表面活性剂作用机理

合集下载

表面活性剂的吸附作用浅析

表面活性剂的吸附作用浅析

表面活性剂的吸附作用浅析摘要:表面活性剂剧透粘度低、润湿性好、有较好乳化降粘的作用且在低浓度情况下能有效降低表面张力的良好性能,因此在油田开发过程中有大量的应用。

但研究发现在油田应用时用量较高,因此探究表面活性剂的吸附作用对于其在油田的经济有效的使用具有重要作用。

关键词:表面活性剂;吸附;作用机理1 表面活性剂表面活性剂,是指加入少量该物质就能够使得改溶液体系的界面状态发生明显变化的物质。

具有固定的亲水亲油基团,在溶液的表面能定向排列。

表面活性剂的分子结构具有两亲性:其中一端是亲水基团,另一端是疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。

表面活性剂按离子类型分类可以分为离子型表面活性剂(包括阳离子表面活性剂、阴离子表面活性剂和两性表面活性剂)、非离子型表面活性剂等。

在驱替过程中表面活性剂会被吸附在岩石、油砂等固体表面,造成表面活性剂在油藏中的大量损耗,不仅带来直接的经济损失,也对驱替效果造成影响。

因此,探究表面活性剂的吸附性意义重大。

2 吸附作用2.1 吸附作用概述当气相或液相中的分子或原子、离子碰撞到固体表面时,由于它们之间的相互作用,使一些分子或原子、离子停留在固体表面上。

当体系达到热力学平衡时,固体表面上的气相或液相分子或原子、离子的浓度比在气相或液相中的浓度大,这种现象称为吸附作用。

通常把固体称为吸附剂,被吸附的物质称为吸附质,吸附质可以是气体或液体。

如油砂浸泡在表面活性剂溶液中会发生吸附作用,油砂为吸附剂,表面活性剂为吸附质。

吸附作用通常发生在吸附剂的表面上,包括吸附剂的外表面和内表面如孔隙表面。

2.2 吸附作用的分类按照吸附剂与吸附质之间作用力的性质不同,可将吸附分为物理吸附和化学吸附。

物理吸附吸附剂与吸附质之间的作用力为范德华引力包括色散力、诱导力、取向力及氢键。

这类吸附没有选择性,吸附速度快,吸附与解吸与吸附相反的过程易达平衡,但可因分子间引力大小不同使吸附的难易程度不同,在低温时易发生物理吸附。

表面活性剂

表面活性剂

(一).Kraft点,浊点(昙点)温度对增溶作用的影响:•★Kraft点:对于离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧升高,这一温度即Kraft点。

•★浊点(昙点):对于非离子型表面活性剂,温度增加到某个温度,表面活性剂的溶解度急剧下降,溶液出现浑浊,这一温度即浊点。

•表面活性剂的复配:表面活性剂相互间,或与其它化合物配合使用能提高增溶能力,降低用量。

(二).CMC★Def:表面活性剂在水中随着浓度增大,表面上聚集的活性剂分子形成定向排列的紧密单分子层,多余的分子在体相内部也三三两两的以憎水基互相靠拢,聚集在一起形成胶束,这开始形成胶束的最低浓度称为临界胶束浓度。

表面活性剂在溶液中开始形成胶束的最低浓度称为临界胶束浓度。

胶束形状:球状、棒状、层状★胶束的作用:乳化作用;泡沫作用;分散作用;增溶作用;催化作用润湿:液体和固体表面接触时,原来的固-气界面消失,形成新的固-液界面的现象。

是溶液表面张力下降,溶液表面具有吸附现象的结果。

增溶:脂溶性强的物质在与本身性质相似的胶束中,溶解度可明显增大,形成透明溶液,这一作用称为增溶。

增溶体系为热力学上稳定的各向同性溶液。

一定浓度的表面活性剂溶液中溶解的被增溶物质的饱和浓度称为:增容量乳化:互不相溶的两液相,一相液体以液滴状态分散于另一相中,形成非均匀相液体分散体系(称为乳剂),这一作用称为乳化作用。

表面活性剂在此又称为乳化剂,它使一相液体以非常微小液滴状态均匀分散于另一相中。

泡沫:使空气进入溶液中,液体薄膜包围着气体形成泡,由于溶液浮力而升到溶液表面,最终逸出液面形成双分子薄膜。

是气体分散在液体中的分散体系。

★影响CMC的因素:1)表面活性剂的结构:主要包括表面活性剂的碳氢链链长(C↑,CMC↓),碳氢链分支数目(分支多,烃链间作用力↓,CMC↑)、极性基位置(极性基位于烃链中间,CMC↑)、碳氢链中其它取代基(烃链中有极性基团时,CMC↑)、亲水基团(CMC离子> CMC非离子)2)外部条件:温度(T↑,CMC非离子↓)(三). HLB值:(表面活性剂亲水亲油平衡值)★Def:表示分子内部平衡后整个分子的综合倾向是亲水的还是亲油的。

表面活性剂及其作用原理

表面活性剂及其作用原理

吸附是物质在界面上富集的现象
表面活性剂在溶液表面吸附规律
♦ 表面活性剂分子横截面积小者极限吸附量大; ♦ 一般非离子表面活性剂的极限吸附量大于离子型的; ♦ 同系物的极限吸附量差别不大; ♦ 温度升高一般极限吸附量减少; ♦ 无机电解质的加入可明显增加离子型表面活性剂的吸
附强度,对非离子表面活性剂的影响不大。
非离子型表面活性剂
表面活性剂及其作用原理 朱海洋
表面活性剂中亲水亲油基
烷烷
烷基基
基苯酚

基基

酸 酰
疏水基


脂脂脂
肪肪肪
酸醇氨
基基基
表面活性剂及其作用原理 朱海洋
亲水基
磺酸基-SO3H 硫酸基--OSO3H 羧酸基-COOH 磷酸基-PO(OH)2
-N+-(CH3)3 -N+-(CH3)2CH2COO-
一个立方体分割后表面积的增加
表面活性剂及其作用原理 朱海洋
液体的压力与曲率
Laplace公式:
P
P
P外
1 R1
1 R2
R1、R2为曲面的主要半径
当液面为球形时:
P P P外 2 / R
表面活性剂及其作用原理 朱海洋
表面活性剂的克拉夫特点
克拉夫特点(Krafft point)
8 7
离子型表面活性剂在水中的 6
胶束浓度(cmc)。
3
表面活性剂及其作用原理 朱海洋
表面活性剂在溶液中的状态
表面活性剂及其作用原理 朱海洋
离子型表面活性剂水溶液的一些物理化学性质
影响cmc的因素
♦ 表面活性剂化学结构的影响
表面活性剂类型 疏水基碳链长度 碳氢链分支及极性位置 碳氢链上其它取代基的影响 疏水基化学组成的影响 亲水基团的影响

表面活性剂的作用原理

表面活性剂的作用原理
目录
01.
02.
03.
表面活性剂的分 子结构:具有亲 水基团和亲油基 团
吸附作用原理: 亲水基团与水分 子结合,亲油基 团与油分子结合
吸附效果:降低 液体表面张力, 提高液体的润湿 性和渗透性
应用领域:洗涤 剂、乳化剂、分 散剂等
表面活性剂的吸附作用:表面活性剂分子在固体表面形成单分子层,降低表 面张力
润湿温度:温度 越高,表面活性 剂的润湿速率越 快
润湿环境:不同 的润湿环境,如 空气、水、油等, 对润湿速率的影 响不同
01
02
03
04
表面活性剂的分 子结构:亲水基 团和亲油基团
乳化作用的原理: 表面活性剂的亲 水基团与水分子 结合,亲油基团 与油分子结合, 形成乳状液
乳化剂的选择: 根据油和:乳化剂的乳化 能力会影响乳状液的稳定性
04
乳化剂的乳化温度:乳化剂的乳化 温度会影响乳状液的稳定性
06
01
降低界面张力:表面活性剂能够降低 油水界面张力,使油水混合更加容易。
02
形成胶团:表面活性剂在油水界面上 形成胶团,将油滴包裹起来,使其分 散在水中。
03
乳化稳定性:表面活性剂的乳化作用 能够提高乳状液的稳定性,使油滴在 水中保持均匀分布。
01 表面活性剂降低表面张
力,使液体更容易铺展 在固体表面
03 液体在固体表面形成薄
层,增加液体与固体的 接触面积
表面活性剂形成胶团, 02
吸附在固体表面,降低 表面能
液体在固体表面形成均 04
匀的薄膜,提高润湿效 果
接触角:液体与 固体表面之间的 夹角
润湿角:液体与 固体表面之间的 夹角,表示液体 在固体表面的润 湿程度

第三章表面活性剂-PPT

第三章表面活性剂-PPT
大多数聚氧乙烯表面活性剂得浊点在 70~100℃。
45
六 表面活性剂得生物学性质
1、对药物吸收得影响 表面活性剂得存在可能增加药物吸收,也可能降低药物
得吸收。 (1)若药物系被增溶在胶束内,且能顺利从胶束内扩散或胶
束本身迅速与胃肠粘膜融合,则可增加吸收,如吐温80 促进螺内酯口服吸收。 (2)表面活性剂得浓度亦有重要影响,如0、01%吐温80可 增加司可巴妥吸收,而1%吐温80反而降低了司可巴妥 吸收。
图解表面张力
三、表面活性剂得种类
根据极性基团得解离性质进行分类: ①离子型表面活性剂(阴离子型活性剂;阳离子
型活性剂,两性离子型); ②非离子型表面活性剂。
混合型得
11
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
12
根据分子量大小进行分类: ①低分子表面活性剂; ②高分子表面活性剂[如海藻酸钠、聚乙烯醇(PVA)、
酸碱酶得作用下易水解。
23
24
第二节 表面活性剂得基本特性
一、胶束(micelles)
溶液得表面正吸附达到饱与后,当溶液内表面活性剂 分子数目不断增加时,分子转入溶液中,其疏水部分 相互吸引,缔合在一起。
表面活性剂分子自身依靠范德华力相互聚集,形成亲 油基向内,亲水基向外,在水相中温度分散,大小在胶 体粒子范围得缔合体,称为胶束。
表面活性剂浓度变大
C < CMC
分子在溶液表面 定向排列,表面张 力迅速降低
C = CMC
溶液表面定向排 列已经饱与,表面 张力达到最小值。 开始形成小胶束
C > CMC
溶液中得分子得憎水 基相互吸引,分子自 发聚集,形成球状、 层状胶束,将憎水基 埋在胶束内部

不同烷基磺酸钠表面活性剂的相互作用机理

不同烷基磺酸钠表面活性剂的相互作用机理

不同烷基磺酸钠表面活性剂的相互作用机理一、引言二、表面活性剂的概述1、表面活性剂的定义2、表面活性剂的分类三、不同烷基磺酸钠表面活性剂的相互作用机理1、烷基磺酸钠表面活性剂的化学结构2、分子间相互作用机理(1)范德华力(2)静电作用力(3)亲水作用力(4)电化学作用力3、表面活性剂分子聚集行为的影响因素(1)温度(2)浓度(3)离子强度(4)pH值四、不同烷基磺酸钠表面活性剂的应用1、烷基磺酸钠表面活性剂在清洁剂中的应用2、烷基磺酸钠表面活性剂在化妆品中的应用3、烷基磺酸钠表面活性剂在医药领域中的应用五、结论引言随着科学技术和社会经济的发展,表面活性剂作为一种重要的化学与物理学分支,其研究也越来越受到学者们的重视。

其中,烷基磺酸钠表面活性剂作为一种广泛应用的表面活性剂,其相互作用机理一直是研究人员关注的问题。

因此,本文将从表面活性剂的概述入手,系统地介绍不同烷基磺酸钠表面活性剂的相互作用机理,并分析其应用领域,以期对该领域的研究提供参考。

表面活性剂的概述1、表面活性剂的定义表面活性剂(surface-active agent)是一类能够在液体表面或液滴与固体之间形成极薄、均匀、柔韧的分子膜并降低表面或界面的能量,从而达到改变表面或界面物理和化学性质的化合物。

表面活性剂分子的关键特征是有亲水头和疏水尾,亲水头向水相,疏水尾则朝向非极性相(如空气、有机溶剂及固体表面)。

由此可知,表面活性剂分子不同于一般的化合物,它表现出了分子级别的表面和界面活性(表面张力或界面张力降低)。

2、表面活性剂的分类根据表面活性剂头基的不同,可将表面活性剂分为阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂和Zwitterionic表面活性剂四类。

其中,如今应用最为广泛的为阴离子表面活性剂们。

不同烷基磺酸钠表面活性剂的相互作用机理1、烷基磺酸钠表面活性剂的化学结构烷基磺酸钠表面活性剂指的是一类以烷基磺酸为主要疏水链,阴离子磺酸基为亲水头基并具有一定表面活性的化合物。

表面活性剂在石油生产中的作用

表面活性剂在石油生产中的作用

表面活性剂在石油生产中的作用摘要:随着世界能源需求日益增长,伴随着石油能源的迅速递减,这就要求人们使用各种办法来提高石油的采收率,进而充分利用有限的石油资源。

在众多研究方法中,表面活性剂驱是一种前景颇为看好的化学方法,能很好地提高石油的采收率。

本文综述了在石油开采过程中不同阶段表面活性剂驱中的表面活性剂的种类,并结合了表面活性剂驱在三次采抽中的应用及国内的一些应用实例。

关键词:表面活性剂石油开采应用0 引言随着世界能源需求的增加,对石油的开采量及开采效率的要求越来越高,用常规方法采油,一般仅采出原油地质储量很少,但是大约三分之二的原油仍留在油层中,并且很难解决原油被滞留在岩石孔隙中和剩余原油流动性差的难题。

利用物理化学和生物学等技术来强化开采剩余储量的三次采油法,能有效提高原油采收率。

1 表面活性剂在钻井中的作用1.1 钻井用表面活性剂,避免钻井事故钻井用表面活性剂(包括钻井液处理剂和油井水泥外加剂)用量最大,约占油田用表面活性剂总量的60%左右;釆油用表面活性剂的量相对较少,但其技术含量相对较高,其用量约占油田用表面活性剂总量的1/3,这两类化学品在油田用表面活性剂中占有重要的位置。

在油井的钻探过程中, 表面活性剂常被加入钻井液体系用作降滤失剂, 以使泥饼更致密, 从而降低泥饼中的自由水向地层渗透而避免钻井事故。

降滤失剂需满足的重要要求之一是耐高温, 而要实现这一目的, 需要让表面活性剂分子尽可能多地与黏土表面的氧原子或羟基形成氢键。

因此, 如能在降滤失剂分子结构中引入氟原子,降滤失剂则具有更好的耐温性。

除此之外, 表面活性剂还在钻井液中用作降黏剂、增黏剂、流型调节剂、乳化剂、起泡剂、消泡剂、润滑剂、絮凝剂、黏土稳定剂和缓释剂等。

2 表面活性剂在油气开采中的增产作用2.1 稠油开采,采用表面活性剂增产由于稠油的黏度和密度比普通原油大得多, 因此对大多数的稠油通常采用井底乳液降黏, 即将碱类化合物和表面活性剂以及水注入到井底稠油中或挤入到油层近井地带, 借助井底的高温使稠油从地层渗流到井筒。

表面活性剂在纳米材料形貌调控中的作用及机理研究进展

表面活性剂在纳米材料形貌调控中的作用及机理研究进展

Vol 135No 16化基金项目:河南省杰出青年科学基金项目(No.0312*******);河南省教育厅自然科学基金项目作者简介:王培义(1960-),男,教授,硕士生导师,主要研究方向:精细化学品和功能材料。

表面活性剂在纳米材料形貌调控中的作用及机理研究进展王培义 张晓丽 徐甲强(郑州轻工业学院材料与化工学院,郑州450002)摘 要 介绍了表面活性剂在纳米材料合成中的软模板作用和稳定分散作用,重点综述了利用表面活性剂在溶液中聚集形成的胶团、反胶团、微乳液、囊泡、液晶等各种有序聚集体辅助制备纳米材料的作用机理。

展望了表面活性剂在纳米材料形貌调控中的应用前景。

关键词 纳米材料,形貌调控,表面活性剂,有序聚集体,作用机理Progress in f unction and mechanism of surfactant incontrolling of size and shape of nanomaterialsWang Peiyi Zhang Xiaoli Xu Jiaqiang(College of Material and Chemistry Engineering ,Zheng Zhou University ofLight Indust ry ,Zhengzhou 450002)Abstract The f unction of surfactants in controlling size and shape of nanomaterial particles ,which are template ac 2tion and dispersion property ,were anized surfactant assembles ,including micelles ,reverse micelles ,microe 2mulsion ,surfactant liquid crystal and surfactant vesicles are introduced and their mechanism in assistant formation of nano 2materials are summarized.the direction of research of surfactant in controlling of size and shape of nanomaterials is viewed.K ey w ords nanomaterial ,controlling shape ,surfactant ,organized assemble ,mechanism 在纳米材料研究过程中,只有实现对纳米材料微结构的有效控制,才有可能将其更有效地应用于微电子器件等高科技领域中,因此,纳米材料的形貌控制成为当前材料科学研究的前沿与热点。

表面活性剂的作用原理与应用

表面活性剂的作用原理与应用

表面活性剂的作用原理与应用作者:叶聪杨飞李勇来源:《科学与财富》2019年第09期摘要:表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。

表面活性剂系统的热动力学很重要,不论是理论上还是实践上。

因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。

表面活性剂溶液可能含有有序相和无序相。

胶束——表面活性剂分子的亲脂尾端聚于胶束内部,避免与极性的水分子接触;分子的极性亲水头端则露于外部,与极性的水分子发生作用,并对胶束内部的憎水基团产生保护作用。

关键词:表面活性剂;合成;分类;作用原理近年来,表面活性剂在生命科学、能源科学、信息材料以及许多现代高新技术中发挥了重要作用。

表面活性剂一般为具有亲水与疏水基团的有机两性分子,可溶于有机溶液和水溶液。

亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而憎水基团常为非极性烃链,如8个碳原子以上烃链。

表面活性剂分为离子型表面活性剂和非离子型表面活性剂等。

它是一大类有机化合物,他们的性质极具特色,应用极为灵活、广泛,有很大的实用价值和理论意义。

一、表面活性剂的分类表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,按极性基团的解离性质分类1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠肥皂类。

系高级脂肪酸的盐,通式:(RCOOˉ)nM。

硫酸化物RO-SO3-M。

主要是硫酸化油和高级脂肪醇硫酸酯类。

磺酸化物R-SO3-M。

属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。

2、阳离子表面活性剂:季铵化物该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。

其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。

其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。

第三章表面活性剂驱油

第三章表面活性剂驱油

目前,表面活性剂有数干种之多。按其极性部分的基团 不同(通常以表面活性别在水溶液中离解出的表面活性离子 的类型)来进行分类,可分为四种类型。
一、表面活性剂的类型及性质: 1、阴离子型表面活性剂: 阴离子表面活性剂是发展最早、应用最广的一 类极其重要的产品。其产量占表面活性剂总量的60% 一70%,尤其在我国,阴离子表面活性剂占总量的 90%左右。此类表面活性剂在水溶液中可离解出表 面活性阴离子。这种表面活性阴离子是由亲油基和亲 水基两部分构成,所以它具有表面活性剂两亲的结构 特点。
表面活性剂胶束增溶情况示意图
增溶是表面活性剂浓溶液(浓度大于2%)的特有属性,所以胶束、胶束溶液、 微乳液都具有增溶作用,而表面活性剂的稀溶液根本不具有此性质。 增溶与乳化有所不同,增溶过程是被增溶物以整团的形式溶入胶束区域内, 它仅仅是被增溶物在胶束中“溶解”,不增加体系的界面面积,所以是一个热 力学稳定体系;而乳化作用是增加相界面的分散过程,从而使体系的界面能大 为增加,是热力学不稳定体系。
1)石油磺酸盐
石油磺酸盐具有低界面张力、最佳相态、较 高的增溶能力,而且价格低,货源广。 人们在微乳液驱油配方的研究中发现,石油磺 酿盐平均当量增加时,其对油的增溶作用也随之 增加。反之,对水的增溶作用增强。
增溶参数: 单位体积活性别增溶的油体积或水体积
右图表明:石油磺酸盐的平均当 量为400—500时,有较高的增溶 参数。
例如:十二烷基苯磺酸钠在水溶液中按下式离解:
阴离子表面活性剂可细分为如下 几类 亲油基 阴离子表面活性剂可细分为如下几类:
亲水基
2、阳离子型表面活性剂: 这类物质通常是那些具有表面活性的合氮化合 物。即有机胺衍生出来的盐类,它们在水溶液中 能离解出表面活性阳离子。所以称之为阳离子表 面活性剂。 这类表面活性剂主要有胺盐类、季胺化合物、 含N碱类、不含N碱类等。比较常见的阳离子表面 活性剂为脂肪胺盐酸盐、烷基苯甲基吡啶氯化物、 咪唑酮的衍生物等。

表面活性剂的作用

表面活性剂的作用
防腐蚀作用 添加少量S.来阻止或减 缓金属腐蚀速度以达到保护金属的 作用 对纤维的平滑柔软作用 纤维与纤 维之间存在着一层由S.亲油基组成 的润滑剂,使纤维的静摩擦系数降 低、平滑柔软性增加的作用。 抗静电作用 S.分子吸附在纤维界面, 疏水基朝向纤维,强的亲水基朝向 空气,使纤维的离子导电性能和吸 湿导电性能增加,纤维表面的电阻 降低,使纤维表面的静电产生与放 电平衡,防止了纤维表面的静电积 累 抗静电作用
全部性能有关,去污能力好的表面活性 剂,其各种性能的协同配合效果好。
表面活性剂的洗涤与去污作用 在制革中的应用举例
生皮脱脂过程:带有油脂、污垢的生皮在表面
活性剂溶液中,使皮-水间的表面张力显著降低, 从而使生皮能较好地被水润湿和渗透。水溶液 进入皮纤维之间后,降低了油污与皮纤维之间 的粘附力,借助机械作用,使油污脱离生皮进 入水中,进而被S.乳化、分散。已经乳化分散的 油污不再附着在皮纤维上,一部分油污进入S.的 胶束中,从而发生增溶作用而除去;还有一部 分油污,被泡沫粘附,随同泡沫漂浮到溶液表 面而除去。
• 浸水、浸灰、脱毛、鞣制以及染色、填表面活性剂的乳化作用
• 几个基本概念
1.乳化作用(乳化):一种液体以小液珠(或液滴) 分散于另一种不混溶的液体中形成的类似于牛奶的多 相体系[乳(状)液]的过程。 2.分散相:以液珠形式存在的相(或内相、不连续 相)。 分散介质:连续成一片的另一相(或外相、连续相)。 3.乳化剂:为降低体系界面能、使乳液稳定加入的表 面活性剂
表面活性剂乳液
• 乳液类型及其辨别
• 水包油型乳液,以O/W表示; 油包水型乳液,以W/O表示; • 乳液类型的辨别: 常用电导法:O/W >W/O 需要指出的是: 1.在制革中普遍应用的是O/W型乳液; 2.乳液是热力学不稳定体系(形成乳液时,两液体的 界面增大)

sds裂解细胞原理

sds裂解细胞原理

sds裂解细胞原理SDS裂解细胞原理SDS(十二烷基硫酸钠)是一种阴离子表面活性剂,具有良好的蛋白质溶解和分离性能。

SDS裂解细胞是一种常用的方法,用于提取细胞内的蛋白质。

本文将详细介绍SDS裂解细胞的原理。

一、SDS的化学结构及作用机理1. SDS的化学结构SDS(十二烷基硫酸钠)是一种阴离子表面活性剂,其化学式为C12H25NaO4S。

它由一个长链烷基和一个亲水性羧基组成,烷基部分为十二烷基(C12H25),羧基部分为SO4Na。

2. SDS的作用机理SDS在水溶液中形成单分子层,并且与水分子形成氢键,使得其亲水性羧基向外,疏水性烷基向内。

当SDS与蛋白质相互作用时,其亲水性羧基与蛋白质中的极性氨基酸残基(如谷氨酸、天冬氨酸等)形成静电相互作用,同时,SDS的疏水性烷基则与蛋白质中的非极性氨基酸残基(如丙氨酸、苯丙氨酸等)相互作用。

这种作用机理称为“疏水作用”。

二、SDS裂解细胞原理1. 细胞膜的结构细胞膜是由磷脂双层和蛋白质组成的。

其中,磷脂是由两个亲水性头部和一个疏水性尾部组成。

在生物体内,磷脂双层呈现出液晶状态,使得细胞膜具有半透性。

2. SDS裂解细胞的过程SDS裂解细胞是一种常用的方法,用于提取细胞内的蛋白质。

其原理是利用SDS分子对于疏水性的亲和力将细胞膜溶解掉,从而释放出细胞内部的蛋白质。

具体来说,将待处理的样品加入含有SDS和还原剂(如β-巯基乙醇)的缓冲液中,并加以震荡或超声处理。

在这个过程中,SDS分子会穿过细胞膜,与磷脂双层中的磷脂头部相互作用,将其分解开来。

此时,SDS分子会包裹住蛋白质,并将其溶解在缓冲液中。

还原剂的作用是使得蛋白质中的二硫键断裂,从而使得蛋白质变为线性构象。

三、SDS裂解细胞的优点和缺点1. 优点(1) SDS裂解细胞方法简单、快速、高效。

(2) SDS可以将细胞膜溶解掉,从而释放出大量的细胞内部蛋白质。

(3) SDS可以将蛋白质变为线性构象,便于进行电泳分析。

表面活性剂

表面活性剂

表面活性剂1.表面活性剂:在加入量很少时即能明显降低溶剂的表面或界面张力,改变物系的界面状态,能够产生润湿,乳化,起泡,增溶及分散等一系列作用,从而达到实际应用的要求。

2.表面:液体或固体与气体的接触面称为液体或固体的表面。

3.界面:液液,固固,或液固的接触面。

4.表面张力:(1)从分子运动的角度来看,气相中分子浓度低于液相,液体内部的分子从各个方向所受的引力相互平衡,合力为0。

液体表面分子的合力不为0,所以液滴自动收缩。

(2)从力的角度来看,是作用于表面单位长度边缘上的力。

(3)从能量角度来看,表面张力是单位表面的表面自由能,是增加单位表面积液体的自由能的增值,也是单位表面上的液体分子处于液体内部的铜梁分子的自由能过剩值。

5.表面自由能:增加单位表面积液体时自由能的增值。

6.表面活性:因溶质在表面发生了正吸附而使溶液表面张力降低的性质。

7.(非)表面活性物质:(不)能使溶液表面张力降低而(不)具有表面活性的物质。

8.吸附现象:当物质加入液体后,它在液体表面层的浓度与液体内部的浓度不同,这种改变浓度的现象。

9.分类按离子类型:非离子、离子(阴、阳、两性);按亲水基结构;按疏水基种类;按表面活性剂的特殊性(碳氟、含硅、高分子、生物、冠醚);按溶解性(水溶、油溶);按相对分子质量(高、低);按应用功能(乳化剂、洗涤剂、润湿剂、发泡剂、消泡剂、分散剂、絮凝剂、渗透剂、增溶剂)。

10.测定方法:(1)滴重法:自一毛细管滴头滴下液体是,液滴的大小与液体表面张力有关,张力越大,液滴越大。

γ=W/(2πRf)=Vρg/(2πRf)(2)毛细管上升法:当毛细管插入液体时,管中的弯液会上升或下降一定高度,γ=1/2RΔρg(h+r/3)。

(3)环法:把一圆环平置于液面上,测定将环拉离液面所需的最大力。

γ=PF/(4πR)(4)吊片法γ=P/2(l+d)(5)最大气泡压力法γ=Pm/2R(6)滴外形法:表面吸附速率很慢的溶液只能采用滴外形法。

表面活性剂在瓦斯水合中的作用机理

表面活性剂在瓦斯水合中的作用机理

表面活性剂在瓦斯水合中的作用机理
表面活性剂是一类物质,它们具有一端疏水一端亲水的分子结构,可以使水和其他液体之间的界面能够稳定。

在水和气体(如瓦斯)之间的界面处,表面活性剂能够降低表面张力,从而使气体溶解在水中的能力增强。

这种作用机理主要是由于表面活性剂分子在水和瓦斯之间形成一个疏水性层,使气体与水之间的相互作用减少。

这样,瓦斯就可以更容易地溶解在水中,并在水中形成水合物。

另一方面,表面活性剂分子中的亲水性部分能够与水分子结合,使水分子之间的相互作用增强。

这有助于维护水的结构,使得水能够更容易地与瓦斯水合。

因此,表面活性剂在水和瓦斯水合过程中起着关键作用。

另外,表面活性剂还能够降低水和瓦斯之间的界面张力,使得瓦斯更容易在水中溶解。

这与表面活性剂的分子结构有关,表面活性剂分子的疏水性部分能够与瓦斯分子结合,减少瓦斯和水之间的相互作用。

总之,表面活性剂在水和瓦斯水合过程中起着调节作用,它能够降低表面张力,增强气体溶解在水中的能力,使得水和瓦斯之间的界面更加稳定。

执业药师考试-表面活性剂

执业药师考试-表面活性剂

表面活性剂一、概念:表面活性剂(surfactant)被誉为“工业味精”,是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使溶液表面张力显著下降的物质。

二、作用机理凡加入少量而能显著降低液体表面张力的物质,统称为表面活性剂。

它们的表面活性是对某特定的液体而言的,在通常情况下则指水。

表面活性剂一端是非极性的碳氢链(烃基),与水的亲和力极小,常称疏水基或亲油基;另一端则是极性基团(如—OH、—COOH、—NH₂、—SO₃H等),与水有很大的亲和力,故称亲水基,总称“双亲分子”(亲油亲水分子)。

为了达到稳定, 表面活性剂溶于水时,可以采取两种方式:1、在液面形成单分子膜。

将亲水基留在水中而将疏水基伸向空气,以减小排斥。

而疏水基与水分子间的斥力相当于使表面的水分子受到一个向外的推力,抵消表面水分子原来受到的向内的拉力,亦即使水的表面张力降低。

这就是表面活性剂的发泡、乳化和湿润作用的基本原理。

在油-水系统中,表面活性剂分子会被吸附在油-水两相的界面上,而将极性基团插入水中,非极性部分则进入油中,在界面定向排列。

这在油-水相之间产生拉力,使油-水的界面张力降低。

这一性质对表面活性剂的广泛应用有重要的影响。

2、形成“胶束”。

胶束可为球形,也可是层状结构,都尽可能地将疏水基藏于胶束内部而将亲水基外露。

如以球形表示极性基,以柱形表示疏水的非极性基,则单分子膜和胶束。

如溶液中有不溶于水的油类(不溶于水的有机液体的泛称),则可进入球形胶束中心和层状胶束的夹层内而溶解。

这称为表面活性剂的增溶作用。

三、分类表面活性剂根据其分子能否解离成离子,分为离子型和非离子型两大类。

离子型又分为阴离子型、阳离子型和两性离子型三类。

1、阴离子型表面活性剂带负电荷的表面活性剂称为阴离子型表面活性剂。

起表面活性作用的是阴离子。

(一)肥皂类系高级脂肪酸的盐,通式: (RCOOˉ)n M。

脂肪酸烃R一般为11~17个碳,表面活性剂肥皂的长链,常见有硬脂酸、油酸、月桂酸。

10-表面活性剂

10-表面活性剂
2. 表面活性剂旳合用范围
W/O型乳化剂: HLB值 3~6
O/W型乳化剂: HLB值 8 ~18
增溶剂:
HLB值 13~18
润湿剂:
HLB值 7~9
消泡剂:
HLB值 1~3
去污剂:
HLB值 13~16
3.表面活性剂混合后HLB值旳计算
非离子型表面活性剂旳HLB值具有加和性。
HLBa×Wa+HLBb×Wb HLB混合 =
二、表面活性剂构造特征(亲水、亲油基团)
R-CH2-CH2
O C
ONa
表面活性剂在水中会怎样排列?
第十章 表面活性剂 第一节 概述
三、表面活性剂旳吸附性
1、表面活性剂旳正吸附 表面活性剂溶于水, 在浓度很低时,在水表面形成单分子层定向排列, 亲水基团朝向水而亲油基团朝向空气。使溶液旳 表面张力降到纯水下列。表面活性剂在溶液表面 层汇集旳现象称为正吸附,简称吸附。
芳基磺酸化物、烷基萘基磺酸化物。
特点:⑴渗透力强,起泡去污力好,粘度低,泡沫 易消失,优良洗涤剂。
⑵水溶性及耐酸、钙、镁盐比硫酸化物差,但 酸中不易水解
⑶二辛基琥珀酸磺酸钠(阿拉索-OT)、二己基 琥珀酸磺酸钠、十二烷基苯磺酸钠为目前广泛应用 旳洗涤剂。甘胆酸钠、牛磺胆酸钠等胆酸盐亦属此 类,常作胃肠道脂肪旳乳化剂和单硬脂酸甘油酯旳 增溶剂。
⑸耐热压灭菌和低温冷冻。
第十章 表面活性剂
第三节表面活性剂旳基本性质
一、表面活性剂旳物理化学性质 ㈠表面活性剂旳胶束 1.临界胶束浓度 (CMC):当表面活性剂旳正 吸附达饱和后,继续加入,其分子则转入溶液内 部,造成表面活性剂分子本身依赖范德华引力相 互汇集,形成亲油基团向内,亲水基团向外,在 水中稳定分散、大小在胶体粒子范围内旳缔合体 称为胶束或胶团。表面活性剂分子缔合形成胶束 旳最低浓度称为临界胶束浓度 。 在CMC时,溶液旳表面张面性剂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面活性剂作用机理
表面活性剂具有湿润、乳化、去污、分散等作用,主要是因为:
1、表面活性剂能降低接触界面的表面张力
纯液体的表面张力在恒温下是定值,而溶液的表面张力则随溶液的组成不同而不同。

通过实验人们发现,各种物质的水溶液的表面张力与浓度的关系主要有以下三种情况:
1、稍有上升,无机盐(氯化钠、硫酸钠)及多羟基有机物(蔗糖、甘露醇)
2、逐渐降低,低分子极性有机物(醇、醛、酮、脂、醚等)
3、低浓度时,显著降低,后变化不大(含有8个碳以上的碳氢链的羧酸盐、磺酸盐等)
通常把2、3类物质称为表面活性物质,而把第1类物质称为非表面活性物质。

而第3类称为表面活性剂,即加入少量即能大幅降低溶液的表面张力,而随着浓度继续增大表面张力降低不再明显的物质。

表面活性剂能够降低溶液的表面张力主要是由其结构的特殊性决定的。

它具有两性基团:亲水性基团和亲脂性基团,它能显著降低接触界面的表面张力,增加污染物特别是憎水性有机污染物在水相的溶解性。

2、表面活性剂能形成胶束
当表面活性剂达到一定浓度时,其单体急剧
聚集,形成球状、棒状或层状的“胶束”,该浓
度称为临界胶束浓度(critical micelle
concentration,CMC),胶束是由水溶性基团包裹
憎水性基团核心构成的集合体,当胶束溶液达
到热力学稳定时可以形成微乳溶液。

根据“相似相容”原理,憎水性有机物有进
入与它极性相同胶束内部的趋势,因此将表面
活性剂达到或超过CMC时,污染物分配进入
胶束核心,大量胶束的形成,增加了污染物的溶解性,同时NAPLs从含水层介质上大量解析,溶解于表面活性剂胶束内,表面活性剂对NAPLs溶解性增加的程度可以由胶束——水分配系数和摩尔增溶比(MSR)来表示。

表面活性剂的应用与发展
表面活性剂主要应用于洗涤、纺织等行业,其他应用几乎可以覆盖所有的精细化工领域。

在造纸工业中可以用作蒸煮剂、废纸脱墨剂、施胶剂等;在医药行业中可作为杀菌剂和消毒剂使用;在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的表面活性剂,降低水的表面张力,使药粒被水所润湿,形成水悬液。

表面活性剂行业作为国民经济的重要组成部分,其发展水平已被视为各国高新化工技术产业的重要标志,并成为当今世界化学工业激烈竞争的焦点。

以表面活性剂在农药中应用为例,国外通过表面活性剂对除草剂活性作用的研究表明,表面活性剂并非只单纯地降低药液的表面张力,以提高药量而达到增效的目的,若针对各种药剂特性,采用适当种类和浓度的表面活性剂还可以促进药剂对植物的渗透作用,且对药剂具有增溶作用,可见有选择性地开发和应用表面活性剂,可望达到对药剂增效、节约用药、减少对环境污染和降低防治成本的目的。

相关文档
最新文档