C =2:3:4,求∠D 的度数.(2)已知圆内接四边形A BCD 中,如图所示,AB 、BC、CD 、AD 的度数之比为1:2:3:4,求∠A、∠B 、∠C、∠D的度数.例2 四边形ABCD 内接于⊙O,点P 在CD 的延长线上,且AP ∥BD.求证:AD AB BC PD ⋅=⋅例3 如图所示,ABC ∆是等边三角形,D 是BC 上任一点.求证:DB+DC=DA.·ADCBO PA·BCDO · ABDO六.会用切线,能证切线考点速览: 考点1直线与圆的位置关系考点2切线:经过半径外端并且垂直于这条半径的直线是圆的切线。
符号语言∵ O A⊥ l 于A , O A为半径∴ l 为⊙O 的切线考点3判断直线是圆的切线的方法:①与圆只有一个交点的直线是圆的切线。
②圆心到直线距离等于圆的半径的直线是圆的切线。
③经过半径外端,垂直于这条半径的直线是圆的切线。
(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
A BBC(请务必记住切线重要用法: 见切线就要连圆心和切点得到垂直) 经典例题:例1.如图,△ABC 内接于⊙O , AB 是 ⊙O 的直径,∠CAD= ∠A BC ,判断直线A D与⊙O 的位置关系,并说明理由。
例2.如图,O A=OB=13c m,AB=24cm ,⊙O 的半径为5c m,A B与⊙O 相切吗?为什么?例3.如图,PA 、P B是⊙O 的切线,切点为A 、B,C 是⊙O 上一点,若∠P =40。
, 求∠C的度数。
例4.如图所示,ABC Rt ∆中,︒=∠90C ,以AC 为直径作⊙O 交A B于D,E 为BC 中点。
求证:DE 是⊙O 的切线.中考链接1.如图,在以O 为圆心的两个同心圆中,AB 经过圆心O,相交于点A ,与大圆相交于点B,小圆的切线AC D,且CO 平分∠AC B.试判断BC 所在直线与小圆的位置关系,并说明理由。
BB· ABC EOD2. 如图,在Rt △AB C中,∠C=90。
,点O 在AB 上,以O 为圆心,O A长为半径的圆与AC、AB 分别交于点D、E,且∠C BD= ∠A, 判断B D与⊙O的位置关系,并证明你的结论。
七.切线长定理考点速览: 考点1 切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB切⊙O 于A、B两点,①PA=P B ②PO 平分APB ∠. 考点3 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA、PB、DE 分别切⊙O 于A 、B、C 三点,若PO=13㎝,PED ∆的周长为24㎝,求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例 2 如图,⊙O 分别切ABC ∆的三边A B、BC 、CA于点D 、E 、F,若,,BC a AC b AB c ===.(1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r.例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?考点速练1:1.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= .FEC ∠= .· EFDCOAB· EFDCOAB·A O CDBEF2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为㎝,内切圆半径为㎝.3.如图,直线AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,若OB=6㎝,OC=8㎝,则BOC∠=,⊙O的半径= ㎝,BE+CG= ㎝.八.三角形内切圆考点速览考点1概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.考点2三角形外接圆与内切圆比较:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.·AODBFG考点3求三角形的内切圆的半径1、直角三角形△A BC 内切圆⊙O的半径为2cb a r -+=.2、一般三角形①已知三边,求△A BC 内切圆⊙O 的半径r.cb a S r ++∆=2 (海伦公式S△=)c s )(b s )(a s (s --- , 其中s=2cb a ++)经典例题:例1.阅读材料:如图(1),△A BC 的周长为L,内切圆O 的半径为r,连结OA,OB,△ABC 被划分为三个小三角形,用S △AB C表示△ABC 的面积. ∵S△ABC =S △O AB +S △OBC +S△OCA又∵S △OAB =12A B·r,S △OBC =12BC ·r,S△O CA =12A C·r ∴S△AB C =12A B·r+12BC·r+12CA ·r=12L·r(可作为三角形内切圆半径公式)(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径; (2)类比与推理:若四边形ABC D存在内切圆(与各边都相切的圆,如图(2)•且面积为S ,各边长分别为a,b,c,d ,试推导四边形的内切圆半径公式;(3)拓展与延伸:若一个n 边形(n 为不小于3的整数)存在内切圆,且面积为S,各边长分别为a 1,a 2,a 3,…an ,合理猜想其内切圆半径公式(不需说明理由).B例2.如图,△ABC中,∠A=m°.(1)如图(1),当O是△ABC的内心时,求∠BOC的度数;(2)如图(2),当O是△ABC的外心时,求∠BOC的度数;(3)如图(3),当O是高线BD与CE的交点时,求∠BOC的度数.例3.如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.考点速练1:1.如图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,•连结OE,OF,DE,DF,那么∠EDF等于()A.40° B.55°C.65° D.70°图1图2图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,•则∠DOE=()A.70°B.110° C.120° D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°4.下列命题正确的是( )A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形5.在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( )A.1.5,2.5 B.2,5 C.1,2.5 D.2,2.56.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,3求AC的长.7.如图,⊙I切△ABC的边分别为D,E,F,∠B=70°,∠C=60°,M是弧DEF上的动点(与D,E不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.九.了解弦切角与圆幂定理(选学)【考点速览】考点11. 弦切角的概念:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。